Crystal structure of 2-cyano-1-methylpyridinium bromide

Vu D. Nguyen, ${ }^{\text {a }}$ Cameron A. McCormick, ${ }^{\text {a }}$ Robert A. Pascal Jr, ${ }^{\text {b }}$ Joel T. Mague ${ }^{\text {b }}$ and Lynn V. Koplitz ${ }^{\text {a }}$
${ }^{\text {a Department of Chemistry, Loyola University, New Orleans, LA 70118, USA, and }}$
${ }^{\mathbf{b}}$ Department of Chemistry, Tulane University, New Orleans, LA 70118, USA.
*Correspondence e-mail: joelt@tulane.edu

Received 10 October 2015; accepted 10 October 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title molecular salt, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Br}^{-}$, all the non- H atoms lie on crystallographic mirror planes. The packing consists of (010) cation-anion layers, with the cations forming dimeric units via very weak pairwise $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions. Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions link the cations to the anions.

Keywords: crystal structure; salt; 2-cyano-1-methylpyridinium bromide.

CCDC reference: 1430625

1. Related literature

For structures of other salts of the 2-cyano-1-methylpyridinium cation, see: Koplitz et al. (2012); Kammer et al. (2013); Vaccaro et al. (2015). For structures of salts of the isomeric 2-cyanoanilinium cation, see: Oueslati et al. (2005); Cui \& Wen (2008); Zhang, L. (2009); Zhang, Y. (2009); Cui \& Chen (2010); Vumbaco et al. (2013).

2. Experimental

2.1. Crystal data
$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Br}^{-}$

$$
M_{r}=199.06
$$

Monoclinic, $C 2 / m$
$a=13.3039(12) \AA$
$b=6.5892(6) \AA$
$c=9.3753(8) \AA$
$\beta=92.419(1)^{\circ}$
$V=821.13(13) \AA^{3}$

$Z=4$

Mo $K \alpha$ radiation
$\mu=4.93 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
$0.20 \times 0.15 \times 0.06 \mathrm{~mm}$

2.2. Data collection

Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (TWINABS; Sheldrick, 2009) $T_{\text {min }}=0.44, T_{\text {max }}=0.74$

22367 measured reflections 1179 independent reflections 1084 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$

2.3. Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023 \quad 62$ parameters
$w R\left(F^{2}\right)=0.048$
$S=1.02$
1179 reflections

H -atom parameters constrained
$\Delta \rho_{\max }=0.51 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.44 \mathrm{e} \mathrm{A}^{-3}$

Table 1 Hydrogen-bond geometry $\left(\AA{ }^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.95	2.66	$3.549(3)$	155
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{Br}^{\mathrm{ii}}$	0.98	2.96	$3.876(2)$	156
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Br}^{\text {ii }}$	0.95	2.66	$3.586(2)$	166
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{Br} 1^{\mathrm{iii}}$	0.95	2.77	$3.711(2)$	170
Symmetry codes: (i) $-x+1,-y,-z ;$ (ii) $-x+\frac{1}{2},-y+\frac{1}{2},-z+1$; (iii) $x-\frac{1}{2}, y-\frac{1}{2}, z$.				

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT and CELL_NOW (Sheldrick, 2008a); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg \& Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7523).

References

Brandenburg, K. \& Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.
Cui, L.-J. \& Chen, X.-Y. (2010). Acta Cryst. E66, 0467.
Cui, L.-J. \& Wen, X.-C. (2008). Acta Cryst. E64, o1620.
Kammer, M. N., Koplitz, L. V. \& Mague, J. T. (2013). Acta Cryst. E69, o1281.
Koplitz, L. V., Mague, J. T., Kammer, M. N., McCormick, C. A., Renfro, H. E. \& Vumbaco, D. J. (2012). Acta Cryst. E68, o1653.
Oueslati, A., Kefi, R., Akriche, S. \& Ben Nasr, C. (2005). Z. Kristallogr. New Cryst. Struct. 220, 365-366.
Sheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Germany. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Vaccaro, F. A., Koplitz, L. V. \& Mague, J. T. (2015). Acta Cryst. E71, o697o698.

Vumbaco, D. J., Kammer, M. N., Koplitz, L. V. \& Mague, J. T. (2013). Acta Cryst. E69, o1288.
Zhang, Y. (2009). Acta Cryst. E65, o2373 Zhang, L. (2009). Acta Cryst. E65, o2407

supporting information

Acta Cryst. (2015). E71, o854-o855 [https://doi.org/10.1107/S2056989015019167]

Crystal structure of 2-cyano-1-methylpyridinium bromide

Vu D. Nguyen, Cameron A. McCormick, Robert A. Pascal, Joel T. Mague and Lynn V. Koplitz

S1. Comment

The cation in the title compound has crystallographically imposed mirror symmetry with the methyl H atoms slightly disordered about the mirror. The packing thus consists of cation/anion layers (Fig. 2) with the cations forming dimeric units via weak, pairwise C5—H5 $\cdots \mathrm{N} 2$ interactions (Fig. 3 and Table 1). Within the layers weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions tie the cations and anions together (Fig. 3 and Table 1).

S2. Experimental

2-Cyanopyridine ($4.04 \mathrm{~g}, 38.8 \mathrm{mmol}$) was first melted in a warm water bath and then dissolved in toluene (15 ml). Gaseous bromomethane was condensed (roughly $5 \mathrm{ml}, 170 \mathrm{mmol}$) and added to this solution slowly. The reaction mixture was thoroughly mixed to yield a light amber homogenous solution and left to evaporate slowly. Light yellow shiny flakes of 2-cyano-1-methylpyridinium bromide (m.p. 196.4-197.4 C) were collected by vacuum filtration.

S3. Refinement

H -atoms attached to carbon were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.95-0.98 \AA$). All were included as riding contributions with isotropic displacement parameters 1.2-1.5 times those of the attached atoms. Trial refinements with the single-component reflection file extracted from the full dataset with TWINABS and with the full, 2-component reflection file indicated the former refinement to be superior.

Figure 1
The title compound with labeling scheme and 50% probability ellipsoids.

Figure 2
Packing viewed down the c axis showing the layer structure.

Figure 3
Packing viewed down the b axis showing the weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ (blue dotted lines) and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ (orange dotted lines) interactions.

2-Cyano-1-methylpyridinium bromide

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Br}^{-}$
$M_{r}=199.06$
Monoclinic, $C 2 / m$
$a=13.3039$ (12) \AA
$b=6.5892$ (6) \AA
$c=9.3753$ (8) \AA
$\beta=92.419(1)^{\circ}$
$V=821.13(13) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEX CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.3660 pixels mm^{-1}

φ and ω scans

Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
$T_{\text {min }}=0.44, T_{\text {max }}=0.74$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.048$
$S=1.02$
$F(000)=392$
$D_{\mathrm{x}}=1.610 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9936 reflections
$\theta=2.2-29.1^{\circ}$
$\mu=4.93 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Block, colourless
$0.20 \times 0.15 \times 0.06 \mathrm{~mm}$

22367 measured reflections
1179 independent reflections
1084 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=29.1^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-18 \rightarrow 18$
$k=-8 \rightarrow 8$
$l=-12 \rightarrow 12$

1179 reflections
62 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0234 P)^{2}\right] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.51 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.44 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at $\varphi=$ $0.00,90.00$ and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at $\omega=-30.00$ and 210.00°. The scan time was $20 \mathrm{sec} /$ frame. Analysis of 1897 reflections having $\mathrm{I} / \sigma(\mathrm{I})>13$ and chosen from the full data set with CELL_NOW (Sheldrick, 2008a) showed the crystal to belong to the monoclinic system and to be twinned by a 180° rotation about a^{*}. The raw data were processed using the multi-component version of SAINT under control of the twocomponent orientation file generated by CELL_NOW.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.95-0.98 \AA$). All were included as riding contributions with isotropic displacement parameters 1.2-1.5 times those of the attached atoms. Trial refinements with the singlecomponent reflection file extracted from the full dataset with TWINABS and with the full, 2-component reflection file indicated the former refinement to be superior.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$	Occ. (<1)
N1	$0.29873(14)$	0.0000	$0.32868(18)$	$0.0177(4)$	
N2	$0.53530(17)$	0.0000	$0.1900(3)$	$0.0399(6)$	
C1	$0.36322(18)$	0.0000	$0.4616(2)$	$0.0239(5)$	0.036^{*}
H1A	0.3212	0.0177	0.5440	0.036^{*}	0.5
H1B	0.4118	0.1116	0.4584	0.036^{*}	0.5
H1C	0.3993	-0.1293	0.4701	$0.0218(5)$	
C2	$0.19853(17)$	0.0000	$0.3369(2)$	0.026^{*}	$0.0269(5)$
H2	0.1698	0.0000	0.4280	0.032^{*}	
C3	$0.13619(18)$	0.0000	$0.2157(2)$	$0.0273(5)$	
H3	0.0652	0.0000	0.2229	0.033^{*}	
C4	$0.17863(19)$	0.0000	$0.0830(3)$	$0.0237(5)$	
H4	0.1368	0.0000	-0.0017	0.028^{*}	
C5	$0.28191(18)$	0.0000	$0.0749(2)$	$0.0198(4)$	
H5	0.3120	0.0000	-0.0152	$0.0280(5)$	
C6	$0.34090(17)$	0.0000	$0.1994(2)$	$0.02252(9)$	
C7	$0.44985(19)$	0.0000	$0.1969(3)$		
Br1	$0.36532(2)$	0.5000	$0.29528(2)$		

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0207(9)$	$0.0176(8)$	$0.0152(9)$	0.000	$0.0033(7)$	0.000

N 2	$0.0292(12)$	$0.0484(15)$	$0.0431(14)$	0.000	$0.0139(10)$	0.000
C1	$0.0261(12)$	$0.0271(12)$	$0.0182(11)$	0.000	$-0.0025(9)$	0.000
C2	$0.0220(11)$	$0.0245(11)$	$0.0196(11)$	0.000	$0.0076(8)$	0.000
C3	$0.0219(11)$	$0.0337(13)$	$0.0251(12)$	0.000	$0.0018(9)$	0.000
C4	$0.0300(13)$	$0.0314(13)$	$0.0203(11)$	0.000	$-0.0022(9)$	0.000
C5	$0.0315(13)$	$0.0232(11)$	$0.0170(10)$	0.000	$0.0085(9)$	0.000
C6	$0.0207(11)$	$0.0178(10)$	$0.0216(11)$	0.000	$0.0080(8)$	0.000
C7	$0.0274(13)$	$0.0294(13)$	$0.0280(13)$	0.000	$0.0104(10)$	0.000
Br1	$0.02982(14)$	$0.02142(12)$	$0.01687(12)$	0.000	$0.00747(8)$	0.000

Geometric parameters ($\AA,{ }^{\circ}$)

N1-C2	1.339 (3)	C2-H2	0.9500
N1-C6	1.357 (3)	C3-C4	1.388 (3)
N1-C1	1.482 (3)	C3-H3	0.9500
N2-C7	1.141 (3)	C4-C5	1.379 (3)
C1-H1A	0.9800	C4-H4	0.9500
C1-H1B	0.9800	C5-C6	1.379 (3)
C1-H1C	0.9800	C5-H5	0.9500
C2-C3	1.378 (3)	C6-C7	1.451 (3)
C2-N1-C6	120.12 (19)	C2-C3-H3	120.5
C2-N1-C1	119.61 (18)	C4-C3-H3	120.5
C6-N1-C1	120.28 (18)	C5-C4-C3	119.5 (2)
N1-C1-H1A	109.5	C5-C4-H4	120.2
N1-C1-H1B	109.5	C3-C4-H4	120.2
H1A-C1-H1B	109.5	C6-C5-C4	119.1 (2)
N1-C1-H1C	109.5	C6-C5-H5	120.4
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	C4-C5-H5	120.4
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	N1-C6-C5	120.9 (2)
N1-C2-C3	121.25 (19)	N1-C6-C7	117.8 (2)
N1-C2-H2	119.4	C5-C6-C7	121.3 (2)
C3-C2-H2	119.4	N2-C7-C6	177.7 (3)
C2-C3-C4	119.1 (2)		
C6-N1-C2-C3	0.000 (1)	C1-N1-C6-C5	180.000 (1)
C1-N1-C2-C3	180.000 (1)	C2-N1-C6-C7	180.000 (1)
N1-C2-C3-C4	0.000 (1)	C1-N1-C6-C7	0.000 (1)
C2-C3-C4-C5	0.000 (1)	C4-C5-C6-N1	0.000 (1)
C3-C4-C5-C6	0.000 (1)	C4-C5-C6-C7	180.0
C2-N1-C6-C5	0.000 (1)		

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{C} 5 — \mathrm{H} 5 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.95	2.66	$3.549(3)$	155
$\mathrm{C} 1 — \mathrm{H} 1 A \cdots \mathrm{Br}^{\mathrm{ii}}$	0.98	2.96	$3.876(2)$	156

supporting information

$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{Br}^{\mathrm{iii}}$	0.95	2.66	$3.586(2)$	166
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{Br}^{\mathrm{iii}}$	0.95	2.77	$3.711(2)$	170

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $-x+1 / 2,-y+1 / 2,-z+1$; (iii) $x-1 / 2, y-1 / 2, z$.

