data reports

OPEN access

Crystal structure of the adduct (4-chlorophenyl)(4-hydroxypiperidin-1-yl)methanone-(4-chlorophenyl)-(piperidin-1-yl)methanone (0.75/0.25)

B. K. Revathi,^a D. Reuben Jonathan,^b K. Kalai Sevi,^c K. Dhanalakshmi^d and G. Usha^a*

^aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, ^bDepartment of Chemistry, Madras Christian College, Chennai-59, India, ^cSCRI, Anna Hospital Campus, Chennai-106, Tamilnadu, India, and ^dAnna Siddha Medical College, Chennai-106, Tamilnadu, India. *Correspondence e-mail: guqmc@yahoo.com

Received 24 September 2015; accepted 27 October 2015

Edited by G. Smith, Queensland University of Technology, Australia

In the title compound, $0.75C_{12}H_{14}CINO_2 \cdot 0.25C_{12}H_{14}CINO$, which is an adduct comprising 0.75 4-hydroxypiperidin-1-yl or 0.25 4-piperidin-1-yl substituents on a common (4-chlorophenyl)methanone component; the dihedral angles between the benzene ring and the two piperidine rings are 51.6 (3) and 89.5 (7) $^{\circ}$, respectively. The hydroxypiperidine ring is in a bisectional oriention (bi) with the phenyl ring. In the crystal, intermolecular $O-H \cdots O$ hydrogen bonds between the hydroxypiperidine group and the keto O atom lead to the formation of chains extending along the *c*- axis direction.

Keywords: crystal structure; adduct; piperidine derivative; hydrogen bonding.

CCDC reference: 1433393

1. Related literature

For the synthesis, see: Revathi et al. (2015). For the biological activity of piperidine derivatives, see: Ramalingan et al. (2004); Sargent & May (1970); Rubiralta et al. (1991). For related structures, see: Revathi et al. (2015); Prathebha et al. (2015).

2. Experimental

2.1. Crystal data 0.75C12H14ClNO2·0.25C12H14ClNO $M_r = 235.69$ Orthorhombic, Pca21 a = 24.312 (4) Å b = 6.1628 (10) Åc = 7.9654 (11) Å

2.2. Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.930, T_{\max} = 0.941$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.144$ S = 1.022356 reflections 200 parameters 121 restraints H-atom parameters constrained

T = 293 K $0.25 \times 0.20 \times 0.20$ mm

V = 1193.5 (3) Å³

Mo $K\alpha$ radiation

 $\mu = 0.30 \text{ mm}^{-1}$

Z = 4

17321 measured reflections 2356 independent reflections 1539 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.031$

Table 1	
Hydrogen-bond geometry	(Å, °).

 $\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^-$

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2A\cdots O1^{i}$	0.82	2.05	2.693 (7)	135
Symmetry code: (i) x,	v, z - 1.			

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXL2014.

Acknowledgements

The authors thank DST-FIST, sponsored Central Instrumentation Facility, Queen Mary's College (A), Chennai-4, for the computing facility and SAIF, IIT, Madras, for the X-ray data collection facility.

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2348).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Bruker (2004). SAINT, APEX2, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruno, V., Castaldo, A., Centore, R., Sirigu, A., Sarcinelli, F., Casalboni, M. & Pizzoferrato, R. (2002). J. Polym. Sci. A Polym. Chem. 40, 1468–1475.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.
- Prathebha, K., Reuben Jonathan, D., Revathi, B. K., Sathya, S. & Usha, G. (2015). Acta Cryst. E**71**, o39–o40.
- Ramalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). *Eur. J. Med. Chem.* **39**, 527–533.
- Revathi, B. K., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2015). Acta Cryst. E71, 0359–0360.
- Rubiralta, M., Giralt, E. & Diez, A. (1991). *Piperidine: Structure, Preparation, Reactivity, and Synthetic Applications of Piperidine and its Derivatives*, pp. 225–312. Amsterdam: Elsevier.
- Sargent, L. J. & May, E. L. (1970). J. Med. Chem. 13, 1061-1063.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

supporting information

Acta Cryst. (2015). E71, o896–o897 [https://doi.org/10.1107/S2056989015020265]

Crystal structure of the adduct (4-chlorophenyl)(4-hydroxypiperidin-1yl)methanone–(4-chlorophenyl)(piperidin-1-yl)methanone (0.75/0.25)

B. K. Revathi, D. Reuben Jonathan, K. Kalai Sevi, K. Dhanalakshmi and G. Usha

S1. Comment

Piperidine is very important pharmacophore because of its presence in numerous alkaloids, pharmaceuticals, agrochemicals and as synthetic intermediates. Biologically active alkaloids with substituted piperidine ring systems have been targeted for their total or partial synthesis (Ramalingan *et al.*, 2004). Piperidines are known to have CNS depressant action at low dosage levels and stimulant activity with increased dosages. In addition, the nucleus also possesses analgesic, ganglionic blocking and anesthetic properties as well (Sargent & May, 1970; Rubiralta *et al.*, 1991).

In the title compound, $0.75(C_{12}H_{14}NO_2CI) \cdot 0.25(C_{12}H_{14}NOCI)$, which is an adduct comprising 0.75(4-hydroxypiperidin-1-yl) or 0.25(4-piperidin-1-yl) substituents on a common (4-chlorophenyl)methanone component, the dihedral angles between the benzene ring and the two piperidine rings defined by N1–C12 and N1'–C12' are 51.6 (3) and 89.5 (7)°, respectively (Figs. 1, 2). The C—C distances in the hydroxypiperidine ring and the benzene ring are in the range [1.472 (9)–1.529 (8)Å and 1.346 (7)–1.390 (8)Å], respectively and are in good agreement with literature values (Allen *et al.*, 1987). The C—N distances are in the range [1.346 (7)Å - 1.465 (7)Å] and are in good agreement with values in a similar reported structure (Revathi *et al.*, 2015). The C—O distance [1.223 (6)Å] indicates double bond character and is comparable with the value reported previously (Prathebha *et al.*, 2015). The hydroxypiperdine ring is in a bisectional oriention (*bi*) with the phenyl ring. The sum of the bond angle around the N1 atom is [359.9 (5)°], showing sp² hybridization of the atoms. The torsion angle C8—N1—C7—O1 [12.3 (10)°], indicates that the keto group is in a +*synperiplanar* (+*sp*) orientation with the hydroxy piperidine ring. The hydroxypiperidine ring adopts a chair conformation with puckering parameters of q2 = 0.029Å, phi2 = -173.57° q3 = -0.555Å, QT = 0.555Å and theta2 = 176.95°.

In the crystal, molecules are linked by O2—H···O1ⁱ hydrogen bonds (Table 1), forming one-dimensional chains extending along *c* (Fig. 3). Present also are very weak inter-chain C12′—H···Cl1ⁱⁱ interactions [3.63 (2) Å]. For symmetry code (ii) -x + 3/2, -y + 1, *z* - 1.

S2. Experimental

The title compound was synthesized by utilizing a reported procedure (Revathi *et al.*, 2015). In a 250 ml round-bottomed flask, 130 ml of ethylmethylketone was added to 4-hydroxypiperidiene (0.04 mol) and stirred well. Triethylamine (0.04 mol) was then added and the mixture was stirred for 10 min. 4-Chlorobenzoyl chloride (0.04 mol) was added and the reaction mixture was stirred at room temperature for about 2 hr. A white precipitate of triethylammonium chloride was produced, which was filtered and the filtrate was evaporated to obtain the crude product, crystallization from ethylmethylketone gave colourless block-like crystals of the unexpected title adduct (yield: 88%).

S3. Refinement

H atoms were positioned geometrically and treated as riding on their parent atoms and refined with, C—H distances of 0.93–0.98 Å, an O—H distance of 0.82 Å, with $U_{iso}(H)=1.5 U_{eq}(C-methyl)$, $U_{iso}(H)=1.2U_{eq}(C,O)$ for other H atoms. The value of the absolute structure parameter (Parsons *et al.*, 2013), although of no relevance for the present structure was determined as 0.03 (3) using 583 quotients [(I+)-(I-)]/[(I+)+(I-)].

Figure 1

The molecular structure of the major (73%) 4-hydroxypiperidin-1-yl substituted component of the title adduct, showing atom numbering, with displacement ellipsoids drawn at the 30% probability level.

Figure 2

The molecular structure of the minor (25%) piperidin-1-yl substituted component of the title adduct, showing atom numbering, with displacement ellipsoids drawn at the 30% probability level. The bonds for the minor-occupancy piperidinyl group are shown as dashed lines

Figure 3

The packing of the molecules in the crystal structure. The dashed lines indicate the O—H…O hydrogen bonds and weak inter-chain C—H…Cl interactions.

(4-Chlorophenyl)(4-hydroxypiperidin-1-yl)methanone-(4-chlorophenyl)(piperidin-1-yl)methanone (0.75/0.25)

Crystal data

 $\begin{array}{l} 0.75 \text{C}_{12} \text{H}_{14} \text{CINO}_2 \cdot 0.25 \text{C}_{12} \text{H}_{14} \text{CINO} \\ M_r = 235.69 \\ \text{Orthorhombic, } Pca2_1 \\ a = 24.312 \ (4) \text{ Å} \\ b = 6.1628 \ (10) \text{ Å} \\ c = 7.9654 \ (11) \text{ Å} \\ V = 1193.5 \ (3) \text{ Å}^3 \\ Z = 4 \\ F(000) = 496 \end{array}$

 $D_x = 1.312 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3452 reflections $\theta = 2.8-23.2^{\circ}$ $\mu = 0.30 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.25 \times 0.20 \times 0.20 \text{ mm}$ Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: Sealed tube ω and φ scan Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2004) $T_{\min} = 0.930, T_{\max} = 0.941$ 17321 measured reflections	2356 independent reflections 1539 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 26.1^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -30 \rightarrow 30$ $k = -7 \rightarrow 7$ $l = -9 \rightarrow 9$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.144$ S = 1.02 2356 reflections 200 parameters 121 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0664P)^2 + 0.3379P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.31$ e Å ⁻³ $\Delta\rho_{min} = -0.22$ e Å ⁻³ Absolute structure: Flack <i>x</i> determined using 583 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013) Absolute structure parameter: 0.03 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.73230 (19)	0.1884 (8)	0.7580 (6)	0.0743 (13)	
C2	0.7397 (2)	0.3762 (10)	0.6747 (8)	0.0909 (16)	
H2	0.7748	0.4191	0.6416	0.109*	
C3	0.6943 (2)	0.5050 (9)	0.6390 (7)	0.0832 (15)	
Н3	0.6991	0.6353	0.5819	0.100*	
C4	0.64254 (19)	0.4423 (8)	0.6867 (5)	0.0656 (12)	
C5	0.63637 (19)	0.2510 (8)	0.7729 (8)	0.0811 (14)	
Н5	0.6016	0.2076	0.8082	0.097*	
C6	0.6815 (2)	0.1230 (8)	0.8074 (8)	0.0890 (16)	
H6	0.6771	-0.0076	0.8643	0.107*	
C7	0.5944 (2)	0.5838 (9)	0.6575 (6)	0.0773 (14)	
C8	0.5243 (3)	0.7357 (12)	0.4730 (9)	0.0749 (18)	0.75
H8A	0.5155	0.8165	0.5739	0.090*	0.75
H8B	0.4918	0.6565	0.4381	0.090*	0.75
C9	0.5419 (3)	0.8877 (11)	0.3372 (9)	0.0681 (17)	0.75
H9A	0.5727	0.9741	0.3766	0.082*	0.75
H9B	0.5119	0.9855	0.3109	0.082*	0.75
C10	0.5587 (3)	0.7668 (13)	0.1804 (9)	0.0711 (19)	0.75

H10	0.5263	0.6897	0.1375	0.085*	0.75
C11	0.6028 (3)	0.5988 (12)	0.2233 (8)	0.0690 (16)	0.75
H11A	0.6102	0.5109	0.1249	0.083*	0.75
H11B	0.6365	0.6732	0.2537	0.083*	0.75
C12	0.5859 (3)	0.4567 (10)	0.3627 (8)	0.0640 (14)	0.75
H12A	0.5554	0.3660	0.3269	0.077*	0.75
H12B	0.6162	0.3627	0.3935	0.077*	0.75
N1	0.5694 (2)	0.5841 (9)	0.5067 (6)	0.0659 (14)	0.75
O2	0.5746 (2)	0.8993 (9)	0.0685 (7)	0.0870 (14)	0.75
H2A	0.5924	0.8339	-0.0030	0.105 (17)*	0.75
C8′	0.5628 (8)	0.863 (3)	0.454 (3)	0.069 (4)	0.25
H8′1	0.5850	0.9758	0.4031	0.083*	0.25
H8′2	0.5466	0.9203	0.5556	0.083*	0.25
C9′	0.5169 (8)	0.795 (4)	0.331 (2)	0.072 (5)	0.25
H9′1	0.4939	0.9210	0.3107	0.087*	0.25
H9′2	0.4942	0.6872	0.3865	0.087*	0.25
C10′	0.5350 (9)	0.703 (4)	0.160 (2)	0.077 (6)	0.25
H10A	0.5559	0.8073	0.0953	0.093*	0.25
H10B	0.5040	0.6510	0.0946	0.093*	0.25
C11′	0.5714 (8)	0.515 (3)	0.226 (3)	0.069 (5)	0.25
H11C	0.5475	0.4128	0.2838	0.082*	0.25
H11D	0.5864	0.4396	0.1295	0.082*	0.25
C12′	0.6196 (7)	0.568 (3)	0.345 (2)	0.057 (4)	0.25
H12C	0.6383	0.4350	0.3775	0.069*	0.25
H12D	0.6458	0.6610	0.2887	0.069*	0.25
N1′	0.5977 (6)	0.677 (2)	0.4953 (15)	0.053 (3)	0.25
O1	0.57385 (17)	0.6828 (7)	0.7749 (5)	0.1119 (14)	
C11	0.78823 (7)	0.0274 (3)	0.7998 (3)	0.1274 (8)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.067 (3)	0.080(3)	0.076 (3)	0.011 (2)	-0.016 (2)	-0.004 (3)
C2	0.070 (3)	0.098 (4)	0.104 (4)	-0.010 (3)	0.001 (3)	0.003 (4)
C3	0.091 (4)	0.076 (3)	0.083 (4)	-0.003 (3)	-0.002 (3)	0.018 (3)
C4	0.073 (3)	0.071 (3)	0.053 (2)	0.012 (2)	0.002 (2)	0.010 (2)
C5	0.066 (3)	0.080(3)	0.097 (3)	0.007 (3)	0.011 (3)	0.019 (3)
C6	0.092 (4)	0.072 (3)	0.103 (4)	0.017 (3)	0.001 (3)	0.023 (3)
C7	0.090 (3)	0.082 (3)	0.061 (2)	0.029 (3)	0.005 (2)	0.006 (2)
C8	0.074 (4)	0.076 (4)	0.075 (4)	0.031 (3)	0.005 (3)	0.011 (3)
C9	0.080 (5)	0.057 (3)	0.068 (4)	0.018 (3)	-0.012 (3)	0.004 (3)
C10	0.067 (4)	0.081 (4)	0.066 (3)	0.020 (3)	-0.018 (3)	-0.003 (3)
C11	0.067 (4)	0.082 (4)	0.058 (4)	0.020 (3)	-0.004 (3)	-0.004 (3)
C12	0.063 (3)	0.056 (3)	0.074 (3)	0.017 (3)	-0.010 (3)	-0.008 (3)
N1	0.072 (3)	0.064 (3)	0.062 (3)	0.023 (3)	-0.001 (2)	0.006 (2)
O2	0.097 (4)	0.088 (3)	0.076 (3)	0.017 (3)	0.004 (3)	0.004 (3)
C8′	0.079 (9)	0.064 (8)	0.064 (9)	0.032 (7)	-0.003 (8)	-0.001 (6)
C9′	0.067 (9)	0.080 (12)	0.071 (9)	0.034 (8)	-0.001 (7)	-0.007 (9)

supporting information

C10′	0.057 (11)	0.085 (12)	0.090 (9)	0.012 (9)	0.012 (7)	-0.020 (8)
C11′	0.054 (8)	0.079 (10)	0.073 (9)	0.006 (7)	0.002 (7)	-0.023 (7)
C12′	0.050 (7)	0.059 (9)	0.062 (7)	0.009 (7)	0.001 (6)	-0.008 (6)
N1′	0.051 (7)	0.052 (6)	0.055 (4)	0.012 (5)	-0.004 (4)	-0.004 (4)
01	0.121 (3)	0.147 (3)	0.067 (2)	0.057 (3)	0.008 (2)	-0.004 (3)
Cl1	0.0952 (10)	0.1290 (13)	0.1579 (17)	0.0462 (9)	-0.0304 (12)	-0.0134 (14)

Geometric parameters (Å, °)

C1—C2	1.346 (7)	C10—H10	0.9800	
C1—C6	1.358 (7)	C11—C12	1.472 (9)	
C1—C11	1.716 (5)	C11—H11A	0.9700	
C2—C3	1.390 (8)	C11—H11B	0.9700	
С2—Н2	0.9300	C12—N1	1.447 (8)	
C3—C4	1.370 (7)	C12—H12A	0.9700	
С3—Н3	0.9300	C12—H12B	0.9700	
C4—C5	1.373 (7)	O2—H2A	0.8200	
C4—C7	1.478 (7)	C8′—N1′	1.460 (16)	
C5—C6	1.378 (6)	C8′—C9′	1.54 (2)	
С5—Н5	0.9300	C8′—H8′1	0.9700	
С6—Н6	0.9300	C8′—H8′2	0.9700	
C7—O1	1.223 (6)	C9′—C10′	1.540 (12)	
C7—N1	1.346 (7)	С9′—Н9′1	0.9700	
C7—N1′	1.417 (13)	С9′—Н9′2	0.9700	
C8—N1	1.465 (7)	C10′—C11′	1.552 (12)	
С8—С9	1.494 (9)	C10′—H10A	0.9700	
C8—H8A	0.9700	C10′—H10B	0.9700	
C8—H8B	0.9700	C11′—C12′	1.542 (19)	
C9—C10	1.510 (9)	C11′—H11C	0.9700	
С9—Н9А	0.9700	C11'—H11D	0.9700	
С9—Н9В	0.9700	C12′—N1′	1.474 (16)	
C10—O2	1.269 (9)	C12′—H12C	0.9700	
C10—C11	1.529 (8)	C12'—H12D	0.9700	
C2-C1-C6	121.4 (5)	C10—C11—H11B	109.2	
C2-C1-C11	119.1 (4)	H11A—C11—H11B	107.9	
C6-C1-Cl1	119.5 (4)	N1—C12—C11	110.6 (5)	
C1—C2—C3	119.0 (5)	N1—C12—H12A	109.5	
С1—С2—Н2	120.5	C11—C12—H12A	109.5	
С3—С2—Н2	120.5	N1—C12—H12B	109.5	
C4—C3—C2	120.8 (5)	C11—C12—H12B	109.5	
C4—C3—H3	119.6	H12A—C12—H12B	108.1	
С2—С3—Н3	119.6	C7—N1—C12	125.6 (5)	
C3—C4—C5	118.8 (4)	C7—N1—C8	120.2 (5)	
C3—C4—C7	121.1 (4)	C12—N1—C8	114.1 (5)	
C5—C4—C7	119.9 (4)	C10—O2—H2A	109.5	
C4—C5—C6	120.3 (5)	N1'-C8'-C9'	110.8 (15)	
С4—С5—Н5	119.9	N1′—C8′—H8′1	109.5	

С6—С5—Н5	119.9	C9'—C8'—H8'1	109.5
C1—C6—C5	119.7 (5)	N1′—C8′—H8′2	109.5
С1—С6—Н6	120.1	С9'—С8'—Н8'2	109.5
С5—С6—Н6	120.1	H8'1—C8'—H8'2	108.1
O1C7N1	119.8 (5)	C8′—C9′—C10′	116.9 (17)
O1—C7—N1′	121.2 (6)	C8′—C9′—H9′1	108.1
01	119.8 (4)	С10'—С9'—Н9'1	108.1
N1-C7-C4	119.9 (5)	C8'—C9'—H9'2	108.1
N1′—C7—C4	109.8 (6)	C10'-C9'-H9'2	108.1
N1-C8-C9	108 5 (6)	H9'1—C9'—H9'2	107.3
N1-C8-H8A	110.0	C9'-C10'-C11'	98.0 (15)
C9-C8-H8A	110.0	C9'-C10'-H10A	112.2
N1-C8-H8B	110.0	C11'-C10'-H10A	112.2
C9 - C8 - H8B	110.0	C_{10} C_{10} H_{10B}	112.2
	108 /	$C_{11'}$ $C_{10'}$ H10B	112.2
$C_8 = C_9 = C_{10}$	111.5 (6)	$H_{10A} = C_{10'} = H_{10B}$	112.2
	100.2	$\frac{110}{10} - \frac{110}{10} - \frac{110}{10}$	109.8 118.0(17)
$C_{0} = C_{0} = H_{0}$	109.5	C12 - C11 - C10	110.9 (17)
$C_{10} - C_{9} - H_{9} A$	109.5	C12 - C11 - H11C	107.6
C_{0}	109.5		107.6
C10 - C9 - H9B	109.5	CI2 — CI1 — HIID	107.6
H9A—C9—H9B	108.0	CIO-CIT-HIID	107.6
02 - C10 - C9	110.2 (6)	HIIC—CIII—HIID	107.0
02	112.2 (6)	NI' - CI2' - CII'	108.7 (13)
C9—C10—C11	109.8 (5)	N1′—C12′—H12C	109.9
O2—C10—H10	108.2	C11'—C12'—H12C	109.9
С9—С10—Н10	108.2	N1′—C12′—H12D	109.9
C11—C10—H10	108.2	C11'—C12'—H12D	109.9
C12—C11—C10	112.0 (6)	H12C—C12′—H12D	108.3
C12—C11—H11A	109.2	C7—N1′—C8′	119.5 (12)
C10—C11—H11A	109.2	C7—N1′—C12′	125.0 (12)
C12—C11—H11B	109.2	C8'—N1'—C12'	112.7 (13)
C6—C1—C2—C3	0.0 (8)	C10-C11-C12-N1	-53.4 (9)
Cl1—C1—C2—C3	179.1 (5)	O1—C7—N1—C12	-173.2 (6)
C1—C2—C3—C4	-0.3 (8)	C4—C7—N1—C12	-1.0 (10)
C2—C3—C4—C5	0.9 (8)	O1—C7—N1—C8	12.3 (10)
C2—C3—C4—C7	176.6 (5)	C4—C7—N1—C8	-175.4 (6)
C3—C4—C5—C6	-1.3 (8)	C11—C12—N1—C7	-116.7 (7)
C7—C4—C5—C6	-177.0 (5)	C11—C12—N1—C8	58.0 (9)
C2-C1-C6-C5	-0.3 (9)	C9—C8—N1—C7	115.9 (7)
Cl1—C1—C6—C5	-179.5 (5)	C9—C8—N1—C12	-59.2 (9)
C4—C5—C6—C1	1.0 (9)	N1′—C8′—C9′—C10′	-60(3)
C3—C4—C7—O1	-104.8 (7)	C8′—C9′—C10′—C11′	56 (2)
C5—C4—C7—O1	70.8 (7)	C9′—C10′—C11′—C12′	-57 (2)
C3—C4—C7—N1	82.9 (7)	C10'-C11'-C12'-N1'	59 (2)
C5-C4-C7-N1	-101.4 (6)	01—C7—N1′—C8′	-18.1(18)
C3—C4—C7—N1′	42.4 (9)	C4—C7—N1′—C8′	-164.8(13)
C5-C4-C7-N1'	-142.0(8)	01-C7-N1'-C12'	-177.3(12)
, .,.	(0)		·····(•=)

supporting information

N1—C8—C9—C10	56.9 (9)	C4—C7—N1′—C12′	36.0 (17)
C8—C9—C10—O2	-178.5 (7)	C9′—C8′—N1′—C7	-108.1 (19)
C8—C9—C10—C11	-54.4 (9)	C9'—C8'—N1'—C12'	54 (2)
O2-C10-C11-C12	175.3 (7)	C11'—C12'—N1'—C7	108.5 (19)
C9—C10—C11—C12	52.4 (9)	C11'—C12'—N1'—C8'	-52 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O2—H2A···O1 ⁱ	0.82	2.05	2.693 (7)	135
C12'—H12D····C11 ⁱⁱ	0.97	2.77	3.63 (2)	148

Symmetry codes: (i) *x*, *y*, *z*-1; (ii) –*x*+3/2, *y*+1, *z*-1/2.