

open 👌 access

Crystal structure of tris(phenylselenolato- κ Se)tris(tetrahydrofuran- κ O)thulium(III)

Esther M. Takaluoma,^a Raija Oilunkaniemi,^a Christian W. Lehmann^b and Risto S. Laitinen^a*

^aDepartment of Chemistry, PO Box 3000, FI-90014 University of Oulu, Finland, and ^bMax-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany. *Correspondence e-mail: risto.laitinen@oulu.fi

Received 21 October 2014; accepted 28 October 2014

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

In the title compound, $[\text{Tm}(\text{C}_6\text{H}_5\text{Se})_3(\text{C}_4\text{H}_8\text{O})_3]$, the Tm^{III} atom lies on a threefold rotation axis and is coordinated by three phenylselenolate ligands and three tetrahydrofuran ligands leading to a distorted *fac*-octahedral coordination environment. The Tm–Se and Tm–O bond lengths are 2.7692 (17) and 2.345 (10) Å, respectively, and the bond angles are 91.32 (6)° for Se–Tm–Se, 92.6 (2) and 94.4 (2)° for Se–Tm–O, and 81.2 (3)° for O–Tm–O. In the crystal, the discrete complexes are linked by van der Waals interactions only. The crystal was refined as a non-merohedral twin (ratio = 0.65:0.35).

Keywords: crystal structure; thulium complex; phenylselenolate ligand.

CCDC reference: 1031290

1. Related literature

For the synthesis of the title compound, see: Lee *et al.* (1998). For the crystal structures of the isotypic compounds $[Er(SePh)_3(THF)_3]$ and $[Yb(SePh)_3(THF)_3]$, see: Lee *et al.* (1998); Geissinger & Magull (1995). For a binuclear selenolate complex of thulium, see: Lee *et al.* (1995).

2. Experimental

2.1. Crystal data

$[Tm(C_6H_5Se)_3(C_4H_8O)_3]$
$M_r = 853.42$
Trigonal, P31c
a = 15.277 (2) Å
c = 7.8708 (16) Å
V = 1590.9 (6) Å ³

2.2. Data collection

```
Bruker–Nonius KappaCCD
diffractometer
Absorption correction: multi-scan
(XPREP in SHELXTL; Shel-
drick, 2008)
T_{\rm min} = 0.189, T_{\rm max} = 0.574
```

2.3. Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.038\\ wR(F^2) &= 0.087\\ S &= 1.10\\ 2151 \text{ reflections}\\ 127 \text{ parameters}\\ 9 \text{ restraints}\\ \text{H-atom parameters constrained}\\ \Delta\rho_{\text{max}} &= 0.76 \text{ e } \text{ Å}^{-3} \end{split}$$

Z = 2Mo K\alpha radiation $\mu = 6.25 \text{ mm}^{-1}$ T = 120 K $0.40 \times 0.20 \times 0.10 \text{ mm}$

5660 measured reflections 2151 independent reflections 2053 reflections with $I > 2\sigma(I)$ $R_{int} = 0.053$

 $\begin{array}{l} \Delta \rho_{\rm min} = -1.43 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Absolute \ structure: \ Flack \ x} \\ {\rm determined \ using \ 812 \ quotients} \\ [(I^+)-(I^-)]/[(I^+)+(I^-)] \ ({\rm Parsons} \\ {\rm \& \ Flack, \ 2004)} \\ {\rm Absolute \ structure \ parameter:} \\ -0.03 \ (3) \end{array}$

Data collection: *COLLECT* (Bruker, 2008); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Acknowledgements

EMT thanks the Jenni and Antti Wihuri Foundation for financial support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5009).

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GmbH, Bonn, Germany. Bruker (2008). *COLLECT*. Bruker AXS Inc., Madison, Wisconsin, USA. Farrugia, L. J. (2012). *J. Appl. Cryst.* **45**, 849–854.

Geissinger, M. & Magull, J. (1995). Z. Anorg. Allg. Chem. 621, 2043–2048.

- Lee, J., Brewer, M., Berardini, M. & Brennan, J. G. (1995). *Inorg. Chem.* 34, 3215–3219.
- Lee, J., Freedman, D., Melman, J. H., Brewer, M., Sun, L., Emge, T. J., Long, F. H. & Brennan, J. G. (1998). *Inorg. Chem.* **37**, 2512–2519.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol 276. *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet pp. 307–326. New York, Academic Press.

Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2014). E70, m389 [doi:10.1107/S1600536814023733]

Crystal structure of tris(phenylselenolato- κ Se)tris(tetrahydrofuran- κ O)thulium(III)

Esther M. Takaluoma, Raija Oilunkaniemi, Christian W. Lehmann and Risto S. Laitinen

S1. Synthesis and crystallization

The title compound was synthesized by the literature procedure [Lee *et al.* (1998)]. The crystals were obtained from THF at 255 K.

S2. Refinement

H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 - 0.99 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$. The crystal is a non-merohedral with twin law of -1 0 0, 0 -1 0, 0 0 1 and a ratio of 0.65:0.35. The THF ligands show positional disorder with an occupancy ratio of 0.79 (3):0.21 (3).

Figure 1

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Only the more abundant orientation of the disordered THF ligands is shown (symmetry codes: (i) x, y, z; (ii) -y, x-y, z; (iii) -x + y, -x, z; (iv) y, x, z + 1/2; (v) x-y, -y, z + 1/2; (vi) -x, -x + y, z + 1/2.

Figure 2

A perspective view along the c axis of the crystal packing of the title compound.

Tris(phenylselenolato-*kSe*)tris(tetrahydrofuran-*kO*)thulium(III)

Crystal data

 $[Tm(C_6H_5Se)_3(C_4H_8O)_3]$ $M_r = 853.42$ Trigonal, P31c a = 15.277 (2) Å c = 7.8708 (16) Å V = 1590.9 (6) Å³ Z = 2F(000) = 828

Data collection

Bruker–Nonius KappaCCD diffractometer φ scans, and ω scans with κ offsets Absorption correction: multi-scan (*XPREP* in *SHELXTL*; Sheldrick, 2008) $T_{\min} = 0.189, T_{\max} = 0.574$ 5660 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.087$ S = 1.102151 reflections 127 parameters 9 restraints Hydrogen site location: inferred from neighbouring sites $D_x = 1.782 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2053 reflections $\theta = 3.1-28.1^{\circ}$ $\mu = 6.25 \text{ mm}^{-1}$ T = 120 KBlock, pale yellow-green $0.40 \times 0.20 \times 0.10 \text{ mm}$

2151 independent reflections 2053 reflections with $I > 2\sigma(I)$ $R_{int} = 0.053$ $\theta_{max} = 28.1^{\circ}, \ \theta_{min} = 3.1^{\circ}$ $h = -16 \rightarrow 20$ $k = -18 \rightarrow 14$ $l = -9 \rightarrow 10$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + 8.380P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.76 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -1.43 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL2013* (Sheldrick, 20008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0089 (14) Absolute structure: Flack *x* determined using 812 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons & Flack, 2004) Absolute structure parameter: -0.03 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refined as a 2-component twin.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Tm1	0.6667	0.3333	0.08579 (18)	0.0326 (3)	
Se1	0.63991 (14)	0.46785 (13)	-0.11260 (16)	0.0456 (4)	
01	0.7727 (7)	0.4562 (7)	0.2822 (12)	0.034 (2)	
C1	0.7309 (12)	0.5979 (12)	-0.0110 (17)	0.040 (4)	
C2	0.6951 (13)	0.6510 (11)	0.081 (3)	0.055 (4)	
H2	0.6247	0.6222	0.1023	0.066*	
C3	0.7629 (18)	0.7463 (15)	0.142 (2)	0.069 (6)	
H3	0.7377	0.7829	0.2025	0.082*	
C4	0.8656 (14)	0.7899 (15)	0.119 (2)	0.061 (6)	
H4	0.9107	0.8545	0.1655	0.074*	
C5	0.9021 (15)	0.7375 (14)	0.026 (2)	0.056 (5)	
H5	0.9725	0.7669	0.0057	0.067*	
C6	0.8341 (15)	0.6407 (12)	-0.038 (2)	0.051 (5)	
H6	0.8591	0.6043	-0.0998	0.061*	
C7A	0.7418 (19)	0.5034 (16)	0.406 (2)	0.044 (5)	0.79 (3)
H7AA	0.6992	0.4534	0.4932	0.052*	0.79 (3)
H7BA	0.7017	0.5302	0.3514	0.052*	0.79 (3)
C8A	0.8335 (15)	0.587 (2)	0.487 (3)	0.061 (8)	0.79 (3)
H8AA	0.8218	0.5946	0.6082	0.074*	0.79 (3)
H8BA	0.8556	0.6521	0.4276	0.074*	0.79 (3)
C9A	0.9087 (15)	0.5529 (15)	0.465 (2)	0.044 (6)	0.79 (3)
H9AA	0.9009	0.5034	0.5539	0.053*	0.79 (3)
H9BA	0.9789	0.6104	0.4666	0.053*	0.79 (3)
C10A	0.879 (2)	0.505 (3)	0.293 (4)	0.045 (7)	0.79 (3)
H0AA	0.9104	0.5568	0.2032	0.055*	0.79 (3)
H0BA	0.9021	0.4551	0.2782	0.055*	0.79 (3)
C7B	0.743 (9)	0.484 (8)	0.454 (9)	0.044 (5)	0.21 (3)
H7AB	0.7077	0.5231	0.4379	0.052*	0.21 (3)
H7BB	0.7010	0.4239	0.5246	0.052*	0.21 (3)
C8B	0.850 (6)	0.551 (8)	0.532 (12)	0.061 (8)	0.21 (3)
H8AB	0.8521	0.6075	0.5967	0.074*	0.21 (3)
H8BB	0.8655	0.5099	0.6107	0.074*	0.21 (3)
C9B	0.928 (5)	0.592 (6)	0.386 (9)	0.044 (6)	0.21 (3)
H9AB	0.9961	0.6094	0.4276	0.053*	0.21 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H9BB	0.9320	0.6533	0.3350	0.053*	0.21 (3)
C10B	0.888 (7)	0.505 (13)	0.26 (2)	0.045 (7)	0.21 (3)
H0AB	0.9122	0.4568	0.2814	0.055*	0.21 (3)
H0BB	0.9084	0.5304	0.1378	0.055*	0.21 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Tm1	0.0385 (3)	0.0385 (3)	0.0206 (4)	0.01927 (16)	0.000	0.000
Se1	0.0548 (9)	0.0551 (10)	0.0316 (7)	0.0311 (9)	-0.0015 (8)	0.0096 (8)
01	0.036 (5)	0.041 (6)	0.024 (4)	0.020 (5)	0.007 (4)	0.001 (4)
C1	0.054 (11)	0.045 (8)	0.028 (8)	0.031 (8)	0.005 (7)	0.017 (6)
C2	0.070 (10)	0.056 (10)	0.052 (9)	0.041 (9)	0.036 (12)	0.019 (11)
C3	0.13 (2)	0.072 (13)	0.042 (9)	0.077 (15)	0.016 (11)	0.012 (9)
C4	0.066 (12)	0.045 (9)	0.054 (13)	0.013 (8)	-0.005 (8)	-0.007 (8)
C5	0.061 (11)	0.045 (9)	0.069 (12)	0.033 (9)	0.012 (8)	0.006 (9)
C6	0.045 (10)	0.053 (9)	0.043 (8)	0.016 (9)	-0.009 (8)	-0.002 (6)
C7A	0.059 (11)	0.048 (11)	0.014 (9)	0.020 (10)	0.006 (11)	0.010 (8)
C8A	0.064 (14)	0.062 (18)	0.038 (14)	0.016 (12)	-0.003 (10)	-0.017 (12)
C9A	0.040 (11)	0.043 (12)	0.026 (10)	0.004 (10)	0.001 (9)	0.011 (8)
C10A	0.053 (12)	0.060 (11)	0.03 (2)	0.034 (10)	-0.001 (11)	0.003 (13)
C7B	0.059 (11)	0.048 (11)	0.014 (9)	0.020 (10)	0.006 (11)	0.010 (8)
C8B	0.064 (14)	0.062 (18)	0.038 (14)	0.016 (12)	-0.003 (10)	-0.017 (12)
C9B	0.040 (11)	0.043 (12)	0.026 (10)	0.004 (10)	0.001 (9)	0.011 (8)
C10B	0.053 (12)	0.060 (11)	0.03 (2)	0.034 (10)	-0.001 (11)	0.003 (13)

Geometric parameters (Å, °)

Tm1—O1 ⁱ	2.345 (10)	C7A—C8A	1.49 (2)	
Tm1—01	2.345 (10)	С7А—Н7АА	0.9900	
Tm1—O1 ⁱⁱ	2.345 (10)	С7А—Н7ВА	0.9900	
Tm1—Se1 ⁱ	2.7692 (17)	C8A—C9A	1.49 (2)	
Tm1—Se1 ⁱⁱ	2.7692 (17)	C8A—H8AA	0.9900	
Tm1—Se1	2.7692 (17)	C8A—H8BA	0.9900	
Sel—Cl	1.938 (18)	C9A—C10A	1.50 (2)	
O1—C10A	1.41 (3)	С9А—Н9АА	0.9900	
O1—C7A	1.42 (3)	С9А—Н9ВА	0.9900	
O1-C10B	1.55 (10)	C10A—H0AA	0.9900	
O1—C7B	1.56 (10)	C10A—H0BA	0.9900	
C1—C2	1.39 (2)	C7B—C8B	1.55 (9)	
C1—C6	1.39 (3)	C7B—H7AB	0.9900	
C2—C3	1.38 (3)	C7B—H7BB	0.9900	
С2—Н2	0.9500	C8B—C9B	1.55 (9)	
C3—C4	1.38 (3)	C8B—H8AB	0.9900	
С3—Н3	0.9500	C8B—H8BB	0.9900	
C4—C5	1.39 (2)	C9B—C10B	1.55 (9)	
C4—H4	0.9500	C9B—H9AB	0.9900	
C5—C6	1.41 (2)	C9B—H9BB	0.9900	

С5—Н5	0.9500	С10В—Н0АВ	0.9900
С6—Н6	0.9500	C10B—H0BB	0.9900
O1 ⁱ —Tm1—O1	81.2 (3)	С8А—С7А—Н7ВА	110.0
O1 ⁱ —Tm1—O1 ⁱⁱ	81.2 (3)	Н7АА—С7А—Н7ВА	108.3
O1—Tm1—O1 ⁱⁱ	81.2 (3)	C7A—C8A—C9A	102 (2)
O1 ⁱ —Tm1—Se1 ⁱ	94.4 (2)	С7А—С8А—Н8АА	111.4
O1—Tm1—Se1 ⁱ	92.6 (2)	С9А—С8А—Н8АА	111.4
O1 ⁱⁱ —Tm1—Se1 ⁱ	173.0 (2)	C7A—C8A—H8BA	111.4
O1 ⁱ —Tm1—Se1 ⁱⁱ	92.6 (2)	С9А—С8А—Н8ВА	111.4
O1—Tm1—Se1 ⁱⁱ	173.0 (2)	H8AA—C8A—H8BA	109.2
O1 ⁱⁱ —Tm1—Se1 ⁱⁱ	94.4 (2)	C8A—C9A—C10A	100 (2)
Se1 ⁱ —Tm1—Se1 ⁱⁱ	91.32 (6)	С8А—С9А—Н9АА	111.7
Ol ⁱ —Tm1—Se1	173.0 (2)	С10А—С9А—Н9АА	111.7
O1—Tm1—Se1	94.4 (2)	С8А—С9А—Н9ВА	111.7
O1 ⁱⁱ —Tm1—Se1	92.6 (2)	С10А—С9А—Н9ВА	111.7
Sel ⁱ —Tm1—Sel	91.32 (6)	Н9АА—С9А—Н9ВА	109.5
Sel ⁱⁱ —Tm1—Sel	91.32 (6)	O1—C10A—C9A	107.3 (17)
C1—Se1—Tm1	103.4 (4)	O1—C10A—H0AA	110.3
C10A—O1—C7A	106.2 (19)	С9А—С10А—Н0АА	110.3
C10B—O1—C7B	114 (7)	O1—C10A—H0BA	110.3
C10A—O1—Tm1	127.8 (12)	C9A—C10A—H0BA	110.3
C7A—O1—Tm1	125.8 (11)	H0AA—C10A—H0BA	108.5
C10B—O1—Tm1	117 (4)	C8B—C7B—O1	100 (7)
C7B—O1—Tm1	128 (4)	C8B—C7B—H7AB	111.8
C2—C1—C6	119.4 (16)	O1—C7B—H7AB	111.8
C2—C1—Se1	121.6 (13)	C8B—C7B—H7BB	111.8
C6-C1-Se1	118.9 (12)	O1—C7B—H7BB	111.8
C3—C2—C1	119.3 (16)	H7AB—C7B—H7BB	109.5
С3—С2—Н2	120.3	C9B—C8B—C7B	109 (7)
C1—C2—H2	120.3	C9B—C8B—H8AB	110.0
C4—C3—C2	122.4 (17)	C7B—C8B—H8AB	110.0
С4—С3—Н3	118.8	C9B—C8B—H8BB	110.0
С2—С3—Н3	118.8	C7B—C8B—H8BB	110.0
C3—C4—C5	118.7 (17)	H8AB—C8B—H8BB	108.3
C3—C4—H4	120.7	C8B—C9B—C10B	105 (7)
C5—C4—H4	120.7	С8В—С9В—Н9АВ	110.9
C4—C5—C6	119.8 (17)	C10B—C9B—H9AB	110.9
C4—C5—H5	120.1	C8B—C9B—H9BB	110.9
С6—С5—Н5	120.1	C10B—C9B—H9BB	110.9
C1—C6—C5	120.4 (17)	Н9АВ—С9В—Н9ВВ	108.9
С1—С6—Н6	119.8	C9B—C10B—O1	101 (7)
С5—С6—Н6	119.8	C9B—C10B—H0AB	111.7
O1—C7A—C8A	108.6 (19)	O1—C10B—H0AB	111.7
O1—C7A—H7AA	110.0	C9B—C10B—H0BB	111.7
С8А—С7А—Н7АА	110.0	O1-C10B-H0BB	111.7
O1—C7A—H7BA	110.0	H0AB—C10B—H0BB	109.4

Symmetry codes: (i) -*x*+*y*+1, -*x*+1, *z*; (ii) -*y*+1, *x*-*y*, *z*.