STRUCTURE
OPEN \bigodot ACCESS REPORTS

Crystal structure of (4R,5S)-4-methyl-3-methylsulfinyl-5-phenyl-1,3-oxazolidin-2-one

Gustavo Pozza Silveira, ${ }^{\text {a* }}$ Vinicius Flores da Silva ${ }^{\text {a }}$ and Allen G. Oliver ${ }^{\text {b }}$
${ }^{a}$ Universidade Federal do Rio Grande do Sul, Instituto de Química Depto. Química Orgânica, Av. Bento Gonçalves, 9500 Agronomia, CEP 91.501-970, Porto Alegre/ RS, Brazil, and ${ }^{\mathbf{b}}$ University of Notre Dame, Department of Chemistry and Biochemistry, 235 Nieuwland Science Hall, Notre Dame, IN 46556-5670, USA. *Correspondence e-mail: gustavo.silveira@iq.ufrgs.br

Received 31 October 2014; accepted 11 November 2014

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

The absolute structure of the chiral asymmetric indole precursor title compound, $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}$, was confirmed by refinement of the Flack and Hooft parameters and is that expected based on the starting materials for the synthesis. The phenyl group subtends a dihedral angle of $56.40(5)^{\circ}$ with the mean plane of the oxazolidinone ring, which adopts an envelope conformation, with the C atom bearing the methyl group as the flap. In the crystal, no significant directional interactions beyond van der Waals contacts are observed.

Keywords: crystal structure; oxazolidinone; asymmetric indole.

CCDC reference: 1033536

1. Related literature

For general background to the preparation of naturally occurring alkaloids, see: Marino et al. (1992). For further synthetic details, see: Silveira \& Marino, 2013. For related structures, see: Evans et al. (1992); Silveira et al. (2013); Silveira et al. (2012); Clara-Sosa et al. (2004); Romanenko et al. (2003). A statistical analysis (Hooft et al., 2008) was used to corroborate that the correct enantiomorph of the space group and hence handedness of the molecule had been determined.

2. Experimental

2.1. Crystal data
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}$
$M_{r}=239.28$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.1605$ (4) A
$b=11.8490$ (8) \AA
$c=15.3861$ (11) A
2.2. Data collection

Bruker X8 APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)
$T_{\min }=0.707, T_{\max }=0.746$

2.3. Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.070$
$S=1.03$
$\Delta \rho_{\text {min }}=-0.18$ e \AA^{-3}
Absolute structure: Flack x
3761 reflections
147 parameters
H -atom parameters constrained
$\Delta \rho_{\max }=0.31 \mathrm{e}^{-3}$
$V=1123.12(13) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.28 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.22 \times 0.09 \times 0.06 \mathrm{~mm}$

30938 measured reflections
3761 independent reflections
3507 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013)
Absolute structure parameter: -0.012 (16)

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XCIF (Sheldrick, 2008), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Acknowledgements

We thank Professor Joseph P. Marino (UND) for insightful discussions and guidance and Dr Bruce C. Noll (Bruker AXS) for assistance with sample preparation. GPS is grateful to CNPq and CAPES for a PVE Science Without Borders (096/ 2013) and the CAPES/UDELAR bilateral program Projetos conjuntos de pesquisa (049/2013).

[^0]
data reports

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Bruker (2008). APEX2 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.
Clara-Sosa, A., Pérez, L., Sánchez, M., Melgar-Fernández, R., Juaristi, E., Quintero, L. \& Anaya de Parrodi, C. (2004). Tetrahedron, 60, 12147-12152.
Evans, D. A., Faul, M. M., Colombo, L., Bisaha, J. J., Clardy, J. \& Cherry, D. (1992). J. Am. Chem. Soc. 114, 5977-5985.

Hooft, R. W. W., Straver, L. H. \& Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.

Marino, J. P., Bogdan, S. \& Kimura, K. (1992). J. Am. Chem. Soc. 114, 55665572.

Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249-259.
Romanenko, V. D., Thoumazet, C., Lavallo, V., Tham, F. S. \& Bertrand, G. (2003). Chem. Commun. pp. 1680-1681.

Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Silveira, G. P. \& Marino, J. P. (2013). J. Org. Chem. 78, 3379-3383.
Silveira, G. P., Bonfante de Carvallho, C. \& Oliver, A. G. (2012). Acta Cryst. E68, o2048.
Silveira, G. P., Oliver, A. G. \& Noll, B. C. (2013). Acta Cryst. E69, o979.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2014). E70, o1257-o1258 [doi:10.1107/S1600536814024702]

Crystal structure of (4R,5S)-4-methyl-3-methylsulfinyl-5-phenyl-1,3-oxazolidin-2-one

Gustavo Pozza Silveira, Vinicius Flores da Silva and Allen G. Oliver

S1. Introduction

Our research group has interest in the development of new methodologies to the synthesis of chiral sulfur compounds (Silveira \& Marino, 2013). Thus, we have been preparing chiral oxazolidinones (Silveira, Oliver \& Noll, 2013) to the synthesis of asymmetric indole derivatives (Pozza Silveira et al., 2012) as precursors to the preparation of naturally occurring alkaloids (Marino et al., 1992).

S2. Experimental

Experimental discussion

S2.1. Synthesis and crystallization

411 mg of $(4 R, 5 S)$-4-methyl-5-phenyloxazolidin-2-one (2.32 mmol) and 25 mL of dry THF were added to a 50 mL flame-dried round bottom flask charged with argon gas at $0{ }^{\circ} \mathrm{C}$. To this 1.21 mL of n-buthyl lithium ($1.83 \mathrm{M}, 2.21 \mathrm{mmol}$) was added dropwise into the solution during five minutes and the mixture obtained cooled to $-78{ }^{\circ} \mathrm{C}$. Subsequently, 320 mg of sulfinyl chloride was added. After 10 min . the reaction was quenched with 6.5 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with 25 mL of ethyl acetate and the organic phase washed with 8 mL of saturated NaHCO_{3} solution and 10 mL of saturated NaCl solution, respectively. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the salt removed by filtration. The solvent was removed under reduced pressure to give a white solid. The crude solid was dissolved with ethyl acetate and hexanes were added dropwise to the solution until a cloudy suspension was observed. The ethyl acetate / hexanes solution was left overnight to evaporate yielding 238 mg of clear colorless rods (45\%).

S2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All non-hydrogen atoms were refined with anisotropic thermal displacement parameters. Hydrogen atoms were included in geometrically calculated positions riding on the carbon to which they are bonded. $\mathrm{C}-\mathrm{H}$ bond distances were restrained to $0.95 \AA$ (aromatic), 0.98 \AA (methyl) and $1.00 \AA$ (methyne). Hydrogen thermal parameters were set as $U_{\text {iso }}(\mathrm{H})=1.2 \times U_{\text {eq }}(\mathrm{C})$ aromatic/methyne and $1.5 \times U_{\mathrm{eq}}(\mathrm{C})$ methyl.
The absolute stereochemistry was determined both by the known chiralty that was retained during synthesis and by comparison of intensities of Friedel pairs of reflections. Both a direct measurement in the differences in intensities (Flack x paramter $=-0.012(3),($ Parsons et al., 2013)) and a statistical analysis (Hooft y parameter $=-0.015$ (17), Hooft et al., 2008) corroborate that the correct enantiomorph of the space group and hence handedness of the molecule were determined. All three techniques agree and the correct chirality is shown.

S3. Results and discussion

The structure of the oxazolidinone is as expected. The steroechemistry from the parent reactants was retained through the synthesis. Surprisingly, no significant intermolecular interactions are observed in the crystal. The phenyl group which could exhibit either $\pi \cdots \pi$ interactions or $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions shows no sign or indication of such arrangements.

Figure 1

Labelling scheme for $(4 R, 5 S)$-4-methyl-3-methylsulfinyl-5-phenyl-1,3-oxazolidin-2-one. Thermal displacement ellipsoids are depicted at the 50% probability level.

(4R,5S)-4-Methyl-3-methylsulfinyl-5-phenyl-1,3-oxazolidin-2-one

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}$
$M_{r}=239.28$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.1605$ (4) \AA
$b=11.8490$ (8) \AA
$c=15.3861$ (11) \AA
$V=1123.12(13) \AA^{3}$
$Z=4$
$F(000)=504$

Data collection

Bruker X8 APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.33 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
$T_{\min }=0.707, T_{\text {max }}=0.746$
$D_{\mathrm{x}}=1.415 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9865 reflections
$\theta=3.2-31.4^{\circ}$
$\mu=0.28 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Rod, colorless
$0.22 \times 0.09 \times 0.06 \mathrm{~mm}$

30938 measured reflections
3761 independent reflections
3507 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=31.6^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-8 \rightarrow 9$
$k=-17 \rightarrow 17$
$l=-21 \rightarrow 22$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.070$
$S=1.03$
3761 reflections
147 parameters
0 restraints

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0431 P)^{2}+0.127 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.31 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.18$ e \AA^{-3}
Absolute structure: Flack x determined using 1431 quotients $\left[\left(I^{+}\right)-\left(I^{\prime}\right)\right] /\left[\left(I^{+}\right)+\left(I^{\prime}\right)\right]$ (Parsons et al., 2013)
Absolute structure parameter: - 0.012 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\dot{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
S1	$0.97856(6)$	$0.27012(3)$	$0.33636(2)$	$0.01721(9)$
N1	$0.8121(2)$	$0.16070(11)$	$0.31202(8)$	$0.0153(2)$
O1	$0.74140(17)$	$0.00157(9)$	$0.24121(6)$	$0.0175(2)$
O2	$1.04668(18)$	$0.09415(9)$	$0.20595(7)$	$0.0194(2)$
O3	$1.13406(18)$	$0.23613(11)$	$0.40470(7)$	$0.0241(2)$
C1	$0.5547(2)$	$0.02282(12)$	$0.29661(9)$	$0.0156(3)$
H1	0.4376	0.0589	0.2612	0.019^{*}
C2	$0.6387(2)$	$0.10893(12)$	$0.36433(9)$	$0.0152(3)$
H2	0.5236	0.1659	0.3775	0.018^{*}
C3	$0.8831(2)$	$0.08716(12)$	$0.24861(9)$	$0.0154(3)$
C4	$0.4715(2)$	$-0.08568(12)$	$0.33334(9)$	$0.0155(2)$
C5	$0.5964(2)$	$-0.18255(12)$	$0.33741(10)$	$0.0169(2)$
H5	0.7380	-0.1831	0.3130	0.020^{*}
C6	$0.5153(3)$	$-0.27897(12)$	$0.37712(9)$	$0.0190(3)$
H6	0.6021	-0.3451	0.3803	0.023^{*}
C7	$0.3081(3)$	$-0.27882(14)$	$0.41209(9)$	$0.0208(3)$
H7	0.2528	-0.3447	0.4394	0.025^{*}
C8	$0.1815(3)$	$-0.18222(14)$	$0.40706(10)$	$0.0221(3)$
H8	0.0387	-0.1823	0.4304	0.026^{*}
C9	$0.2623(2)$	$-0.08596(14)$	$0.36827(10)$	$0.0204(3)$
H9	0.1755	-0.0198	0.3653	0.025^{*}
C10	$0.7241(3)$	$0.05758(13)$	$0.44793(10)$	$0.0189(3)$
H10A	0.8343	0.0006	0.4342	0.028^{*}
H10B	0.6043	0.0221	0.4796	0.028^{*}
H10C	0.7889	0.1169	0.4840	0.028^{*}
C11	$0.7753(3)$	$0.35377(13)$	$0.38865(10)$	$0.0211(3)$
H11A	0.7344	0.3184	0.4439	0.032^{*}
H11B	0.6474	0.3592	0.3510	0.032^{*}
H11C	0.8327	0.4295	0.3997	0.032^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.01616(15)$	$0.01850(15)$	$0.01696(15)$	$-0.00282(12)$	$-0.00025(12)$	$0.00138(12)$
N1	$0.0135(5)$	$0.0171(5)$	$0.0154(5)$	$-0.0015(4)$	$0.0024(4)$	$0.0005(4)$
O1	$0.0169(5)$	$0.0178(5)$	$0.0179(5)$	$-0.0019(4)$	$0.0058(4)$	$-0.0002(4)$
O2	$0.0158(5)$	$0.0222(5)$	$0.0202(5)$	$0.0013(4)$	$0.0045(4)$	$0.0026(4)$
O3	$0.0191(5)$	$0.0288(6)$	$0.0245(5)$	$0.0005(5)$	$-0.0068(4)$	$-0.0011(5)$
C1	$0.0114(6)$	$0.0180(6)$	$0.0174(6)$	$0.0006(5)$	$0.0021(5)$	$0.0025(5)$
C2	$0.0136(6)$	$0.0147(6)$	$0.0172(6)$	$0.0011(5)$	$0.0045(5)$	$0.0010(5)$
C3	$0.0147(6)$	$0.0162(6)$	$0.0152(6)$	$0.0017(5)$	$-0.0004(5)$	$0.0027(5)$
C4	$0.0133(5)$	$0.0183(6)$	$0.0149(5)$	$-0.0014(5)$	$-0.0004(5)$	$0.0014(5)$
C5	$0.0160(6)$	$0.0185(6)$	$0.0160(6)$	$-0.0004(5)$	$0.0011(5)$	$-0.0016(5)$
C6	$0.0243(7)$	$0.0161(6)$	$0.0166(6)$	$-0.0003(6)$	$-0.0016(5)$	$-0.0021(5)$
C7	$0.0245(7)$	$0.0225(7)$	$0.0155(6)$	$-0.0078(6)$	$-0.0025(5)$	$0.0029(6)$
C8	$0.0148(6)$	$0.0311(8)$	$0.0203(7)$	$-0.0040(6)$	$0.0007(5)$	$0.0065(6)$
C9	$0.0140(6)$	$0.0252(7)$	$0.0221(7)$	$0.0015(6)$	$-0.0004(5)$	$0.0060(6)$
C10	$0.0229(7)$	$0.0185(7)$	$0.0153(6)$	$-0.0003(6)$	$0.0031(6)$	$0.0003(5)$
C11	$0.0240(7)$	$0.0173(6)$	$0.0220(7)$	$0.0020(6)$	$0.0001(6)$	$0.0004(6)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

S1-O3	1.4783 (12)	C5-C6	1.389 (2)
S1-N1	1.6948 (13)	C5-H5	0.9500
S1-C11	1.7882 (16)	C6-C7	1.385 (2)
N1-C3	1.3791 (18)	C6-H6	0.9500
N1-C2	1.4716 (18)	C7-C8	1.387 (2)
O1-C3	1.3428 (17)	C7-H7	0.9500
$\mathrm{O} 1-\mathrm{C} 1$	1.4534 (16)	C8-C9	1.380 (2)
$\mathrm{O} 2-\mathrm{C} 3$	1.2056 (17)	C8-H8	0.9500
$\mathrm{C} 1-\mathrm{C} 4$	1.4952 (19)	C9—H9	0.9500
$\mathrm{C} 1-\mathrm{C} 2$	1.547 (2)	C10-H10A	0.9800
$\mathrm{C} 1-\mathrm{H} 1$	1.0000	C10-H10B	0.9800
C2-C10	1.517 (2)	C10-H10C	0.9800
C2-H2	1.0000	C11-H11A	0.9800
C4-C5	1.3832 (19)	C11-H11B	0.9800
C4-C9	1.396 (2)	C11-H11C	0.9800
O3-S1-N1	109.93 (7)	C4-C5-H5	119.9
O3-S1-C11	106.55 (7)	C6-C5-H5	119.9
N1-S1-C11	95.73 (7)	C7-C6-C5	120.08 (14)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2$	110.71 (12)	C7-C6-H6	120.0
C3-N1-S1	116.62 (10)	C5-C6-H6	120.0
C2-N1-S1	129.58 (10)	C6-C7-C8	119.83 (14)
$\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 1$	109.49 (11)	C6-C7-H7	120.1
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 4$	110.13 (11)	C8-C7-H7	120.1
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	104.16 (11)	C9-C8-C7	120.21 (14)
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 2$	115.28 (11)	C9-C8-H8	119.9

supporting information

$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1$	109.0
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{H} 1$	109.0
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	109.0
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{C} 10$	$112.29(12)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$98.58(11)$
$\mathrm{C} 10-\mathrm{C} 2-\mathrm{C} 1$	$114.99(12)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2$	110.2
$\mathrm{C} 10-\mathrm{C} 2-\mathrm{H} 2$	110.2
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	110.2
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{O} 1$	$123.30(13)$
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{N} 1$	$127.34(14)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{N} 1$	$109.34(11)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9$	$119.60(13)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 1$	$122.67(12)$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 1$	$117.65(13)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.18(13)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 3$	$-88.16(11)$
$\mathrm{C} 11-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 3$	$161.92(11)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 2$	$69.87(14)$
$\mathrm{C} 11-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 2$	$-40.05(14)$
$\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 4$	$-145.05(12)$
$\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$-20.89(14)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 10$	$96.80(14)$
$\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 10$	$-62.25(16)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$-24.78(14)$
$\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$176.17(11)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$26.31(13)$
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$147.08(12)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 10$	$-93.27(14)$
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 10$	$5.50(17)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 3-\mathrm{O} 2$	
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 3-\mathrm{N} 1$	

$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8$	119.9
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 4$	$120.09(14)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9$	120.0
$\mathrm{C} 4-\mathrm{C} 9-\mathrm{H} 9$	120.0
$\mathrm{C} 2-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	109.5
$\mathrm{C} 2-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	109.5
$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	109.5
$\mathrm{C} 2-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
$\mathrm{H} 10 \mathrm{~B}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
$\mathrm{~S} 1-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	109.5
$\mathrm{~S} 1-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	109.5
$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	109.5
$\mathrm{~S} 1-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	109.5
$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	109.5
$\mathrm{H} 11 \mathrm{~B}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	$-165.15(14)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3-\mathrm{O} 2$	$-3.1(2)$
$\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{O} 2$	$13.73(15)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3-\mathrm{O} 1$	$175.77(9)$
$\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{O} 1$	$19.91(18)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 5$	$-97.55(16)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 5$	$-163.13(12)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 9$	$79.41(16)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 9$	$-0.9(2)$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$175.97(13)$
$\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.6(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$0.2(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-0.8(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$0.5(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 4$	$0.4(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	$-176.66(14)$
$\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	

[^0]: Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7309).

