

Reçu le 4 decembre 2014 Accepté le 9 decembre 2014

Édité par I. D. Brown, McMaster University, Canada

**Keywords**: crystal structure; alluaudite-type; hexakis(molybdate)

**CCDC reference**: 1038636 **Supporting information**: this article has supporting information at journals.iucr.org/e

# Structure cristalline de type alluaudite KNa<sub>5</sub>Mn<sub>3</sub>(MoO<sub>4</sub>)<sub>6</sub>

#### Chahira Bouzidi, Wafa Frigui\* et Mohamed Faouzi Zid

Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis ElManar, 2092 Manar II Tunis, Tunisia. \*Correspondence e-mail: frigui.wafa@gmail.com

The new phase potassium pentasodium trimanganese hexakis(molybdate),  $KNa_5Mn_3Mo_6O_{24}$ , has been synthesized using solid-state methods. The structure is composed of  $M_2O_{10}$  (M = Mn, Na) dimers and  $MoO_4$  tetrahedra (point group symmetry 2) sharing corners and forming layers parallel to (100), which are linked *via* common corners of another type of  $MO_4$  tetrahedra, forming a three-dimensional structure with two types of large channels along [001] in which two types of Na<sup>+</sup> cations (one with site symmetry 2, one with  $\overline{1}$ ) and K<sup>+</sup> cations (site symmetry 2, half-occupation) are located. Mn<sup>2+</sup> and the third type of Na<sup>+</sup> cations are located at the same site M with occupancies of 0.75 and 0.25, respectively. A comparative structural description is provided between the structure of the title compound and those of the related phases  $Cu_{1.35}Fe_3(PO_4)_3$  and NaAg-FeMn<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>.

#### 1. Contexte chimique

L'étude des matériaux à charpente ouvertes formées d'octaèdres et de tétraèdres a connu un progrès tout à fait remarquable (Mikhailova *et al.*, 2010). En effet, on a vu naître et se développer de nombreux matériaux de ce type (Leclaire *et al.*, 2002). L'originalité de ce domaine tient en faite aux fortes relations qui existent entre son développement et ceux de ses applications notamment: conduction ionique (Sebastian *et al.*,







#### Figure 1

Réprésentation de l'unité structurale dans KNa<sub>5</sub>Mn<sub>3</sub>Mo<sub>6</sub>O<sub>24</sub>, mettant en évidence l'unité asymétrique et la connexion des polyèdres. Les éllipsoïdes ont été définis avec 50% de probabilité. [Codes de symétrie: (i)  $-x + 1, y, -z + \frac{3}{2}$ ; (ii) x - 1, y, z; (iii)  $-x, y, -z + \frac{3}{2}$ ; (iv) x, y, z - 1; (v) x - 1, y, z - 1; (vi)  $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$ ]

## research communications



Figure 2 Représentation d'une couche, selon [100], dans KNa<sub>5</sub>Mn<sub>3</sub>Mo<sub>6</sub>O<sub>24</sub>.

2003; Prabaharan *et al.*, 1997) et propriétés magnétiques (Seungdon & Seung-Tae, 2005).

Lors de l'exploration des systèmes A-Mn-Mo-O (A = ion monovalent), une nouvelle phase de formulation KNa<sub>5</sub>Mn<sub>3</sub>Mo<sub>6</sub>O<sub>24</sub> a été synthétisée par réaction à l'état solide (température proche de 950 K). Un examen bibliographique montre que notre matériau est de type alluaudite (Kacimi *et al.*, 2005; Hatert, 2006).

#### 2. Commentaire structurelle

L'unité asymétrique renferme un octaèdre  $MO_6$  (M = Mn/Na) et deux tétraèdres  $MoO_4$  connectés par des ponts mixtes de type M-O-Mo. La compensation de charges dans la structure est assurée par les cations alcalins (Fig. 1). Dans la charpente anionique, les dimères  $M_2O_{10}$  se lient par partage de sommets aux tétraèdres  $Mo1O_4$  pour conduire à des couches disposées parallèlement au plan (100) (Fig. 2). L'insertion des tétraèdres  $Mo2O_4$  entre les couches assurent leur jonction par formation de ponts mixtes de type Mo2-O-Mn1. Il en résulte donc une charpente anionique ouverte tridimensionnelle possédant deux types des canaux, parallèles à la direction [001], où résident les cations Na2 et K1 (Fig. 3).

Dans la structure chaque dimère  $Mn_2O_{10}$  partage six de ses sommets avec respectivement six tétraèdres  $Mo1O_4$  différents appartenant à la même couche. Les quatre autres sommets dans chaque dimère sont mis en commun avec seulement deux tétraèdres  $Mo2O_4$  (Fig. 4*a*). Il est à signaler que chaque tétraèdre  $Mo1O_4$  partage seulement trois de ses sommets avec trois dimères par formation de deux ponts simples et un pont triple (Fig. 4*b*). Le quatrième sommet restant libre forme un



Figure 3 Projection de la structure de KNa<sub>5</sub>Mn<sub>3</sub>Mo<sub>6</sub>O<sub>24</sub>, selon [001].

groupement molybdyl (Mo1– $O_L$ ) et se dirige vers le canal où logent les cations Na2. Dans la structure, chaque tétraèdre Mo2 $O_4$  partage ses quatre sommets avec seulement deux dimères appartenant à deux couches adjacentes (Fig. 3)

Dans les dimères  $M_2O_{10}$  (M = Mn/Na) la distance  $M \cdots M$  est égale à 3,429 (5) Å. Cette distance, métal-métal, courte pourrait conduire à des propriétés de super échange magnétique (Sarapulova *et al.*, 2009).

Dans le matériau,  $KNa_5Mn_3Mo_6O_{24}$ , les atomes de molybdène occupent totalement les sites tétraédriques (tableau 1). La moyenne des distances Mo-O égale à 1,762 (2), est





Tableau 1Longueurs de liaison sélectionnés (Å).

| Mo1-O6                | 1.743 (3) | Na1-O6 <sup>viii</sup> | 2.466 (4) |
|-----------------------|-----------|------------------------|-----------|
| Mo1-O5                | 1.757 (3) | Na1-O6 <sup>ix</sup>   | 2.466 (4) |
| Mo1-O4                | 1.762 (2) | $Na2-O6^{x}$           | 2.531 (3) |
| Mo1-O3                | 1.787 (3) | Na2-O6                 | 2.531 (3) |
| Mo2-O2 <sup>i</sup>   | 1.759 (3) | Na2-O2 <sup>viii</sup> | 2.538 (3) |
| Mo2-O2 <sup>ii</sup>  | 1.759 (3) | Na2-O2 <sup>xi</sup>   | 2.538 (3) |
| Mo2-O1 <sup>iii</sup> | 1.766 (2) | Na2–O6 <sup>iv</sup>   | 2.724 (3) |
| Mn1-O5 <sup>iv</sup>  | 2.164 (3) | Na2–O6 <sup>i</sup>    | 2.724 (3) |
| $Mn1-O2^{v}$          | 2.180 (3) | $K1-O5^{i}$            | 2.683 (3) |
| $Mn1-O4^{vi}$         | 2.182 (3) | $K1 - O5^{vii}$        | 2.683 (3) |
| Mn1-O1 <sup>i</sup>   | 2.191 (3) | $K1 - O5^{x}$          | 2.751 (3) |
| Mn1-O3                | 2.215 (2) | K1-O5 <sup>xii</sup>   | 2.751 (3) |
| $Mn1 - O3^{v}$        | 2.321 (3) | K1-O1 <sup>xiii</sup>  | 3.177 (5) |
| Na1-O1 <sup>vi</sup>  | 2.367 (2) | $K1 - O1^{iv}$         | 3.177 (5) |
| Na1-O1 <sup>iii</sup> | 2.367 (2) | $K1-O4^{i}$            | 3.184 (4) |
| Na1-O4 <sup>vii</sup> | 2.424 (3) | $K1 - O4^{vii}$        | 3.184 (4) |
| Na1-O4 <sup>i</sup>   | 2.424 (3) |                        |           |

Codes de symétrie: (i) -x + 1, y,  $-z + \frac{3}{2}$ ; (ii) x - 1, y, z; (iii) -x, y,  $-z + \frac{3}{2}$ ; (iv) x, -y + 1,  $z - \frac{1}{2}$ ; (v)  $-x + \frac{3}{2}$ ,  $-y + \frac{3}{2}$ , -z + 1; (vi) x, y, z - 1; (vii) x - 1, y, z - 1; (viii)  $x - \frac{1}{2}$ ,  $-y + \frac{3}{2}$ ,  $z - \frac{1}{2}$ ; (ix)  $-x + \frac{1}{2}$ ,  $-y + \frac{3}{2}$ , -z + 1; (x) -x + 1, -y + 1, -z + 1; (xi)  $-x + \frac{3}{2}$ ,  $y - \frac{1}{2}$ ,  $-z + \frac{3}{2}$ ; (xii) x - 1, -y + 1, -z + 1; (xi)

conforme à celles rencontrées dans la bibliographie (Souilem *et al.*, 2014; Bugaris & zur Loye, 2012). La moyenne des distances Na-O et K-O sont égales respectivement, à 2,503 et 2,943 Å, et sont comparables à celles rencontrées dans des travaux antérieurs (Ouerfelli *et al.*, 2008; Engel *et al.*, 2009). La distance Mn1/Na3-O, égale à 2,206 Å, s'avère une moyenne des métriques Mn-O et Na-O trouvées dans d'autres structures (Chaalia *et al.*, 2012; Marzouki *et al.*, 2013).



Figure 5 Projection de la structure de NaAgFeMn<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>, selon [001].



Figure 6 Projection de la structure de Cu<sub>1.35</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>3</sub>, selon [001].

De plus, le calcul des différentes valences de liaison (BVS), utilisant la formule empirique de Brown (Brown & Altermatt, 1985), conduit aux valeurs des charges des ions suivants: Mo1 (5,927), Mo2 (5,980), Mn1/Na3 (1,825), Na1 (1,101), Na2 (0,828) et K1 (1,005) ce qui confirme les degrés d'oxydation des différents ions attendus dans la structure.

#### 3. Enquête de base de données

Un examen rigoureux de différentes structures trouvées dans la littérature révèle que notre matériau est de type alluaudite. Toute fois, la comparaison de notre structure avec celles de type alluaudite:  $Cu_{1.35}Fe_3(PO_4)_3$  (Warner *et al.*, 1993) et NaAgFeMn<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (Daidouh *et al.*, 2002) montre qu'elles cristallisent dans le système monoclinique, présentent des paramètres de maille similaires, et ayant le même type des couches. Une différence nette dans les charpentes anioniques a été observée et en particulier dans l'arrangement atomique d'une part et le mode de connexion des couches d'autre part.

La comparaison de notre structure avec NaAgFeMn<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (Daidouh *et al.*, 2002) révèle une différence nette au niveau de l'arrangement de polyèdres. En effet, les chaînes dans NaAgFeMn<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> sont construites par les octaèdres MnO<sub>6</sub> et les dimères (Fe,Mn)<sub>2</sub>O<sub>10</sub> partageant des arêtes d'une façon alternée (MnO<sub>6</sub>)–[(Fe,Mn)<sub>2</sub>O<sub>10</sub>]–(MnO<sub>6</sub>). Par conséquent, la jonction des couches est assurée d'une part par les tétraèdres PO<sub>4</sub> et d'autre part par les octaèdres MnO<sub>6</sub> pour conduire à une structure tridimensionnelle (Fig. 5).

Par contre, dans  $Cu_{1.35}Fe_3(PO_4)_3$ , les dimères  $Fe1_2O_{10}$  sont liés par partage d'arêtes avec les octaèdres  $Fe2O_6$  pour former

## research communications

| Tablea  | เน | 2     |      |       |
|---------|----|-------|------|-------|
| Détails | ex | xpéri | imer | ntaux |

| Données crystallines                                                |                                                                   |
|---------------------------------------------------------------------|-------------------------------------------------------------------|
| Formule chimique                                                    | KNa <sub>5</sub> Mn <sub>3</sub> (MoO <sub>4</sub> ) <sub>6</sub> |
| M <sub>r</sub>                                                      | 1278.51                                                           |
| Système cristallin, groupe d'espace                                 | Monoclinique, C2/c                                                |
| Température (K)                                                     | 298                                                               |
| a, b, c (Å)                                                         | 12.8943 (8), 13.6295 (9), 7.1809 (7)                              |
| $\beta$ (°)                                                         | 112.437 (5)                                                       |
| $V(Å^3)$                                                            | 1166.46 (16)                                                      |
| Ζ                                                                   | 2                                                                 |
| Type de rayonnement                                                 | Μο Κα                                                             |
| $\mu (\mathrm{mm}^{-1})$                                            | 5.05                                                              |
| Taille des cristaux (mm)                                            | $0.26 \times 0.22 \times 0.18$                                    |
| Collection de données                                               |                                                                   |
| Diffractomètre                                                      | Enraf–Nonius CAD-4                                                |
| Correction d'absorption                                             | $\psi$ scan (North <i>et al.</i> , 1968)                          |
| $T_{\min}, T_{\max}$                                                | 0.303, 0.413                                                      |
| Nombre de réflexions mesurées,                                      | 2955, 1266, 1155                                                  |
| indépendantes et observées                                          |                                                                   |
| $[I > 2\sigma(I)]$                                                  |                                                                   |
| R <sub>int</sub>                                                    | 0.037                                                             |
| $(\sin \theta / \lambda)_{\max} ( \mathring{A}^{-1} )$              | 0.638                                                             |
| Affinement                                                          |                                                                   |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                 | 0.021, 0.055, 1.13                                                |
| Nombre de réflexions                                                | 1266                                                              |
| Nombre de paramètres                                                | 97                                                                |
| $\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å <sup>-3</sup> ) | 0.60, -0.57                                                       |

Programmes informatiques: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 et SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2001) et WinGX (Farrugia, 2012).

des chaînes infinies d'octaèdres. De plus, les couches dans  $Cu_{1.35}Fe_3(PO_4)_3$  sont interconnectés par les tétraèdres  $PO_4$ , les polyèdres  $Cu(2)O_6$  et les octaèdres  $Fe2O_6$  pour conduire à une structure tridimensionnelle (Fig. 6). Par contre dans le matériau obtenu  $KNa_5Mn_3Mo_6O_{24}$ , les couches sont connectées les unes aux autres par partage de sommets avec seulement les tétraèdres  $Mo2O_4$  (Fig. 3).

#### 4. Synthèse et cristallisation

Un mélange de Na<sub>2</sub>CO<sub>3</sub> (Prolabo, 27778) K<sub>2</sub>CO<sub>3</sub> (Fluka, 60109), C<sub>9</sub>H<sub>9</sub>MnO<sub>6</sub>2H<sub>2</sub>O (Fluka, 63538) et (NH<sub>4</sub>)<sub>2</sub>Mo<sub>4</sub>O<sub>13</sub> (Fluka, 69858) sont pris dans les proportions telque les rapports Na:K:Mn:Mo sont égaux à 1:1:2:3. L'ensemble est finement broyé et mis dans un creuset en porcelaine. Il est préchauffe jusqu'à 623 K afin d'éliminer les produits volatils. Le résidu a été ensuite porté à 950 K (proche de la température de fusion) et maintenu à cette dernière pendant trois semaines pour favoriser la germination et la croissance des cristaux. Un refroidissement lent (5 K/24 h) a été appliqué jusqu'à 900 K suivi d'un autre plus rapide (50 K/jour) jusqu'à la température ambiante. Des cristaux de couleur jaunâtre ont été séparés par l'eau chaude.

#### 5. Affinement

Détails de donnés crystallines, collection de donnés et affinement sont résumés dans le tableau 2. L'affinement de tous les paramètres variables conduit à des ellipsoïdes bien définis. Les densités d'électrons maximum et minimum restants dans la Fourier-différence sont situées respectivement à 1,01 Å de Mo2 et à 1,19 Å de Mo1.

#### Remerciements

Les auteurs remercient le soutien financier de l'enseignement supérieur, la recherche scientifique et la technologie de la Tunisie.

#### **Références**

- Brandenburg, K. & Putz, H. (2001). *DIAMOND*. Crystal Impact GbR, Bonn, Allemagne.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Bugaris, D. E. & Loye, H.-C. zur (2012). Acta Cryst. C68, i34-i36.
- Chaalia, S., Ayed, B. & Haddad, A. (2012). J. Chem. Crystallogr. 42, 941–946.
- Daidouh, A., Durio, C., Pico, C., Veiga, M. L., Chouaibi, N. & Ouassini, A. (2002). Solid State Sci. 4, 541–548.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Engel, J. M., Ahsbahs, H., Fuess, H. & Ehrenberg, H. (2009). Acta Cryst. B65, 29–35.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Harms, K. & Wocadlo, S. (1995). XCAD4. Université de Marburg, Allemagne.
- Hatert, F. (2006). Acta Cryst. C62, i1-i2.
- Kacimi, M., Ziyad, M. & Hatert, F. (2005). Mater. Res. Bull. 40, 682– 693.
- Leclaire, A., Borel, M. M. & Raveau, B. (2002). J. Solid State Chem. 163, 534–539.
- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
- Marzouki, R., Frigui, W., Guesmi, A., Zid, M. F. & Driss, A. (2013). Acta Cryst. E69, i65–i66.
- Mikhailova, D., Sarapulova, A., Voss, A., Thomas, A., Oswald, S., Gruner, W., Trots, D. M., Bramnik, N. N. & Ehrenberg, H. (2010). *Chem. Mater.* 22, 3165–3173.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Ouerfelli, N., Guesmi, A., Mazza, D., Zid, M. F. & Driss, A. (2008). Acta Cryst. C64, i41-i44.
- Prabaharan, S. R. S., Michael, M. S., Radhakrishna, S. & Julien, C. (1997). J. Mater. Chem. 7, 1791–1796.
- Sarapulova, A., Mikhailova, D., Senyshyn, A. & Ehrenberg, H. (2009). J. Solid State Chem. 182, 3262–3268.
- Sebastian, L., Piffard, Y., Shukla, A. K., Taulelle, F. & Gopalakrishnan, J. (2003). J. Mater. Chem. 13, 1797–1802.
- Seungdon, C. & Seung-Tae, H. (2005). Mater. Res. Bull. 40, 1787– 1795.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Souilem, A., Zid, M. F. & Driss, A. (2014). Acta Cryst. E70, i9-i10.
- Warner, T. E., Milius, W. & Maier, J. (1993). J. Solid State Chem. 106, 301–309.

# supporting information

Acta Cryst. (2015). E71, 69-72 [https://doi.org/10.1107/S2056989014027030]

Structure cristalline de type alluaudite KNa<sub>5</sub>Mn<sub>3</sub>(MoO<sub>4</sub>)<sub>6</sub>

## Chahira Bouzidi, Wafa Frigui et Mohamed Faouzi Zid

**Computing details** 

Data collection: *CAD-4 EXPRESS* (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: *CAD-4 EXPRESS* (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2001); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Potassium pentasodium trimanganese hexakis(molybdate)

Crystal data

KNa<sub>5</sub>Mn<sub>3</sub>(MoO<sub>4</sub>)<sub>6</sub>  $M_r = 1278.51$ Monoclinic, C2/c Hall symbol: -C 2yc a = 12.8943 (8) Å b = 13.6295 (9) Å c = 7.1809 (7) Å  $\beta = 112.437$  (5)° V = 1166.46 (16) Å<sup>3</sup> Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\omega/2\theta$  scans Absorption correction:  $\psi$  scan (North *et al.*, 1968)  $T_{\min} = 0.303, T_{\max} = 0.413$ 2955 measured reflections

### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.021$  $wR(F^2) = 0.055$ S = 1.131266 reflections 97 parameters 0 restraints F(000) = 1186  $D_x = 3.640 \text{ Mg m}^{-3}$ Mo Ka radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections  $\theta = 10-15^{\circ}$   $\mu = 5.05 \text{ mm}^{-1}$  T = 298 KPrism, yellow  $0.26 \times 0.22 \times 0.18 \text{ mm}$ 

1266 independent reflections 1155 reflections with I > 2/s(I)  $R_{int} = 0.037$   $\theta_{max} = 27.0^{\circ}, \theta_{min} = 2.3^{\circ}$   $h = -16 \rightarrow 16$   $k = -2 \rightarrow 17$   $l = -9 \rightarrow 9$ 2 standard reflections every 120 min intensity decay: 1.2%

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map  $w = 1/[\sigma^2(F_o^2) + (0.0194P)^2 + 2.2536P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.60$  e Å<sup>-3</sup>  $\Delta \rho_{\rm min} = -0.57 \text{ e } \text{\AA}^{-3}$ 

Extinction correction: SHELXL97 (Sheldrick, 2008),  $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.00373 (18)

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x           | У            | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|-------------|--------------|-------------|-----------------------------|-----------|
| Mo1 | 0.76468 (2) | 0.61059 (2)  | 0.87380 (4) | 0.01636 (12)                |           |
| Mo2 | 0.0000      | 0.78727 (3)  | 0.7500      | 0.01521 (13)                |           |
| Mn1 | 0.78663 (5) | 0.65843 (5)  | 0.37656 (9) | 0.01657 (15)                | 0.75      |
| Na3 | 0.78663 (5) | 0.65843 (5)  | 0.37656 (9) | 0.01657 (15)                | 0.25      |
| Na1 | 0.0000      | 0.76259 (17) | 0.2500      | 0.0243 (5)                  |           |
| Na2 | 0.5000      | 0.5000       | 0.5000      | 0.0539 (8)                  |           |
| K1  | 0.0000      | 0.4921 (3)   | 0.2500      | 0.0512 (8)                  | 0.50      |
| 01  | 0.0426 (2)  | 0.7148 (2)   | 0.9703 (3)  | 0.0222 (5)                  |           |
| O2  | 0.8937 (2)  | 0.8681 (2)   | 0.7505 (4)  | 0.0311 (6)                  |           |
| 03  | 0.7807 (2)  | 0.6818 (2)   | 0.6776 (3)  | 0.0252 (6)                  |           |
| 04  | 0.8271 (2)  | 0.6698 (2)   | 1.1086 (3)  | 0.0251 (6)                  |           |
| 05  | 0.8292 (3)  | 0.4957 (2)   | 0.8897 (4)  | 0.0341 (7)                  |           |
| O6  | 0.6219 (2)  | 0.5916 (2)   | 0.8139 (4)  | 0.0322 (6)                  |           |

| Atomic displacement parameters ( | Ų, | ) |
|----------------------------------|----|---|
|----------------------------------|----|---|

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | U <sup>23</sup> |
|-----|--------------|--------------|--------------|--------------|--------------|-----------------|
| Mol | 0.02017 (18) | 0.01682 (18) | 0.01267 (16) | 0.00076 (11) | 0.00692 (12) | -0.00067 (10)   |
| Mo2 | 0.0177 (2)   | 0.0147 (2)   | 0.0122 (2)   | 0.000        | 0.00450 (15) | 0.000           |
| Mn1 | 0.0184 (3)   | 0.0184 (3)   | 0.0144 (3)   | -0.0002 (2)  | 0.0079 (2)   | -0.0014 (2)     |
| Na3 | 0.0184 (3)   | 0.0184 (3)   | 0.0144 (3)   | -0.0002(2)   | 0.0079 (2)   | -0.0014 (2)     |
| Na1 | 0.0219 (10)  | 0.0333 (12)  | 0.0226 (10)  | 0.000        | 0.0139 (8)   | 0.000           |
| Na2 | 0.0668 (19)  | 0.0312 (14)  | 0.0380 (14)  | -0.0041 (14) | -0.0087 (13) | 0.0063 (13)     |
| K1  | 0.0304 (14)  | 0.075 (2)    | 0.0439 (16)  | 0.000        | 0.0090 (12)  | 0.000           |
| 01  | 0.0223 (12)  | 0.0297 (14)  | 0.0155 (11)  | 0.0005 (11)  | 0.0082 (10)  | 0.0052 (11)     |
| O2  | 0.0264 (13)  | 0.0245 (14)  | 0.0383 (16)  | 0.0039 (12)  | 0.0076 (12)  | -0.0082 (14)    |
| O3  | 0.0325 (14)  | 0.0305 (15)  | 0.0148 (11)  | 0.0011 (12)  | 0.0115 (10)  | 0.0013 (11)     |
| O4  | 0.0346 (14)  | 0.0256 (14)  | 0.0154 (11)  | -0.0060 (12) | 0.0099 (10)  | -0.0020 (11)    |
| O5  | 0.0415 (17)  | 0.0255 (15)  | 0.0358 (15)  | 0.0110 (13)  | 0.0154 (13)  | -0.0015 (13)    |
| O6  | 0.0263 (14)  | 0.0304 (15)  | 0.0404 (16)  | -0.0051 (12) | 0.0132 (12)  | -0.0045 (13)    |
|     |              |              |              |              |              |                 |

Geometric parameters (Å, °)

| Mo1                             | 1.743 (3)   | Na1—O4 <sup>i</sup>                   | 2.424 (3)   |
|---------------------------------|-------------|---------------------------------------|-------------|
| Mo1—O5                          | 1.757 (3)   | Na1—O6 <sup>viii</sup>                | 2.466 (4)   |
| Mo1—O4                          | 1.762 (2)   | Na1—O6 <sup>ix</sup>                  | 2.466 (4)   |
| Mo1—O3                          | 1.787 (3)   | Na2—O6 <sup>x</sup>                   | 2.531 (3)   |
| Mo2—O2 <sup>i</sup>             | 1.759 (3)   | Na2—O6                                | 2.531 (3)   |
| Mo2—O2 <sup>ii</sup>            | 1.759 (3)   | Na2—O2 <sup>viii</sup>                | 2.538 (3)   |
| Mo2—O1 <sup>iii</sup>           | 1.766 (2)   | Na2—O2 <sup>xi</sup>                  | 2.538 (3)   |
| Mo2—O1                          | 1.766 (2)   | Na2—O6 <sup>iv</sup>                  | 2.724 (3)   |
| Mn1—O5 <sup>iv</sup>            | 2.164 (3)   | Na2—O6 <sup>i</sup>                   | 2.724 (3)   |
| Mn1—O2 <sup>v</sup>             | 2.180 (3)   | K1—O5 <sup>i</sup>                    | 2.683 (3)   |
| Mn1—O4 <sup>vi</sup>            | 2.182 (3)   | K1—O5 <sup>vii</sup>                  | 2.683 (3)   |
| Mn1—O1 <sup>i</sup>             | 2.191 (3)   | K1—O5 <sup>x</sup>                    | 2.751 (3)   |
| Mn1—O3                          | 2.215 (2)   | K1—O5 <sup>xii</sup>                  | 2.751 (3)   |
| Mn1—O3 <sup>v</sup>             | 2.321 (3)   | K1—O1 <sup>xiii</sup>                 | 3.177 (5)   |
| Na1—O1 <sup>vi</sup>            | 2.367 (2)   | K1—O1 <sup>iv</sup>                   | 3.177 (5)   |
| Na1—O1 <sup>iii</sup>           | 2.367 (2)   | $K1 - O4^{i}$                         | 3.184 (4)   |
| Na1—O4 <sup>vii</sup>           | 2.424 (3)   | K1—O4 <sup>vii</sup>                  | 3.184 (4)   |
| 06—Mo1—05                       | 108 25 (14) | $\Omega^{2v}$ —Mn1— $\Omega^{4vi}$    | 102 61 (11) |
| 06 - Mo1 - 04                   | 110.25 (11) | $05^{iv}$ Mn1 $01^{i}$                | 97 38 (11)  |
| 05 - Mo1 - 04                   | 108.31(14)  | $\Omega^{2^{v}}$ Mn1 $\Omega^{1^{i}}$ | 167 33 (11) |
| 06 - Mo1 - 03                   | 108.39(13)  | $04^{vi}$ Mn1 $01^{i}$                | 83 41 (9)   |
| 05 - Mo1 - 03                   | 109.94 (14) | $05^{iv}$ Mn1 $03$                    | 101 53 (11) |
| 04 - Mo1 - 03                   | 110.96(12)  | $\Omega^{2^{v}}$ Mn1- $\Omega^{3}$    | 90 23 (11)  |
| $02^{i}$ Mo2 $02^{ii}$          | 102.44(19)  | $04^{vi}$ Mn1 $03$                    | 163.52(11)  |
| $02^{i}$ Mo2 $02^{i}$           | 108.96 (13) | $O1^{i}$ Mn1-O3                       | 82.06 (10)  |
| $02^{ii}$ Mo2 $01^{iii}$        | 112.10(12)  | $05^{iv}$ Mn1 $-03^{v}$               | 171.99 (11) |
| $02^{i}$ Mo2 01                 | 112.10(12)  | $\Omega^2$ Mn1- $\Omega^3$            | 79 30 (10)  |
| $02^{ii}$ Mo2 01                | 108 96 (13) | $04^{vi}$ Mn1 $03^{v}$                | 89 19 (10)  |
| $01^{iii}$ Mo2 01               | 111 93 (18) | $O1^{i}$ Mn1 $O3^{v}$                 | 89 75 (10)  |
| $O5^{iv}$ —Mn1— $O2^{v}$        | 93.99 (11)  | $O_3$ —Mn1— $O_3^{v}$                 | 83.02 (10)  |
| $O5^{iv}$ —Mn1—O4 <sup>vi</sup> | 88.00 (11)  | 00 mm 00                              | (10)        |
|                                 |             |                                       |             |

Symmetry codes: (i) -x+1, y, -z+3/2; (ii) x-1, y, z; (iii) -x, y, -z+3/2; (iv) x, -y+1, z-1/2; (v) -x+3/2, -y+3/2, -z+1; (vi) x, y, z-1; (vii) x-1, y, z-1; (viii) x-1, z, z-1; (vii) x-1, z-1; (vii) x-1, z-1; (vii) x-1, z-1; (vii) x-1, z-1; (vii) x-1; (vii) x-1, z-1; (v