

Received 7 February 2017 Accepted 9 February 2017

Edited by P. C. Healy, Griffith University, Australia

Keywords: crystal structure; hydrogen bond; dihedral angle; coplanar; supramolecular interaction.

CCDC reference: 1531929

Supporting information: this article has supporting information at journals.iucr.org/e

Supramolecular hydrogen-bonding patterns in a 1:1 co-crystal of the N(7)—H tautomeric form of N^6 -benzoyladenine with 4-hydroxybenzoic acid

Robert Swinton Darious,^a Packianathan Thomas Muthiah^{a*} and Franc Perdih^b

^aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India, and ^bFaculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, PO Box 537, SI-1000 Ljubljana, Slovenia. *Correspondence e-mail: tommtrichy@yahoo.co.in

The asymmetric unit of the title co-crystal, $C_{12}H_9N_5O\cdot C_7H_6O_3$, contains one molecule of N^6 -benzoyladenine (BA) and one molecule of 4-hydroxybenzoic acid (HBA). The N^6 -benzoyladenine (BA) has an N(7)-H tautomeric form with nonprotonated N-1 and N-3 atoms. This tautomeric form is stabilized by a typical intramolecular N-H···O hydrogen bond between the carbonyl (C=O) group and the N(7)-H hydrogen on the Hoogsteen face of the purine ring, forming a graph-set S(7) ring motif. The primary robust $R_2^2(8)$ ring motif is formed in the Watson-Crick face *via* N-H···O and O-H···N hydrogen bonds (involving N1, N6-H and the carboxyl group of HBA). Weak interactions, such as, C-H··· π and π - π are also observed in this crystal structure.

1. Chemical context

Adenine is one of the major nucleobases and some of its N^6 -derivatives have plant hormone (kinetin) (Tr). They also offer a variety of hydrogen-bonding donor and acceptor sites (McHugh & Erxleben, 2011; Imaz *et al.*, 2011). 4-Hydroxybenzoic acid is also a promising hydrogen-bond donor with the ability to form co-crystals with other organic molecules (Vishweshwar *et al.*, 2003). It is used as an antimicrobial paraben (Barker & Frost, 2001). The present study investigates co-crystal formation between N^6 - benzoyladenine and 4-hydroxybenzoic acid.

2. Structural commentary

In the title co-crystal (I), the asymmetric unit contains one N^6 -benzoyladenine (BA) molecule and one 4-hydroxybenzoic acid (HBA) molecule (Fig. 1). The bond angle at N7 [C8-N7-C5 = 106.93 (17)°] is wider than at N9 [C8-N9-C4 =

research communications

Table 1		
Hydrogen-bond	geometry	(Å, °).

Cg3 is the centroid of the C11-C16 phenyl ring.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O2-H2A\cdots N1$	0.82	1.92	2.737 (2)	172
$O4-H4\cdots N9^i$	0.82	1.98	2.784 (2)	168
N6-H6···O3	0.86	1.94	2.778 (2)	166
$N7 - H7 \cdots O1$	0.86	2.14	2.726 (2)	126
$N7-H7\cdots O1^{ii}$	0.86	2.36	3.164 (2)	155
$C8-H8\cdots Cg3^{ii}$	0.93	2.77	3.646 (2)	157

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 2, -z + 1.

104.19 (16)°]. In addition, the C8–N7 bond [1.343 (2)Å] is longer than C8-N9 [1.319 (3) Å]. These values agree with those reported earlier for the crystal structure of N^6 benzoyladenine (Raghunathan & Pattabhi, 1981). In the title co-crystal, the N^6 -benzovladenine also exists in the N(7)-H tautomeric form with non-protonated N1, N3 and N9 atoms. In the crystal structures of N^6 -benzoyladenine (Raghunathan & Pattabhi, 1981), N⁶-benzoyladenine-3-hydroxypyridinium-2-carboxylate (1:1) and N^6 -benzoyl adenine-DL-tartaric acid (1:1) (Karthikeyan et al., 2015), N⁶-benzoyladeninium nitrate (1:1) (Karthikevan *et al.*, 2016), N^6 -benzovl adenine-adipic acid (1:0.5) (Swinton Darious et al., 2016) and the title compound (I), the N^6 -substituent is distal to the N1 and syn to the adenine nitrogen atom N7. This may be due to the participation of the N7 atom in N7-H7...O1A intramolecular hydrogen bond (Table 1) with an S(7) ring motif in the Hoogsteen face. In contrast, it may be noted that in the crystal structure of N^6 -benzyladenine, (where no intramolecular hydrogen bond is present) the N^6 -substituent is syn to N1 and distal to N7 and the adenine moiety exists in the N(9)-H tautomeric form (Raghunathan et al., 1983). The dihedral angle between the benzene ring and the carboxyl group of HBA is $1.5 (3)^{\circ}$, indicating that the benzene ring and the carboxyl group are nearly coplanar. A comparison of dihedral angles and the C6-N6-C10-C11 torsion angle reported for various N^6 -benzoyladenine-containing crystal structures is given in Table 2.

3. Supramolecular features

The robust $R_2^2(8)$ ring motif is formed in the Watson-Crick face (N1 and N6 atoms) via N-H···O and O-H···N

Figure 1

The asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines represent hydrogen bonds.

hydrogen bonds involving the carboxyl group of HBA. The N7 atom is a bifurcated donor and the carbonyl oxygen atom acts as a double acceptor for the N-H···O hydrogen bonds. Inversion-related BA molecules form dimers through an array of hydrogen bonds, generating ring motifs, and these dimers are doubly bridged by inversion-related HBA molecules (Fig. 2). A large $R_6^6(32)$ supramolecular ring is formed along the *c*-axis direction. A weak C8-H8··· π interaction is also present. Further consolidation of the structure is provided by homo and hetero π - π stacking interactions $[Cg1\cdots Cg5(\frac{1}{2} - x, \frac{1}{2} + y, \frac{3}{2} - z) = 3.5580 (13) \text{ Å}, Cg2\cdots Cg5(\frac{1}{2} - x, -\frac{1}{2} + y, \frac{3}{2} - z) = 3.6508 (12) \text{ Å}; Cg1, Cg2 and Cg5 are the centroids of the$ imidazole ring, the pyrimidine ring and the benzene ring ofHBA, respectively] (Fig. 3).

4. Database survey

The neutral molecule N^6 -benzoyladenine was first reported by Raghunathan & Pattabhi (1981). Various salts and co-crystals of N^6 -benzoyladenine have also been reported: N^6 -benzoyladenine–3-hydroxypyridinium-2-carboxylate (1:1) and N^6 benzoyladenine–DL-tartaric acid (1:1) (Karthikeyan *et al.*, 2015), N^6 -benzoyladeninium nitrate (1:1) (Karthikeyan *et al.*, 2015), N^6 -benzoyladenine–adipic acid (1:0.5) (Swinton Darious *et al.*, 2016). Similarly, various co-crystals of HBA

Table 2

Comparison of dihedral angles and torsion angles (°) for various N^6 -benzoyladenine-containing crystal structures.

Pyrimidine ring: N1/C2/N3/C4–C6; imidazole ring of adenine: C4/C5/N7/C8/N9; purine ring system: N1/C2/N3/C4–C6/N7/C8/N9; benzene ring: C11–C16; amide: N6/H6/C10/O1.

Compound	pyrimidine/imidazole	purine/benzene	purine/amide	benzene/amide	C6-N6-C10-C11
N^6 -benzoyladenine–DL-tartaric acid ^{<i>a</i>}	2.26 (10)	9.77 (8)	2.93 (18)	11.35 (9)	-179.08 (17)
N^6 -benzoyladenine–3-hydroxypridinium-2-carboxylate ^{<i>a</i>}	3.00 (9)	0.94 (8)	21.20 (17)	21.45 (18)	-176.24 (16)
N^6 -benzoyladeninium nitrate ^b	1.34 (14)	52.25 (12)	23.7 (2)	29.2 (2)	-168.8(2)
N^6 -benzoyladenine–adipic acid ^c	0.33 (8)	26.71 (7)	10.8 (7)	23.0 (7)	173.08 (14)
N ⁶ -benzoyladenine-4-hydroxybenzoic acid ^d	0.24 (12)	70.80 (11)	11.71 (19)	59.4 (2)	-177.91 (18)

References: (a) Karthikeyan et al. (2015); (b) Karthikeyan et al. (2016); (c) Swinton Darious et al. (2016); (d) this study.

Figure 2

The formation of a supramolecular three-dimensional large ring structure in the title compound.

have been reported: 2-amino-4,6-dimethylpyrimidine–4-hydroxybenzoic acid (Balasubramani *et al.*, 2006), 4-hydroxybenzoic acid–1*H*-imidazole (Wang *et al.*, 2009), 2-amino-5bromopyridine–4-hydroxybenzoic acid (Quah *et al.*, 2010) and 4,6-dimethoxy-2-(methylsulfanyl)-pyrimidine–4-hydroxybenzoic acid (Thanigaimani *et al.*, 2012).

5. Synthesis and crystallization

The title co-crystal was prepared by mixing a hot ethanol solution of N^6 -benzoyladenine (30 mg) and 4-hydroxybenzoic acid (35 mg) in an equimolar ratio in a total volume of 30 mL. The mixture was warmed over a water bath for 30 min, filtered, and left aside for a few days. Colourless plate-shaped crystals were collected from the mother solution following slow cooling at room temperature.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were readily located in difference-Fourier maps and were subsequently treated as riding atoms in geometrically idealized positions,

Figure 3 A view of the homo/hetero-stacking interactions in the title compound.

with C-H = 0.93, N-H = 0.86 and O-H = 0.82 Å, and with $U_{iso}(H) = kU_{eq}(C,N,O)$, where k = 1.5 for hydroxy and 1.2 for all other H atoms.

Acknowledgements

RSD thanks the UGC–BSR India for the award of an RFSMS. PTM is thankful to the UGC, New Delhi, for a UGC–BSR one-time grant to Faculty. FP thanks the Slovenian Research Agency for financial support (P1–0230-0175), as well as the EN–FIST Centre of Excellence, Ljubljana, Slovenia, for the use of the SuperNova diffractometer.

Table 3Experimental details.

-	
Crystal data	
Chemical formula	$C_{12}H_9N_5O \cdot C_7H_6O_3$
M _r	377.36
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	293
<i>a</i> , <i>b</i> , <i>c</i> (Å)	14.7579 (5), 6.7930 (3), 17.2873 (5)
β (°)	91.287 (3)
$V(Å^3)$	1732.62 (11)
Z	4
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	0.88
Crystal size (mm)	$0.20\times0.15\times0.03$
Data collection	
Diffractometer	Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2013)
T	0.597. 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	6790, 3284, 2457
R _{int}	0.028
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.610
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.053, 0.161, 1.02
No. of reflections	3284
No. of parameters	256
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.44, -0.30

Computer programs: CrysAlis PRO (Agilent, 2013), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

References

- Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.
- Balasubramani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, 02907–02909.
- Barker, J. L. & Frost, J. W. (2001). Biotechnol. Bioeng. 76, 376-390.
- Imaz, I., Rubio-Martínez, M., An, J., Solé-Font, I., Rosi, N. L. & Maspoch, D. (2011). *Chem. Commun.* 47, 7287–7302.
- Karthikeyan, A., Jeeva Jasmine, N., Thomas Muthiah, P. & Perdih, F. (2016). Acta Cryst. E72, 140–143.
- Karthikeyan, A., Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2015). *Acta Cryst.* C71, 985–990.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

- McHugh, C. & Erxleben, A. (2011). Cryst. Growth Des. 11, 5096–5104.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
- Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, 01935–01936.
- Raghunathan, S. & Pattabhi, V. (1981). Acta Cryst. B37, 1670-1673.
- Raghunathan, S., Sinha, B. K., Pattabhi, V. & Gabe, E. J. (1983). Acta Cryst. C39, 1545–1547.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2016). Acta Cryst. E72, 805–808.
- Thanigaimani, K., Farhadikoutenaei, A., Arshad, S., Razak, I. A. & Balasubramani, K. (2012). *Acta Cryst.* E68, 03415–03416.
- Vishweshwar, P., Nangia, A. & Lynch, V. M. (2003). *CrystEngComm*, **5**, 164–168.
- Wang, W., Liu, B.-W., Liu, J. & Ren, R. (2009). Acta Cryst. E65, 01205.

supporting information

Acta Cryst. (2017). E73, 383-386 [https://doi.org/10.1107/S2056989017002171]

Supramolecular hydrogen-bonding patterns in a 1:1 co-crystal of the N(7)—H tautomeric form of *N*⁶-benzoyladenine with 4-hydroxybenzoic acid

Robert Swinton Darious, Packianathan Thomas Muthiah and Franc Perdih

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2013); cell refinement: *CrysAlis PRO* (Agilent, 2013); data reduction: *CrysAlis PRO* (Agilent, 2013); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *PLATON* (Spek, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *PLATON* (Spek, 2009).

N⁶-Benzoyladenine–4-hydroxybenzoic acid (1/1)

Crystal data

 $C_{12}H_9N_5O \cdot C_7H_6O_3$ $M_r = 377.36$ Monoclinic, $P2_1/n$ a = 14.7579 (5) Å b = 6.7930 (3) Å c = 17.2873 (5) Å $\beta = 91.287$ (3)° V = 1732.62 (11) Å³ Z = 4

Data collection

Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer Radiation source: SuperNova (Cu) X-ray Source Detector resolution: 10.4933 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) $T_{\min} = 0.597, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.161$ S = 1.023284 reflections 256 parameters 0 restraints F(000) = 784 $D_x = 1.447 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 2120 reflections $\theta = 3.9-74.6^{\circ}$ $\mu = 0.88 \text{ mm}^{-1}$ T = 293 KPlate, colorless $0.20 \times 0.15 \times 0.03 \text{ mm}$

6790 measured reflections 3284 independent reflections 2457 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 70.1^\circ, \theta_{min} = 3.9^\circ$ $h = -12 \rightarrow 17$ $k = -8 \rightarrow 7$ $l = -19 \rightarrow 21$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0934P)^2 + 0.2078P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.44$ e Å⁻³ $\Delta\rho_{min} = -0.30$ e Å⁻³

Extinction correction: SHELXL2014 (Sheldrick, 2015), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0007 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.42682 (11)	1.0650 (3)	0.54392 (9)	0.0705 (6)
N1	0.39444 (11)	0.9505 (3)	0.78054 (9)	0.0441 (4)
N3	0.54449 (12)	0.9582 (3)	0.83693 (10)	0.0507 (5)
N6	0.35504 (10)	0.9706 (2)	0.65248 (9)	0.0398 (4)
H6	0.3024	0.9381	0.6686	0.048*
N7	0.57481 (11)	0.9980 (3)	0.63742 (10)	0.0428 (4)
H7	0.5598	1.0053	0.5892	0.051*
N9	0.66312 (11)	0.9887 (3)	0.74394 (11)	0.0466 (4)
C2	0.45586 (14)	0.9466 (4)	0.84004 (12)	0.0522 (6)
H2	0.4322	0.9340	0.8892	0.063*
C4	0.57400 (13)	0.9747 (3)	0.76459 (12)	0.0402 (4)
C6	0.42445 (13)	0.9683 (3)	0.70853 (11)	0.0362 (4)
C5	0.51711 (12)	0.9806 (3)	0.69794 (11)	0.0357 (4)
C8	0.65938 (13)	1.0017 (3)	0.66780 (13)	0.0473 (5)
H8	0.7107	1.0125	0.6378	0.057*
C10	0.35828 (13)	1.0163 (3)	0.57653 (12)	0.0430 (5)
C11	0.26848 (13)	1.0088 (3)	0.53510 (11)	0.0448 (5)
C12	0.21996 (19)	0.8373 (5)	0.53086 (16)	0.0774 (8)
H12	0.2415	0.7252	0.5561	0.093*
C13	0.1393 (2)	0.8303 (7)	0.4892 (2)	0.1083 (14)
H13	0.1075	0.7124	0.4847	0.130*
C14	0.1062 (2)	0.9956 (7)	0.45466 (18)	0.0950 (13)
H14	0.0510	0.9908	0.4277	0.114*
C15	0.15326 (18)	1.1700 (6)	0.45909 (15)	0.0828 (10)
H15	0.1297	1.2828	0.4356	0.099*
C16	0.23613 (16)	1.1771 (4)	0.49876 (14)	0.0621 (6)
H16	0.2694	1.2933	0.5009	0.075*
O2	0.22103 (10)	0.9691 (3)	0.83296 (9)	0.0563 (4)
H2A	0.2718	0.9530	0.8157	0.084*
O3	0.18126 (10)	0.9349 (4)	0.70936 (9)	0.0734 (6)
O4	-0.20332 (10)	1.0061 (3)	0.86009 (10)	0.0608 (5)
H4	-0.2373	0.9926	0.8223	0.091*
C17	0.15996 (13)	0.9583 (3)	0.77584 (11)	0.0409 (4)
C18	0.06559 (12)	0.9737 (3)	0.79947 (11)	0.0366 (4)
C19	0.04097 (14)	1.0009 (3)	0.87579 (11)	0.0435 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H19	0.0857	1.0112	0.9143	0.052*	
C20	-0.04879 (14)	1.0128 (4)	0.89506 (12)	0.0499 (5)	
H20	-0.0643	1.0314	0.9464	0.060*	
C21	-0.11692 (13)	0.9970 (3)	0.83780 (12)	0.0425 (5)	
C22	-0.09232 (13)	0.9722 (3)	0.76111 (12)	0.0437 (5)	
H22	-0.1368	0.9637	0.7223	0.052*	
C23	-0.00281 (13)	0.9602 (3)	0.74278 (12)	0.0433 (5)	
H23	0.0127	0.9427	0.6914	0.052*	

Atomic displacement parameters $(Å^2)$)
--	---

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0375 (9)	0.1294 (16)	0.0446 (8)	-0.0059 (9)	-0.0021 (6)	0.0179 (9)
N1	0.0314 (8)	0.0663 (11)	0.0343 (8)	0.0027 (7)	-0.0060 (6)	-0.0018 (7)
N3	0.0361 (9)	0.0755 (12)	0.0400 (9)	0.0026 (8)	-0.0107 (7)	-0.0030 (8)
N6	0.0240 (8)	0.0597 (10)	0.0353 (8)	-0.0021 (6)	-0.0076 (6)	0.0019 (7)
N7	0.0287 (8)	0.0592 (10)	0.0403 (9)	-0.0002 (7)	-0.0034 (6)	0.0011 (7)
N9	0.0264 (8)	0.0624 (11)	0.0503 (10)	0.0015 (7)	-0.0087 (7)	-0.0032 (8)
C2	0.0379 (11)	0.0841 (16)	0.0344 (9)	0.0035 (10)	-0.0064 (8)	-0.0016 (10)
C4	0.0302 (10)	0.0476 (10)	0.0424 (10)	0.0019 (7)	-0.0097 (7)	-0.0034 (8)
C6	0.0296 (9)	0.0430 (10)	0.0355 (9)	0.0010 (7)	-0.0078 (7)	-0.0021 (7)
C5	0.0302 (9)	0.0401 (9)	0.0365 (9)	0.0011 (7)	-0.0061 (7)	-0.0012 (7)
C8	0.0259 (10)	0.0649 (13)	0.0511 (12)	0.0005 (8)	-0.0012 (8)	0.0007 (10)
C10	0.0301 (10)	0.0615 (12)	0.0372 (10)	0.0017 (8)	-0.0048 (7)	0.0011 (9)
C11	0.0311 (10)	0.0710 (13)	0.0320 (9)	0.0012 (9)	-0.0061 (7)	0.0023 (9)
C12	0.0706 (17)	0.0902 (19)	0.0699 (16)	-0.0204 (15)	-0.0324 (13)	0.0151 (15)
C13	0.086 (2)	0.150 (3)	0.086 (2)	-0.053 (2)	-0.0499 (18)	0.030 (2)
C14	0.0481 (15)	0.182 (4)	0.0536 (15)	-0.0141 (19)	-0.0213 (12)	0.0164 (19)
C15	0.0563 (15)	0.135 (3)	0.0564 (14)	0.0353 (18)	-0.0098 (11)	0.0172 (17)
C16	0.0517 (13)	0.0784 (16)	0.0558 (12)	0.0135 (12)	-0.0075 (10)	0.0073 (12)
O2	0.0294 (7)	0.0975 (12)	0.0416 (8)	-0.0001 (7)	-0.0052 (6)	-0.0040 (8)
O3	0.0339 (8)	0.1439 (18)	0.0425 (8)	-0.0016 (9)	-0.0009 (6)	-0.0160 (10)
O4	0.0290 (8)	0.1037 (14)	0.0497 (9)	0.0011 (7)	-0.0003 (6)	-0.0057 (9)
C17	0.0317 (10)	0.0510 (11)	0.0398 (10)	-0.0015 (8)	-0.0052 (7)	-0.0014 (8)
C18	0.0308 (10)	0.0403 (9)	0.0383 (9)	-0.0009 (7)	-0.0051 (7)	0.0018 (7)
C19	0.0332 (10)	0.0621 (12)	0.0350 (9)	-0.0004 (8)	-0.0078 (7)	0.0008 (8)
C20	0.0349 (10)	0.0822 (15)	0.0324 (9)	0.0006 (10)	-0.0023 (8)	0.0000 (10)
C21	0.0294 (10)	0.0540 (11)	0.0439 (10)	-0.0002 (8)	-0.0034 (8)	0.0009 (9)
C22	0.0330 (10)	0.0578 (12)	0.0397 (10)	0.0009 (8)	-0.0092 (7)	-0.0036 (9)
C23	0.0346 (10)	0.0602 (12)	0.0349 (9)	0.0014 (8)	-0.0060 (7)	-0.0029 (9)

Geometric parameters (Å, °)

01—C10	1.215 (3)	С13—Н13	0.9300	
N1—C6	1.336 (3)	C14—C15	1.375 (5)	
N1—C2	1.356 (2)	C14—H14	0.9300	
N3—C2	1.313 (3)	C15—C16	1.389 (3)	
N3—C4	1.338 (3)	C15—H15	0.9300	

N6—C10	1.351 (3)	C16—H16	0.9300
N6—C6	1.394 (2)	O2—C17	1.324 (2)
N6—H6	0.8600	O2—H2A	0.8200
N7—C8	1.343 (2)	O3—C17	1.209 (3)
N7—C5	1.369 (3)	O4—C21	1.342 (3)
N7—H7	0.8600	O4—H4	0.8200
N9—C8	1.319 (3)	C17—C18	1.464 (3)
N9—C4	1.374 (3)	C18—C19	1.389 (3)
C2—H2	0.9300	C18—C23	1.394 (2)
C4—C5	1.411 (2)	C19—C20	1.376 (3)
C6—C5	1.386 (3)	C19—H19	0.9300
С8—Н8	0.9300	C20—C21	1.399 (3)
C10-C11	1.493 (3)	C20—H20	0.9300
C11—C12	1.369 (4)	C21—C22	1.393 (3)
C11—C16	1.384 (3)	C22—C23	1.368 (3)
C12—C13	1.379 (3)	C22—H22	0.9300
C12—H12	0.9300	C23—H23	0.9300
C13—C14	1 357 (5)	025 1125	0.9500
	1.557 (5)		
C6-N1-C2	118 60 (18)	C14—C13—H13	120.0
$C_2 = N_3 = C_4$	112 88 (17)	C12—C13—H13	120.0
C10-N6-C6	129 53 (17)	C13 - C14 - C15	120.8(3)
C10-N6-H6	115.2	C13-C14-H14	119.6
C6—N6—H6	115.2	C15-C14-H14	119.6
C8 - N7 - C5	106.93 (17)	C14 - C15 - C16	119.0
C8—N7—H7	126.5	C14 - C15 - H15	119.7 (3)
C5N7H7	126.5	C16-C15-H15	120.2
C_{3} N_{7} N_{7} C_{4}	104 19 (16)	C10 - C15 - C15	110.2
$N_3 C_2 N_1$	104.19(10) 128.1(2)	C11 C16 H16	119.1 (5)
$N_3 = C_2 = H_2$	115.0	C15 C16 H16	120.4
$N_3 = C_2 = H_2$	115.9	C17 O2 H2A	120.4
$N_1 - C_2 - M_2$ $N_3 - C_4 - N_0$	115.9	$C_{1} = 0_{2} = 0_{12}$	109.5
$N_3 = C_4 = N_7$	123.00(17) 124.43(18)	$C_2 I = 04 = 114$ $O_3 C_1 T = O_2$	107.5
N_{3} C_{4} C_{5}	124.43(18) 100.07(18)	03 - 017 - 02	121.90 (18)
$N_{2} = C_{4} = C_{2}$	109.97 (18)	03 - 017 - 018	122.90(17) 115.08(18)
N1 - C6 - N6	113.30(10) 113.25(17)	$C_{10} C_{18} C_{23}$	119.00 (18)
C_{5} C_{6} N_{6}	113.23(17) 128.25(18)	C19 - C18 - C23	110.42(18) 123.06(17)
N7 C5 C6	120.25(10) 137.61(17)	C13 - C18 - C17	125.00(17) 118.53(18)
N7 C5 C4	104.03(16)	C_{23} C_{10} C_{17}	110.33(18) 120.70(18)
$N = C_3 = C_4$	104.95(10) 117.46(18)	C_{20} C_{19} C_{18}	120.79 (10)
C0 - C3 - C4	117.40(10) 112.08(10)	C_{20} C_{19} H_{19}	119.0
$N_{0} = C_{0} = N_{1}$	113.90 (10)	C10 C20 C21	119.0
$N_{7} = C_{8} = H_{8}$	123.0	C19 - C20 - C21	120.3 (2)
$N = C \delta = H \delta$	123.0	C19 - C20 - H20	119.8
O1 = C10 = N0	124.13 (18)	C_{21} $-C_{20}$ $-H_{20}$	117.8
$ \begin{array}{c} UI \longrightarrow UI \\ UI \\$	121.74(18) 114.07(17)	04 - 021 - 022	123.28(18) 117.8(2)
10 - 010 - 011	114.0/(1/)	04 - 021 - 020	11/.8(2)
C12 - C11 - C10	120.3(2)	C_{22} C_{21} C_{20} C_{21}	118.97 (19)
C12 - C11 - C10	120.8 (2)	$C_{23} - C_{22} - C_{21}$	120.10(17)

118.9 (2) 120.1 (3) 119.9 119.9 119.9 (3)	C23—C22—H22 C21—C22—H22 C22—C23—C18 C22—C23—H23 C18—C23—H23	119.9 119.9 121.40 (19) 119.3 119.3
-0.4(4)	N6-C10-C11-C12	-60.8(3)
0.0 (4)	O1—C10—C11—C16	-56.9 (3)
-179.7 (2)	N6-C10-C11-C16	121.2 (2)
0.4 (3)	C16—C11—C12—C13	1.1 (5)
179.9 (2)	C10-C11-C12-C13	-176.8 (3)
-0.2 (2)	C11—C12—C13—C14	-2.4 (6)
0.4 (3)	C12—C13—C14—C15	1.6 (6)
-179.98 (19)	C13—C14—C15—C16	0.6 (5)
168.6 (2)	C12-C11-C16-C15	1.0 (4)
-11.9 (3)	C10-C11-C16-C15	179.0 (2)
-179.9 (2)	C14-C15-C16-C11	-1.9 (4)
0.0 (2)	O3—C17—C18—C19	-179.9 (2)
179.6 (2)	O2—C17—C18—C19	1.0 (3)
0.0 (4)	O3—C17—C18—C23	0.2 (3)
-0.4 (3)	O2—C17—C18—C23	-178.92 (19)
-179.93 (18)	C23-C18-C19-C20	0.5 (3)
179.99 (19)	C17—C18—C19—C20	-179.43 (19)
0.1 (2)	C18—C19—C20—C21	0.2 (3)
0.0 (3)	C19—C20—C21—O4	178.8 (2)
-179.93 (16)	C19—C20—C21—C22	-1.0 (3)
0.2 (2)	O4—C21—C22—C23	-178.7 (2)
-0.2 (2)	C20—C21—C22—C23	1.1 (3)
0.1 (4)	C21—C22—C23—C18	-0.4 (3)
-177.92 (19)	C19—C18—C23—C22	-0.3 (3)
121.1 (3)	C17—C18—C23—C22	179.55 (19)
	118.9 (2) $120.1 (3)$ 119.9 $119.9 (3)$ $-0.4 (4)$ $0.0 (4)$ $-179.7 (2)$ $0.4 (3)$ $179.9 (2)$ $-0.2 (2)$ $0.4 (3)$ $-179.98 (19)$ $168.6 (2)$ $-11.9 (3)$ $-179.9 (2)$ $0.0 (2)$ $179.6 (2)$ $0.0 (4)$ $-0.4 (3)$ $-179.93 (18)$ $179.99 (19)$ $0.1 (2)$ $0.0 (3)$ $-179.93 (16)$ $0.2 (2)$ $-0.2 (2)$ $0.1 (4)$ $-177.92 (19)$ $121.1 (3)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Hydrogen-bond geometry (\mathring{A}, \circ) Cg3 is the centroid of the C11–C16 phenyl ring.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
O2—H2A…N1	0.82	1.92	2.737 (2)	172	
O4—H4…N9 ⁱ	0.82	1.98	2.784 (2)	168	
N6—H6…O3	0.86	1.94	2.778 (2)	166	
N7—H7…O1	0.86	2.14	2.726 (2)	126	
N7—H7···O1 ⁱⁱ	0.86	2.36	3.164 (2)	155	
C8—H8…Cg3 ⁱⁱ	0.93	2.77	3.646 (2)	157	

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+1, -*y*+2, -*z*+1.