

Crystal structure of 1,2,3,5-di-O-methylene-*a*-D-xylofuranose

Ioannis Tiritiris, Stefan Tussetschläger and Willi Kantlehner*

Fakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany. *Correspondence e-mail: willi.kantlehner@hs-aalen.de

Received 18 October 2015; accepted 22 October 2015

Edited by M. Zeller, Youngstown State University, USA

The title compound, $C_7H_{10}O_5$, was synthesized by reaction of D-xylose with paraformaldehyde. In the crystal, the central part of the molecule consists of a five-membered C₄O ring with an envelope conformation, with the methine C atom adjacent to the O atom being the flap. The protected O atoms of both cyclic acetal groups are oriented so that the four chiral C atoms of the furanose part show an R configuration. C-H...O hydrogen bonds are present between adjacent molecules, generating a three-dimensional network.

Keywords: crystal structure; acetalation; D-xylose; C-H···O hydrogen bonds.

CCDC reference: 1432701

1. Related literature

For the synthesis of 1,2,3,5-di-O-methylene- α -D-xylose, see: Schmidt & Nieswandt (1949). For the synthesis and characterization of chiral 1,3-dihydrobenzo[c]furan derivatives and their intermediates, see: Ewing et al. (2000).

 $M_r = 174.15$

Orthorhombic C222₁ a = 8.5509 (11) Åb = 8.6327 (11) Åc = 20.057 (3) Å V = 1480.6 (3) Å³

OPEN access

2.2. Data collection

Bruker Kappa APEXII DUO	
diffractometer	
Absorption correction: multi-scan	
(Blessing, 1995)	
$T_{\min} = 0.707, \ T_{\max} = 0.744$	

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	110 parameters
$wR(F^2) = 0.074$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
1858 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$

Z = 8

Mo $K\alpha$ radiation

 $0.53 \times 0.16 \times 0.13 \text{ mm}$

12973 measured reflections

1858 independent reflections 1667 reflections with $I > 2\sigma(I)$

 $\mu = 0.14 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.048$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1-H1\cdots O3^{i}$	1.00	2.57	3.311 (2)	131
$C3 - H3B \cdot \cdot \cdot O1^{ii}$	0.99	2.54	3.458 (2)	154
C4−H4···O4 ⁱⁱ	1.00	2.46	3.406 (2)	157
C5−H5···O2 ⁱⁱⁱ	1.00	2.41	3.385 (2)	166
$C7-H7A\cdots O3^{iv}$	0.99	2.47	3.337 (2)	147
$C7 - H7B \cdots O5^{v}$	0.99	2.55	3.390 (2)	142

Symmetry codes: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $x - \frac{1}{2}, y - \frac{1}{2}, z$; (iii) x, -y + 1, -z; (iv) $x - \frac{1}{2}, y + \frac{1}{2}, z;$ (v) x, -y + 2, -z

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL2014.

Acknowledgements

The authors thank Dr W. Frey (Institut für Organische Chemie, Universität Stuttgart) for measuring the diffraction data.

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZL2650).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany
- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ewing, D. F., Len, C., Mackenzie, G., Ronco, G. & Villa, P. (2000). Tetrahedron Asymmetry, 11, 4995-5002.
- Schmidt, O. Th. & Nieswandt, G. (1949). Chem. Ber. 1, 1-7.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

C7H10O5

supporting information

Acta Cryst. (2015). E71, 0889 [https://doi.org/10.1107/S2056989015020022]

Crystal structure of 1,2,3,5-di-*O*-methylene-*α*-D-xylofuranose

Ioannis Tiritiris, Stefan Tussetschläger and Willi Kantlehner

S1. Comment

The synthesis of the protected sugar 1,2,3,5-di-*O*-methylene- α -*D*-xylofuranose has been well known for many years (Schmidt & Nieswandt, 1949), its crystal structure, however, remained undetermined. According to the structure analysis, which we would like to now report, the central part of the molecule consists of a five-membered C₄O ring, which is build by the carbon atoms C1, C4, C5 and C6 and show an envelope conformation (Fig. 1). The protected oxygen atoms of both cyclic acetal groups are oriented in a way so that the four chiral carbon atoms of the furanose part exhibit *R*-configuration. Compounds with similar structures have been obtained as intermediates by using 1,2-*O*-isopropylidene- α -*D*-xylofuranose as a protecting group to synthesize chiral 1,3-dihydrobenzo[*c*]furan derivatives (Ewing *et al.*, 2000). In the crystal structure of the title compound, C—H···O hydrogen bonds between adjacent molecules are present [*d*(H···O) = 2.41–2.57 Å] (Table 1), generating a three-dimensional network (Fig. 2).

S2. Experimental

According to the literature (Schmidt & Nieswandt, 1949) a mixture of 7.5 g (50 mmol) *D*-xylose and 10.0 g (333 mmol) paraformaldehyde were heated to 373 K. After treating the mixture with 20 g (204 mmol) of concentrated phosphoric acid (85%) and subsequent cooling to room temperature, the mixture has been extracted five times with chloroform. The combined extracts were washed and dried over sodium sulfate. After evaporation of the solvent, the crude product was destilled under reduced presure using a 20 cm *Vigreux* column. The fraction at 363 K (0.1 mbar) contained 3.4 g (39%) of the title compound. Single crystals were obtained by recystallization from petroleum ether and colorless needles were formed suitable for X-ray analysis.

S3. Refinement

The title compound crystallizes in the non-centrosymmetric space group $C222_1$; however, in the absence of significant anomalous scattering effects, the Flack parameter is essentially meaningless. The H atoms in CH₂ and CH groups were placed in calculated positions with d(C-H) = 0.99 Å and d(C-H) = 1.00 Å and refined using a riding model, with U(H) set to 1.2 $U_{eq}(C)$.

The structure of the title compound with displacement ellipsoids at the 50% probability level.

Figure 2

C—H···O hydrogen bonds (black dashed lines) between adjacent molecules in the crystal structure of the title compound (bc view).

1,2,3,5-di-O-Methylene-*a*-D-xylofuranose

Crystal data

 $C_7H_{10}O_5$ $M_r = 174.15$ Orthorhombic, $C222_1$ a = 8.5509 (11) Å b = 8.6327 (11) Å c = 20.057 (3) Å $V = 1480.6 (3) Å^3$ Z = 8F(000) = 736

Data collection

Bruker Kappa APEXII DUO	12973 measured reflections
diffractometer	1858 independent reflections
Radiation source: fine-focus sealed tube	1667 reflections with $I > 2\sigma(I)$
Triumph monochromator	$R_{ m int}=0.048$
p scans, and ω scans	$\theta_{\rm max} = 28.4^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 9$
(Blessing, 1995)	$k = -11 \rightarrow 11$
$T_{\min} = 0.707, \ T_{\max} = 0.744$	$l = -26 \rightarrow 26$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	H-atom parameters constrained
$wR(F^2) = 0.074$	$w = 1/[\sigma^2(F_o^2) + (0.0335P)^2 + 0.5951P]$
S = 1.05	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
1858 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
110 parameters	$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL2014</i> (Sheldrick, 2015), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0061 (7)
map	

 $D_{\rm x} = 1.563 {\rm Mg} {\rm m}^{-3}$

 $\theta = 2.0 - 28.4^{\circ}$

 $\mu = 0.14 \text{ mm}^{-1}$

Needle, colorless

 $0.53 \times 0.16 \times 0.13$ mm

T = 100 K

Mo *Ka* radiation, $\lambda = 0.71073$ Å

Cell parameters from 1667 reflections

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.35776 (16)	0.73794 (16)	0.15438 (7)	0.0209 (3)	
C1	0.2196 (2)	0.6569 (2)	0.17647 (10)	0.0183 (4)	
H1	0.1430	0.7322	0.1957	0.022*	

O2	0.23608 (16)	0.44818 (15)	0.09492 (7)	0.0200 (3)
C2	0.2642 (3)	0.5386 (3)	0.22854 (11)	0.0250 (5)
H2A	0.3352	0.5874	0.2614	0.030*
H2B	0.1689	0.5051	0.2526	0.030*
03	0.33921 (17)	0.40599 (17)	0.20058 (7)	0.0224 (3)
C3	0.2474 (2)	0.3445 (2)	0.14901 (11)	0.0229 (4)
H3A	0.1413	0.3217	0.1662	0.027*
H3B	0.2941	0.2459	0.1335	0.027*
O4	0.28366 (16)	0.95180 (15)	0.08815 (8)	0.0229 (3)
C4	0.1535 (2)	0.5865 (2)	0.11288 (10)	0.0175 (4)
H4	0.0381	0.5689	0.1160	0.021*
05	0.07534 (18)	0.81726 (16)	0.04937 (8)	0.0239 (4)
C5	0.1948 (2)	0.7043 (2)	0.05959 (10)	0.0185 (4)
Н5	0.2246	0.6526	0.0168	0.022*
C6	0.3328 (2)	0.7957 (2)	0.08923 (10)	0.0186 (4)
H6	0.4287	0.7817	0.0613	0.022*
C7	0.1181 (2)	0.9509 (2)	0.08583 (11)	0.0213 (4)
H7A	0.0741	0.9467	0.1314	0.026*
H7B	0.0788	1.0454	0.0634	0.026*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0202 (5)	0.0228 (5)	0.0195 (5)	-0.0066 (4)	-0.0026 (4)	0.0012 (4)
C1	0.0181 (7)	0.0197 (7)	0.0172 (7)	-0.0015 (6)	0.0024 (6)	-0.0010 (6)
O2	0.0258 (5)	0.0129 (5)	0.0213 (5)	0.0043 (4)	-0.0029 (4)	-0.0014 (4)
C2	0.0290 (8)	0.0283 (8)	0.0176 (7)	-0.0006 (7)	0.0028 (6)	0.0026 (6)
03	0.0213 (5)	0.0241 (5)	0.0217 (5)	0.0026 (4)	-0.0023 (4)	0.0048 (5)
C3	0.0236 (8)	0.0181 (7)	0.0268 (8)	-0.0009 (6)	-0.0026 (6)	0.0042 (6)
04	0.0200 (5)	0.0141 (5)	0.0347 (6)	-0.0002 (4)	0.0032 (5)	-0.0002 (5)
C4	0.0171 (6)	0.0139 (7)	0.0214 (7)	0.0012 (6)	-0.0024 (6)	-0.0014 (6)
05	0.0275 (6)	0.0145 (5)	0.0297 (6)	0.0034 (4)	-0.0094 (5)	-0.0004(5)
C5	0.0245 (7)	0.0149 (7)	0.0162 (7)	0.0041 (6)	-0.0023 (6)	-0.0026 (5)
C6	0.0190 (7)	0.0164 (7)	0.0205 (7)	0.0024 (5)	0.0046 (6)	0.0005 (6)
C7	0.0220 (7)	0.0153 (7)	0.0267 (8)	0.0002 (5)	0.0004 (6)	-0.0015 (7)

Geometric parameters (Å, °)

01—C6	1.4147 (18)	C3—H3B	0.9900
01—C1	1.4429 (17)	O4—C6	1.4119 (17)
C1—C2	1.509 (2)	O4—C7	1.4164 (18)
C1—C4	1.522 (2)	C4—C5	1.517 (2)
C1—H1	1.0000	C4—H4	1.0000
O2—C3	1.4099 (19)	O5—C7	1.4139 (18)
O2—C4	1.4333 (16)	O5—C5	1.4269 (17)
C2—O3	1.4272 (19)	C5—C6	1.539 (2)
C2—H2A	0.9900	С5—Н5	1.0000
C2—H2B	0.9900	С6—Н6	1.0000

supporting information

03—C3	1.4029 (18)	C7—H7A	0.9900
С3—НЗА	0.9900	С/—Н/В	0.9900
C6—01—C1	109 33 (11)	C5—C4—C1	103 67 (11)
01	109.50 (12)	O2-C4-H4	112.0
01	103.92 (11)	C5—C4—H4	112.0
C2—C1—C4	113.81 (12)	C1—C4—H4	112.0
O1—C1—H1	109.8	C7—O5—C5	107.35 (11)
C2—C1—H1	109.8	O5—C5—C4	113.12 (13)
C4—C1—H1	109.8	O5—C5—C6	104.72 (10)
C3—O2—C4	111.67 (11)	C4—C5—C6	104.48 (12)
O3—C2—C1	112.60 (12)	O5—C5—H5	111.4
O3—C2—H2A	109.1	C4—C5—H5	111.4
C1—C2—H2A	109.1	С6—С5—Н5	111.4
O3—C2—H2B	109.1	O4C6O1	113.30 (12)
C1—C2—H2B	109.1	O4—C6—C5	104.77 (11)
H2A—C2—H2B	107.8	O1—C6—C5	106.97 (11)
C3—O3—C2	109.98 (12)	O4—C6—H6	110.5
O3—C3—O2	111.43 (12)	O1—C6—H6	110.5
O3—C3—H3A	109.3	С5—С6—Н6	110.5
O2—C3—H3A	109.3	O5—C7—O4	106.26 (12)
O3—C3—H3B	109.3	О5—С7—Н7А	110.5
O2—C3—H3B	109.3	O4—C7—H7A	110.5
НЗА—СЗ—НЗВ	108.0	O5—C7—H7B	110.5
C6—O4—C7	107.02 (11)	O4—C7—H7B	110.5
O2—C4—C5	105.46 (11)	H7A—C7—H7B	108.7
O2—C4—C1	111.11 (12)		
C6—O1—C1—C2	154.82 (12)	O2—C4—C5—O5	151.81 (11)
C6C1C4	32.88 (14)	C1—C4—C5—O5	-91.33 (14)
O1—C1—C2—O3	-74.81 (15)	O2—C4—C5—C6	-94.88 (12)
C4—C1—C2—O3	40.99 (18)	C1—C4—C5—C6	21.97 (14)
C1—C2—O3—C3	-52.63 (16)	C7—O4—C6—O1	-94.14 (14)
C2—O3—C3—O2	65.51 (15)	C7—O4—C6—C5	22.11 (15)
C4—O2—C3—O3	-65.43 (15)	C1—O1—C6—O4	96.17 (13)
C3—O2—C4—C5	162.32 (12)	C1—O1—C6—C5	-18.77 (14)
C3—O2—C4—C1	50.63 (15)	O5—C5—C6—O4	-4.41 (15)
O1—C1—C4—O2	79.61 (13)	C4—C5—C6—O4	-123.57 (12)
C2—C1—C4—O2	-39.42 (17)	O5—C5—C6—O1	116.12 (12)
O1—C1—C4—C5	-33.22 (14)	C4—C5—C6—O1	-3.04 (14)
C2—C1—C4—C5	-152.25 (13)	C5—O5—C7—O4	29.22 (16)
C7—O5—C5—C4	98.23 (14)	C6—O4—C7—O5	-32.32 (17)
C7—O5—C5—C6	-14.93 (15)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C1—H1···O3 ⁱ	1.00	2.57	3.311 (2)	131

supporting information

C3—H3B···O1 ⁱⁱ	0.99	2.54	3.458 (2)	154
C4—H4···O4 ⁱⁱ	1.00	2.46	3.406 (2)	157
C5—H5···O2 ⁱⁱⁱ	1.00	2.41	3.385 (2)	166
C7—H7A···O3 ^{iv}	0.99	2.47	3.337 (2)	147
C7—H7 <i>B</i> ···O5 ^v	0.99	2.55	3.390 (2)	142

Symmetry codes: (i) -x+1/2, y+1/2, -z+1/2; (ii) x-1/2, y-1/2, z; (iii) x, -y+1, -z; (iv) x-1/2, y+1/2, z; (v) x, -y+2, -z.