

OPEN access

Crystal structure of (5-chloro-2-hydroxyphenyl)(3-methylisoxazolo[5,4-b]pyridin-5-yl)methanone

Rajamani Raja,^a Nataraj Poomathi,^b Paramasivam T. Perumal^b and A. SubbiahPandi^a*

^aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and ^bOrganic Chemistry Division, CSIR Central Leather Research Institute, Adyar, Chennai 600 020, India. *Correspondence e-mail: raja.13nap@gmail.com

Received 26 September 2015; accepted 16 October 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

In the title compound, $C_{14}H_9ClN_2O_3$, the fused pyridine and isoxazole rings are approximately planar, making a dihedral angle of $1.14 (16)^{\circ}$. The molecule is twisted with the benzene ring and the mean plane through the fused pyridine-isoxazole ring system being inclined to one another by $47.03 (13)^{\circ}$. There is an intramolecular $O-H \cdots O$ hydrogen bond forming an S(6) ring motif. In the crystal, molecules are linked by C-H···N hydrogen bonds, forming chains propagating along [001]. The chains are linked by slipped parallel π - π interactions, involving inversion-related benzene rings, forming slabs lying parallel to the bc plane {inter-centroid distance = 3.770 (2) Å].

Keywords: crystal structure; polyfunctional pyridines; isoxazole; O-H····O hydrogen bonds; C—H····N hydrogen bonds.

CCDC reference: 1431889

1. Related literature

For various applications of polyfunctional pyridines, see: Knyazhanskii et al. (1996); Kürfurst et al. (1989); Enyedy et al. (2003); Arora & Knaus (1999); Kim et al. 2004); Pillai et al.(2003).

2. Experimental

2.1. Crystal data

C14HoClN2O3 $M_r = 288.68$ Monoclinic, $P2_1/c$ a = 11.0317 (10) Åb = 11.8701 (10) Åc = 11.1220 (9) Å $\beta = 118.675 \ (2)^{\circ}$

2.2. Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.900, T_{\max} = 0.927$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.110$ S = 1.132250 reflections

17705 measured reflections 2250 independent reflections 1763 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.022$

V = 1277.78 (19) Å³

 $0.35 \times 0.30 \times 0.25 \text{ mm}$

Mo $K\alpha$ radiation

 $\mu = 0.31 \text{ mm}^{-1}$

T = 293 K

Z = 4

182 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.42$ e Å⁻³

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$\begin{matrix} O1-H1\cdots O2\\ C12-H12\cdots N2^i \end{matrix}$	0.82 0.93	1.84 2.40	2.561 (4) 3.315 (4)	145 168
	1 1			

Symmetry code: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Acknowledgements

The authors thank the Department of Chemistry, IIT, Chennai, India, for the data collection.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5220).

References

Arora, V. K. & Knaus, E. E. (1999). J. Heterocycl. Chem. 36, 201-203.

Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Enyedy, I. J., Sakamuri, S., Zaman, W. A., Johnson, K. M. & Wang, S. (2003). Bioorg. Med. Chem. Lett. 13, 513–517.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Kim, B. Y., Ahn, J. B., Lee, H. W., Kang, S. K., Lee, J. H., Shin, J. S., Ahn, S. K., Hong, C. I. & Yoon, S. S. (2004). Eur. J. Med. Chem. 39, 433–447.
- Knyazhanskii, M. I., Makarova, N. I., Olekhmovich, E. P. & Kharlanov, A. (1996). Zh. Org. Khim. 32, 1097–1103.
- Kurfürst, A., Lhoták, P., Petrů, M. & Kuthan, J. (1989). Collect. Czech. Chem. Commun. 54, 462–472.
- Pillai, A. D., Rathod, P. D., Franklin, P. X., Patel, M., Nivsarkar, M., Vasu, K. K., Padh, H. & Sudarsanam, V. (2003). *Biochem. Biophys. Res. Commun.* 301, 183–186.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2015). E71, o875–o876 [https://doi.org/10.1107/S2056989015019635]

Crystal structure of (5-chloro-2-hydroxyphenyl)(3-methylisoxazolo[5,4*b*]pyridin-5-yl)methanone

Rajamani Raja, Nataraj Poomathi, Paramasivam T. Perumal and A. SubbiahPandi

S1. Chemical context

Poly-functional pyridines are an interesting class of compounds due to their optical properties (Knyazhanskii *et al.*, 1996; Kürfurst *et al.*, 1989), and their biological activities (Enyedy *et al.*, 2003), such as anticonvulsants (Arora *et al.*, 1999), antihistaminic reagents (Kim *et al.*, 2004), and cardivascular disorder treatments (Pillai *et al.*, 2003). In view of such facts we herein report on the synthesis and crystal structure of the new title poly-functional pyridine compound.

S2. Structural commentary

In the title compound, Fig. 1, the fused pyridine ring (N1/C8—C12) and isoxazole ring (O3/N2/C13/C11/C10) are almost coplanar being inclined to one another by 1.14 (16) °. The molecule is twisted with the benzene ring (C1—C6) and the mean plane through the fused pyridine-isoxazole ring system being inclined to one another by 47.03 (13) °. The molecular conformation is partly determined by the intramolecular O—H…O hydrogen bond which forms an S(6) ring motif.

In the crystal, molecules are linked by C—H···N hydrogen bond to form chains propagating along the c-axis direction (Table 1 and Fig. 2). The chains are linked by slipped parallel π — π interactions, involving inversion related 5-chloro-2-hydroxyphenyl rings, forming slabs parallel to the *bc*-plane; see Fig. 2 [Cg3—Cg3ⁱ = 3.770 (2) Å, inter-planar distance = 3.4094 (14) Å, slippage = 1.609 Å; Cg3 is the centroid of ring (C1—C6); symmetry code: (i) -x, -y, 2-z].

S3. Synthesis and crystallization

To a mixture of 6-chloro-3-formylchromone (1 mmol) and 3-methylisoxazol-5-amine (1 mmol) in ethanol (3 ml) was added a catalytic amount (0.050 mmol) of $In(OTf)_3$ and the mixture was refluxed for about 20 min. The precipitated solid was filtered and dried under vacuum to afford the pure product in 87% yield. The purified compound was recrystallised from ethanol and DMSO-D₆ by slow evaporation giving colourless block-like crystals.

S4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The OH and C-bound H atoms were positioned geometrically (O—H = 0.82 Å, C–H = 0.93–0.96 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(O,C)$ for hydroxyl and methyl H atoms and $1.2U_{eq}(C)$ for other H atoms.

Figure 1

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A view along the *b*-axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details).

(5-Chloro-2-hydroxyphenyl)(3-methylisoxazolo[5,4-b]pyridin-5-yl)methanone

C ₁₄ H ₉ ClN ₂ O ₃	F(000) = 592
$M_r = 288.68$	$D_x = 1.501 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$
Hall symbol: -P 2ybc	Cell parameters from 1763 reflections
a = 11.0317 (10) Å	$\theta = 2.1-25.0^{\circ}$
b = 11.8701 (10) Å	$\mu = 0.31 \text{ mm}^{-1}$
c = 11.1220 (9) Å	T = 293 K
$\beta = 118.675 (2)^{\circ}$	Block, colourless
$V = 1277 78 (19) \text{ Å}^{3}$	$0.35 \times 0.30 \times 0.25 \text{ mm}$
 Z = 4 Data collection Bruker SMART APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator 	ω and φ scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008) $T_{\min} = 0.900, T_{\max} = 0.927$

17705 measured reflections	$\theta_{\text{max}} = 25.0^{\circ}, \theta_{\text{min}} = 2.1^{\circ}$
2250 independent reflections	$h = -13 \rightarrow 13$
1763 reflections with $I > 2\sigma(I)$	$k = -14 \rightarrow 14$
$R_{\rm int} = 0.022$	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from
$wR(F^2) = 0.110$	neighbouring sites
<i>S</i> = 1.13	H-atom parameters constrained
2250 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0188P)^2 + 1.3834P]$
182 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.42 \mathrm{e} \mathrm{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.1833 (3)	-0.0368 (3)	0.9816 (3)	0.0592 (8)	
C2	0.1378 (3)	0.0264 (4)	0.8629 (3)	0.0738 (10)	
H2	0.1386	-0.0051	0.7868	0.089*	
C3	0.0917 (3)	0.1343 (3)	0.8560 (3)	0.0711 (10)	
H3	0.0614	0.1755	0.7755	0.085*	
C4	0.0900 (3)	0.1827 (3)	0.9696 (3)	0.0541 (7)	
C5	0.1386 (2)	0.1234 (2)	1.0890 (2)	0.0432 (6)	
Н5	0.1384	0.1564	1.1648	0.052*	
C6	0.1887 (2)	0.0133 (2)	1.0988 (3)	0.0436 (6)	
C7	0.2418 (2)	-0.0531 (2)	1.2263 (3)	0.0455 (6)	
C8	0.2796 (2)	-0.0001(2)	1.3606 (3)	0.0424 (6)	
C9	0.2544 (3)	-0.0637(2)	1.4535 (3)	0.0578 (7)	
H9	0.2125	-0.1336	1.4243	0.069*	
C10	0.3469 (3)	0.0675 (3)	1.6116 (3)	0.0528 (7)	
C11	0.3811 (2)	0.1373 (2)	1.5332 (2)	0.0414 (6)	
C12	0.3455 (2)	0.1025 (2)	1.4011 (2)	0.0388 (6)	
H12	0.3652	0.1460	1.3430	0.047*	
C13	0.4447 (3)	0.2330 (2)	1.6185 (2)	0.0471 (6)	
C14	0.5010 (3)	0.3350 (3)	1.5876 (3)	0.0607 (8)	
H14A	0.5386	0.3840	1.6659	0.091*	
H14B	0.4286	0.3733	1.5107	0.091*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H14C	0.5726	0.3140	1.5662	0.091*	
N1	0.2861 (3)	-0.0312 (2)	1.5798 (3)	0.0656 (7)	
N2	0.4480 (3)	0.2213 (2)	1.7365 (2)	0.0640 (7)	
01	0.2205 (3)	-0.1444 (2)	0.9793 (3)	0.0850 (8)	
H1	0.2460	-0.1732	1.0547	0.127*	
O2	0.2567 (2)	-0.15626 (16)	1.2243 (2)	0.0661 (6)	
03	0.3854 (2)	0.1149 (2)	1.73518 (19)	0.0709 (6)	
Cl1	0.02472 (9)	0.31717 (7)	0.95930 (9)	0.0802 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0495 (17)	0.074 (2)	0.0569 (18)	-0.0167 (15)	0.0281 (14)	-0.0221 (16)
C2	0.071 (2)	0.106 (3)	0.0519 (19)	-0.033 (2)	0.0359 (17)	-0.0268 (19)
C3	0.061 (2)	0.102 (3)	0.0392 (16)	-0.0353 (19)	0.0150 (14)	0.0022 (17)
C4	0.0383 (14)	0.0663 (18)	0.0424 (15)	-0.0144 (13)	0.0070 (12)	0.0058 (13)
C5	0.0346 (13)	0.0518 (15)	0.0355 (13)	-0.0093 (11)	0.0106 (11)	-0.0045 (11)
C6	0.0340 (13)	0.0525 (15)	0.0442 (14)	-0.0113 (11)	0.0188 (11)	-0.0120 (12)
C7	0.0335 (13)	0.0425 (15)	0.0556 (16)	0.0001 (11)	0.0175 (12)	-0.0020 (12)
C8	0.0371 (13)	0.0408 (14)	0.0444 (14)	0.0072 (11)	0.0156 (11)	0.0055 (11)
C9	0.0558 (17)	0.0484 (16)	0.0618 (18)	0.0011 (13)	0.0222 (15)	0.0138 (14)
C10	0.0456 (16)	0.073 (2)	0.0380 (14)	0.0126 (14)	0.0183 (12)	0.0119 (14)
C11	0.0364 (13)	0.0506 (15)	0.0355 (13)	0.0095 (11)	0.0159 (11)	0.0066 (11)
C12	0.0336 (12)	0.0447 (14)	0.0365 (12)	0.0059 (11)	0.0154 (10)	0.0061 (11)
C13	0.0381 (14)	0.0623 (17)	0.0339 (13)	0.0125 (12)	0.0116 (11)	-0.0022 (12)
C14	0.0591 (18)	0.0647 (19)	0.0491 (16)	-0.0026 (15)	0.0185 (14)	-0.0124 (14)
N1	0.0707 (17)	0.0709 (18)	0.0530 (15)	0.0019 (14)	0.0277 (13)	0.0197 (13)
N2	0.0630 (16)	0.088 (2)	0.0388 (13)	0.0124 (14)	0.0224 (12)	-0.0035 (13)
01	0.0909 (17)	0.0841 (17)	0.0906 (17)	-0.0042 (14)	0.0521 (15)	-0.0375 (14)
O2	0.0642 (13)	0.0443 (12)	0.0777 (15)	0.0077 (10)	0.0243 (11)	-0.0065 (10)
03	0.0781 (15)	0.0984 (18)	0.0404 (11)	0.0073 (13)	0.0317 (11)	0.0092 (11)
Cl1	0.0684 (5)	0.0677 (5)	0.0732 (6)	-0.0036 (4)	0.0090 (4)	0.0258 (4)

Geometric parameters (Å, °)

C1-01	1.345 (4)	C9—N1	1.331 (4)	
C1—C2	1.386 (5)	С9—Н9	0.9300	
C1—C6	1.408 (4)	C10—N1	1.312 (4)	
C2—C3	1.366 (5)	C10—O3	1.351 (3)	
С2—Н2	0.9300	C10—C11	1.380 (4)	
C3—C4	1.396 (4)	C11—C12	1.390 (3)	
С3—Н3	0.9300	C11—C13	1.430 (4)	
C4—C5	1.365 (4)	C12—H12	0.9300	
C4—Cl1	1.733 (3)	C13—N2	1.302 (3)	
C5—C6	1.403 (4)	C13—C14	1.474 (4)	
С5—Н5	0.9300	C14—H14A	0.9600	
С6—С7	1.476 (4)	C14—H14B	0.9600	
С7—О2	1.237 (3)	C14—H14C	0.9600	

supporting information

C7—C8	1.485 (4)	N2—O3	1.436 (3)
C8—C12	1.378 (3)	O1—H1	0.8200
C8—C9	1.411 (4)		
O1—C1—C2	118.0 (3)	N1—C9—H9	117.5
O1—C1—C6	122.8 (3)	С8—С9—Н9	117.5
C2-C1-C6	119.2 (3)	N1-C10-O3	121.1 (3)
C3—C2—C1	121.1(3)	N1-C10-C11	128.7(3)
C3—C2—H2	119.5	O3-C10-C11	110.2(3)
C1 - C2 - H2	119.5	C10-C11-C12	117.2(3)
$C_{2} - C_{3} - C_{4}$	120 1 (3)	C10-C11-C13	104.7(2)
$C_2 = C_3 = H_3$	120.1 (5)	C12-C11-C13	137.5(2)
C4 - C3 - H3	120.0	C8-C12-C11	137.3(2) 1164(2)
$C_{5} - C_{4} - C_{3}$	120.0 (3)	C8-C12-H12	121.8
$C_{5} - C_{4} - C_{11}$	120.0(3) 119.7(2)	C_{11} C_{12} H_{12}	121.0
$C_3 - C_4 - C_{11}$	119.7(2) 1204(2)	N2-C13-C11	110.5(3)
C4-C5-C6	120.4(2) 120.8(3)	$N_2 - C_{13} - C_{14}$	120.7(3)
C4 - C5 - H5	119.6	C_{11} C_{13} C_{14}	120.7(3) 128.7(2)
C6-C5-H5	119.6	C13 - C14 - H14A	109.5
C_{5} C_{6} C_{1}	119.0	C13 C14 H14R	109.5
$C_{5} = C_{6} = C_{7}$	110.0(3) 122.2(2)	H_{14} C_{14} H_{14} H	109.5
$C_{1} - C_{6} - C_{7}$	122.2(2) 119.0(3)	C13 - C14 - H14C	109.5
$0^{2}-0^{7}-0^{6}$	119.0(3) 1204(2)	$H_{14} - C_{14} - H_{14}C$	109.5
02 - C7 - C0	120.4(2)	$H_{14} = C_{14} = H_{14}C$	109.5
$C_{2} - C_{7} - C_{8}$	117.0(2) 122.0(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5 112.6(2)
$C_{0} - C_{1} - C_{8}$	122.0(2)	C10 N1 $C9$	112.0(2) 107.7(2)
$C_{12} = C_{8} = C_{7}$	119.5(2) 122.5(2)	$C_{13} = N_2 = 0_3$	107.7 (2)
$C_{12} = C_{8} = C_{7}$	125.5(2) 116.8(2)	C1 = O1 = H1 C10 = O2 = N2	109.3
$C_{9} = C_{0} = C_{1}$	110.0(2)	010-03-112	100.9 (2)
NI-C9-C8	123.0 (3)		
01 C1 C2 C3	1766(3)	C7 C8 C9 N1	177.5(3)
$C_{1} = C_{1} = C_{2} = C_{3}$	-24(5)	$C_{1} = C_{3} = C_{3} = N_{1}$	177.5(3) 14(4)
$C_{1} = C_{2} = C_{3}$	-3.4(3)	N1 - C10 - C11 - C12	1.4(4) -178 4 (2)
$C_1 - C_2 - C_3 - C_4$	0.1(3)	05-010-011-012	-170.4(2)
$C_2 = C_3 = C_4 = C_3$	2.1(4) -177.2(2)	N1 - C10 - C11 - C13	1/9.9(3)
$C_2 = C_3 = C_4 = C_1$	-0.9(4)	$C_{0} = C_{1} = C_{11} = C_{12}$	-11(3)
$C_{3} - C_{4} - C_{5} - C_{6}$	-0.9(4) 178 34 (18)	$C_{7} = C_{8} = C_{12} = C_{11}$	-1.1(3) -1762(2)
$C_{1} = C_{1} = C_{0} = C_{0}$	-24(4)	$C_{1} = C_{3} = C_{12} = C_{11}$	-0.4(3)
$C_{4} = C_{5} = C_{6} = C_{1}$	-180.0(2)	C_{10} C_{11} C_{12} C_{8}	-178.3(3)
$C_{4} - C_{5} - C_{6} - C_{7}$	-175.5(2)	C_{13} C_{11} C_{12} C_{13} C_{10} C_{11} C_{12} N_{12}	1/0.3(3)
01 - 01 - 00 - 03	-1/3.3(2)	C10-C11-C13-N2	0.0(3)
$C_2 - C_1 - C_0 - C_3$	4.4(4)	C12— $C11$ — $C13$ — $N2$	1/8.0(3)
$C_1 = C_1 = C_0 = C_7$	2.2(4) -177.0(2)	C10 - C11 - C13 - C14	-1/9.0(3)
$C_2 - C_1 - C_0 - C_7$	-1/(.9(3))	C_{12} C_{10} C	-1.0(3)
$C_{1} = C_{1} = C_{1} = C_{1} = C_{2}$	104.1(2) 12.5(4)	$C_{11} = C_{10} = N_{1} = C_{9}$	1/9.3(3)
$C_1 - C_0 - C_1 - O_2$	-13.3(4)	$C_{11} = C_{10} = N_{1} = C_{10}$	-0.6(4)
$C_{1} = C_{1} = C_{1} = C_{2}$	-10.1(4)	$C_{0} - C_{1} - C_{1$	-1.2(4)
$C_1 - C_0 - C_7 - C_8$	166.3 (2)	C11 - C13 - N2 - O3	0.0(3)
02-07-08-012	140.6 (3)	C14—C13—N2—O3	179.6 (2)

C6—C7—C8—C12	-39.3 (4)	N1-C10-O3-N2	-179.9 (2)
O2—C7—C8—C9	-34.7 (3)	C11—C10—O3—N2	-0.1 (3)
C6—C7—C8—C9	145.5 (2)	C13—N2—O3—C10	0.0 (3)
C12—C8—C9—N1	2.1 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
01—H1…O2	0.82	1.84	2.561 (4)	145
C12—H12···N2 ⁱ	0.93	2.40	3.315 (4)	168

Symmetry code: (i) x, -y+1/2, z-1/2.