COMMUNICATIONS

ISSN 2056-9890

Received 4 February 2017
Accepted 9 February 2017

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; BODIPY; excitation and emission; fluorescence; NMR spectroscopy; solvent dependence.

CCDC reference: 1531986

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\begin{aligned} \text { ACCESS }\end{aligned}$

Crystal structure and solvent-dependent behaviours of 3-amino-1,6-diethyl-2,5,7-trimethyl-4,4-di-phenyl-3a,4a-diaza-4-bora-s-indacene

Lijing Yang, ${ }^{\text {a }}$ Brett Drew, ${ }^{\text {a }}$ Ravi Shekar Yalagala, ${ }^{\text {a }}$ Rameez Chaviwala, ${ }^{\text {a }}$ Razvan Simionescu, ${ }^{\text {a }}$ Alan J. Lough ${ }^{\text {b }}$ and Hongbin Yan ${ }^{\text {a* }}$

${ }^{\text {a D Department of Chemistry, Brock University, } 1812 \text { Sir Isaac Brock Way, St Catharines, Ontario, L2S 3A1, Canada, and }}$
${ }^{\text {b }}$ Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario, M5S 3H6, Canada.
*Correspondence e-mail: alough@chem.utoronto.ca, tyan@brocku.ca

In the title compound (3-amino-4,4-diphenyl-BODIPY), $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{BN}_{3}$, the central six-membered ring has a flattened sofa conformation, with one of the N atoms deviating by 0.142 (4) \AA from the mean plane of the other five atoms, which have an r.m.s. deviation of $0.015 \AA$. The dihedral angle between the two essentially planar outer five-membered rings is $8.0(2)^{\circ}$. In the crystal, molecules are linked via weak $\mathrm{N}-\mathrm{H} \cdots \pi$ interactions, forming chains along [010]. The compound displays solvent-dependent behaviours in both NMR and fluorescence spectroscopy. In the ${ }^{1} \mathrm{H}$ NMR spectra, the aliphatic resonance signals virtually coalesce in solvents such as chloroform, dichloromethane and dibromoethane; however, they are fully resolved in solvents such as dimethyl sulfoxide (DMSO), methanol and toluene. The excitation and fluorescence intensities in chloroform decreased significantly over time, while in DMSO the decrease is not so profound. In toluene, the excitation and fluorescent intensities are not time-dependent. This behaviour is presumably attributed to the assembly of 3 -amino-4,4-diphenyl-BODIPY in solution that leads to the formation of noncovalent structures, while in polar or aromatic solvents, the formation of these assemblies is disrupted, leading to resolution of signals in the NMR spectra.

1. Chemical context

4,4-Difluoro-3a,4a-diaza-4-bora-s-indacene (BODIPY, see Scheme 1), as an attractive fluorophore, has found many applications in material sciences, as sensors and in labelling biomolecules such as proteins, lipids and nucleic acids (Ulrich et al., 2008; Loudet \& Burgess, 2007; Ziessel et al., 2007; Tram et al., 2011; Lu et al., 2014; Bessette \& Hanan, 2014). In our efforts to develop new BODIPY labelling chemistry, BODIPY analogues bearing an amino group, such as 3 -amino-4,4-di-fluoro- and 3-amino-4,4-diphenyl-BODIPY, are being sought. While 3-amino-4,4-difluoro-BODIPY has been synthesized previously (Liras et al., 2007), a unique solvent-dependent behaviour of 3-amino-4,4-diphenyl-BODIPY, but not 3-amino-4,4-difluoro-BODIPY, was observed by NMR. In this regard, the resonance signals of the aliphatic protons are fully resolved in solvents such as DMSO- d_{6}, but coalesced in solvents such as CDCl_{3}. We herein report the solvent-dependent behaviour of 3-amino-4,4-diphenyl-BODIPY analogues as observed in the ${ }^{1} \mathrm{H}$ NMR and in excitation and emission spectroscopy. The crystal structure suggests that the title compound could form noncolvalent assemblies in solvents such as CDCl_{3}, leading to its solvent-dependent behaviours in NMR and fluorescence spectroscopy.

Figure 1
The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probabilty level. H atoms are not shown.

1.1. Synthesis of BODIPY 2b

The presence of an amino group in BODIPY allows for functional-group transformation and potential applications in labelling biomolecules. Towards the synthesis of amino BODIPY, an intriguing chemistry was recently described (Liras et al., 2007). In this chemistry, a one-pot reaction of a substituted pyrrole in the presence of sodium nitrite, acetic acid and acetic anhydride, followed by treatment with boron trifluoride dietherate, led to the formation of a mixture of amino 2a and acetimido BODIPY 3a (see Scheme $2, R=\mathrm{F}$). Following this approach, 3-amino-1,6-diethyl-2,5,7-trimethyl-4,4-diphenyl-3a,4a-diaza-4-bora-s-indacene (BODIPY 2b, see Scheme 2 and Fig. 1) was synthesized in very low yield (typically $<5 \%$), where boron trifluoride diethyl etherate was replaced with diphenylboron bromide (Scheme 2, $R=\mathrm{Ph}$).

Scheme 1

1.2. Solvent-dependent behaviour of BODIPY 2b observed by NMR spectroscopy

The characterization of $\mathbf{2 b}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy yielded intriguing results. While the proton signals in ${ }^{1} \mathrm{H}$ NMR spectra are fully resolved in DMSO- d_{6} (as in Fig. 2f), the

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).
Cg1 and Cg2 are the centroids of the C17-C22 and N2/C6-C9 rings, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H1N $\cdots C g 1$	$0.87(4)$	$3.07(3)$	$3.772(2)$	$139(2)$
N3-H2N $\cdots \operatorname{Cg2}^{\mathrm{i}}$	$0.87(4)$	$2.44(3)$	$3.223(2)$	$150(2)$

Symmetry code: (i) $-x+1, y-\frac{1}{2},-z+1$.
aliphatic protons are completely coalesced in CDCl_{3}. It is also observed that gradual addition of CDCl_{3} to a solution of $\mathbf{2 b}$ in DMSO- d_{6} led to a loss of resolution of the aliphatic protons (Figs. 2b-e).

In deuterated dichloromethane and 1,2-dibromoethane, the ${ }^{1} \mathrm{H}$ NMR spectra are similarly coalesced (data not shown). On the other hand, spectra are resolved in deuterated methanol and toluene (data not shown), despite the poor solubility of $\mathbf{2 b}$ in methanol. These observations prompted us to further investigate the absorption and fluorescent emission behaviour of BODIPY $\mathbf{2 b}$ in solution.

1.3. Solvent-dependent behavior of BODIPY $2 b$ observed by fluorescence spectroscopy

Fig. 3(a) suggests that the fluorescence spectra of $\mathbf{2 b}$ in chloroform, and to some extend in DMSO as well, shows timedependent fluorescent intensities. In contrast, most solvatochromic BODIPY fluorophores that have been reported in the literature often show different maximal emission wavelengths (Baruah et al., 2006; Clemens et al., 2008; Filarowski et al., 2010, 2015; de Rezende et al., 2014), however, those solvatochromic BODIPY dyes do not display a time-dependent change in fluorescent intensity.

2a: $\begin{aligned} R & =\mathrm{F} \\ \mathrm{b}: & R=\mathrm{Ph}\end{aligned}$

3a: $R=\mathrm{F}$
On the other hand, time-dependent spectroscopic changes, in emission intensity, shift of maximal emission wavelength, or absorbance, have been observed for compounds that undergo self-assembly in solution (Gassensmith et al., 2007; Miyatake et al., 2005). Taken together, these observations suggest that BODIPY $\mathbf{2 b}$ shows a tendency to form assembled structures in

Figure 2
${ }^{1} \mathrm{H}$ NMR spectra of BODIPY $\mathbf{2} \mathbf{b}$ in DMSO- d_{6} or mixtures of CDCl_{3} and DMSO- d_{6} in varying ratios: (a) DMSO- $d_{6} / \mathrm{CDCl}_{3}(1: 2 v / v)$; (b) DMSO- $d_{6} /$ $\mathrm{CDCl}_{3}(1: 1 \mathrm{v} / v) ;(c)$ DMSO- $d_{6} / \mathrm{CDCl}_{3}(5: 2 \mathrm{v} / v) ;(d)$ DMSO- $d_{6} / \mathrm{CDCl}_{3}(5: 1 \mathrm{v} / v) ;(e)$ DMSO- $d_{6} / \mathrm{CDCl}_{3}(10: 1 v / v) ;(f)$ neat DMSO- d_{6}.
chloroform, not as significantly in DMSO, and particularly not in toluene.

It can be seen from the crystal structure of BODIPY 2b that the molecules are linked along the BODIPY plane by interactions between one of the amino H atoms and the BODIPY π ring ($\mathrm{N}-\mathrm{H} \cdots \pi$ ring; Table 1 and Fig. 4).

It is conceivable that in solutions such as in dichloromethane, chloroform and dibromoethane, compound $\mathbf{2 b}$ could maintain similar intermolecular assemblies. As a consequence of the reduced mobility of the BODIPY molecules in these assembled structures, the alkyl signals are broadened to the extent that they become invisible in the NMR spectra (Celis et al., 2013; Brand et al., 2008; Chen et al., 2015). Motion of the phenyl rings, however, is not affected in the assembly, and thus the phenyl aromatic protons are visible in these solvents. In polar solvents such as DMSO and methanol, it is possible that solvation of the BODIPY NH_{2} group abolishes the ability for such assemblies to occur. On the other hand, in toluene, strong interactions of the aromatic benzene ring with the BODIPY co-plane could also diminish the assemblies. The emission profiles of BODIPY $\mathbf{2 b}$ in DMSO, chloroform and toluene also corroborate this model.

2. Structural commentary

The molecular structure of $\mathbf{2 b}$ shown in Fig. 1 displays a typical BODIPY structure (Tram et al., 2009). The central sixmembered ring has a flattened sofa conformation with atom N 1 deviating by 0.142 (4) Å from the mean plane of the other five atoms ($\mathrm{N} 2 / \mathrm{C} 4 / \mathrm{C} 5 / \mathrm{C} 6 / \mathrm{N} 1$), which has an r.m.s. deviation of
$0.015 \AA$. The dihedral angle between the two essentailly planar outer five-membered rings ($\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 4$ and $\mathrm{N} 2 / \mathrm{C} 6-\mathrm{C} 9$) is $8.0(2)^{\circ}$. The two $\mathrm{B}-\mathrm{N}$ bond lengths are the same within experimental error $[1.594$ (4) and 1.579 (4) \AA], confirming the delocalized nature of the BODIPY core. The two phenyl rings form dihedral angles of 78.8 (1) (C17-C22) and $80.8(1)^{\circ}$ (C23-C28) with the approximate plane of the 12 atoms of the BODIPY core (B1/N1/N2/C1-C9), which has an r.m.s. deviation of $0.067 \AA$. The dihedral angle between the two phenyl rings is $48.6(2)^{\circ}$. Methyl atoms C12 and C15, belonging to the ethyl substituents, deviate by -1.326 (4) and 1.348 (3) \AA, respectively, from the mean plane of the 12 atoms of the BODIPY core. There is a weak intramolecular $\mathrm{N} 3-\mathrm{H} 1 \mathrm{~N} \cdots \pi$ interaction involving the amino group and the C17-C22 phenyl ring (Table 1).

3. Supramolecular features

In the crystal, molecules are linked via weak $\mathrm{N}-\mathrm{H} \cdots \pi$ interactions (Table 1), forming chains along [010] (Fig. 4).

4. Spectroscopy and experimental

Bruker Avance 300 and 600 Digital NMR spectrometers with a 14.1 and 7.05 Tesla Ultrashield magnet, respectively, were used to obtain ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR spectra. ${ }^{1} \mathrm{H}$ NMR spectra were measured at 300 or 600 MHz , and ${ }^{11} \mathrm{~B}$ at 96 MHz . Chemical shifts and coupling constants (J values) are given in $\mathrm{ppm}(\delta)$ and Hz , respectively. Deuterated solvents were purchased from C/D/N Isotopes Inc. Fluorescence spectro-

Figure 3
Excitation and emission profile of 3-amino-4,4-diphenyl-BODIPY $2 \mathbf{b}$ in (a) chloroform, DMSO and toluene; (b) chloroform over 45 min ; (c) DMSO over 45 min ; (d) toluene over 60 min .
scopy was recorded using a QuantaMaster model QM-2001-4 cuvette-based L-format scanning spectrofluorometer from Photon Technology International (PTI), interfaced with FeliX32 software. UV-Vis spectra were obtained using a Thermospectronic/Unicam UV/Vis spectrometer configured to the Vision32 software.

Anhydrous dichloromethane, triethylamine and toluene were generated by first heating under reflux in the presence of phosphorus pentoxide, calcium hydride and sodium metal, respectively, followed by distillation under an atmosphere of nitrogen. All other chemicals and reagents were purchased from Sigma-Aldrich or TCI without further purification prior to use.

5. Synthesis and crystallization

For the preparation of $\mathbf{2 b}$, a solution of sodium nitrite $(80 \mathrm{mg}$, $1.2 \mathrm{mmol})$ in water $(1.0 \mathrm{ml})$ was added dropwise to another solution of 3-ethyl-2,4-dimethylpyrrole ($0.25 \mathrm{ml}, 1.85 \mathrm{mmol}$) in acetic acid (7.5 ml) and acetic anhydride (7.5 ml). The mixture was then heated at 373 K for 4 h . The solvents were removed

Figure 4
Part of the crystal structure of $\mathbf{2 b}$, with weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions shown as dashed lines.
under reduced pressure. The resulting products were diluted with dichloromethane (20 ml) and washed with a saturated aqueous sodium bicarbonate solution $(2 \times 15 \mathrm{ml})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to dryness under reduced pressure. The residue was co-evaporated with dry toluene (10 ml) and then redissolved in dry dichloromethane $(10 \mathrm{ml})$, followed by addition of dry triethylamine $(1.0 \mathrm{ml}$, 7.1 mmol). After stirring for 30 min , boron-diphenylbromide (Noth \& Vahrenkamp, 1968) ($1.5 \mathrm{ml}, 8.2 \mathrm{mmol}$) was added. Stirring was continued for 20 h and the products were washed with water $(3 \times 30 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel. The appropriate fractions, eluted with dichloromethane-hexane (1:9 $v / v)$, were pooled and concentrated under reduced pressure to give the title compound as an orange solid (yield $18 \mathrm{mg}, 4 \%$). Single crystals were obtained by slow evaporation of the corresponding solution in hexane. $\delta_{\mathrm{H}}\left[\mathrm{DMSO}-d_{6}\right]: 7.19-7.64(\mathrm{br}, 10 \mathrm{H}), 6.89(s$, $1 \mathrm{H}), 5.94(b r, 2 \mathrm{H}), 2.55(q, 2 \mathrm{H}, J=7.5), 2.27(q, 2 \mathrm{H}, J=7.5 \mathrm{~Hz})$, $2.13(s, 3 H), 1.83(s, 3 H), 1.50(s, 3 H), 1.09(t, 2 H, J=7.5 \mathrm{~Hz})$, $0.93(t, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}) . \delta_{\mathrm{B}}\left[\mathrm{DMSO}-d_{6}\right]: 0.66(s)$.

5.1. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms bonded to C atoms were included in calculated positions, with $\mathrm{C}-\mathrm{H}=0.95-$ $0.99 \AA$, and were allowed to refine in a riding-motion approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ or $1.5 U_{\mathrm{eq}}\left(\mathrm{C}_{\text {methyl }}\right)$. The amino H atoms were refined independently with isotropic displacement parameters.

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada.

References

Baruah, M., Qin, W., Flors, C., Hofkens, J., Vallée, R. A. L., Beljonne, D., van der Auweraer, M., De Borggraeve, W. M. \& Boens, B. (2006). J. Phys. Chem. A, 110, 5998-6009.

Bessette, A. \& Hanan, G. S. (2014). Chem. Soc. Rev. 43, 3342-3405.
Brand, T., Nolis, P., Richter, S. \& Berger, S. (2008). Magn. Reson. Chem. 46, 545-549.
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Celis, S., Nolis, P., Illa, O., Branchadella, V. M. \& Ortuño, R. M. (2013). Org. Biomol. Chem. 11, 2839-2846.

Chen, S., Tang, G., Wu, B., Ma, M. \& Wang, X. (2015). RSC Adv. 5, 35282-35290.
Clemens, O., Basters, M., Wild, M., Wilbrand, S., Reichert, C., Bauer, M., Springborg, M. \& Jung, G. (2008). J. Mol. Struct. THEOCHEM, 866, 15-20.
Filarowski, A., Kluba, M., Cieślik-Boczula, K., Koll, A., Kochel, A., Pandey, L., De Borggraeve, W. M., van der Auweraer, M., Catalán, J. \& Boens, N. (2010). Photochem. Photobiol. Sci. 9, 996-1008.

Filarowski, A., Lopatkova, M., Lipkowski, P., van der Auweraer, M., Leen, V. \& Dehaen, W. (2015). J. Phys. Chem. B, 119, 2576-2584.
Gassensmith, J. J., Arunkumar, E., Barr, L., Baumes, J. M., DiVittorio, K. M., Johnson, J. R., Noll, B. C. \& Smith, B. D. (2007). J. Am. Chem. Soc. 129, 15054-15059.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{BN}_{3}$
M_{r}	421.37
Crystal system, space group	Monoclinic, $P 2_{1}$
Temperature (K)	147
$a, b, c(\AA)$	$9.4938(7), 11.5325(8), 11.3739(9)$
$\beta\left({ }^{\circ} \mathrm{A}\right.$	$109.557(2)$
$V\left(\mathrm{~A}^{3}\right)$	$1173.45(15)$
Z	2
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{~mm}^{-1}\right)$	0.07
Crystal size (mm)	$0.35 \times 0.27 \times 0.07$
Data collection	
Diffractometer	Bruker Kappa APEX DUO CCD
Absorption correction	Multi-scan $(S A D A B S ;$ Bruker,
	$2014)$
$T_{\text {min }}, T_{\text {max }}$	$0.701,0.746$
No. of measured, independent and	$10457,5032,4054$
observed $[I>2 \sigma(I)]$ reflections	
$R_{\text {int }}$	0.040
(sin $\theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.650
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.046,0.104,1.03$
No. of reflections	5032
No. of parameters	302
No. of restraints	1
H -atom treatment	H atoms treated by a mixture of
	independent and constrained
$\Delta \rho_{\text {max, }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	refinement
Absolute structure	$0.19,-0.19$
	Flack x determined using 1500
Absolute structure parameter	quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), PLATON (Spek, 2009) and SHELXTL (Sheldrick, 2008).

Liras, M., Prieto, J., Pintado-Sierra, M., Arbeloa, F., Garcia-Moreno, I., Costela, A., Infantes, L., Sastre, R. \& Amat-Guerri, F. (2007). Org. Lett. 9, 4183-4186.
Loudet, A. \& Burgess, K. (2007). Chem. Rev. 107, 4891-4932.
Lu, H., Mack, J., Yang, Y. \& Shen, Z. (2014). Chem. Soc. Rev. 43, 4778-4823.
Miyatake, T., Shitasue, K., Omori, Y., Nakagawa, K., Fujiwara, M., Matsushita, T. \& Tamiaki, H. (2005). Photosynth. Res. 86, 131-136.
Noth, H. \& Vahrenkamp, H. (1968). J. Organomet. Chem. 11, 399405.

Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Rezende, L. C. D., Vaidergorn, M. M., Moraes, J. C. B. \& da Silva Emery, F. (2014). J. Fluoresc. 24, 257-266.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Tram, K., Twohig, D. \& Yan, H. (2011). Nucleosides Nucleotides Nucleic Acids, 30, 1-11.
Tram, K., Yan, H., Jenkins, H., Vassiliev, S. \& Bruce, D. (2009). Dyes Pigm. 82, 392-395.
Ulrich, C., Ziessel, R. \& Harriman, A. (2008). Angew. Chem. Int. Ed. 47, 1184-1201.
Ziessel, R., Ulrich, G. \& Harriman, A. (2007). New J. Chem. 31, 496501.

supporting information

Crystal structure and solvent-dependent behaviours of 3-amino-1,6-di-ethyl-2,5,7-trimethyl-4,4-diphenyl-3a,4a-diaza-4-bora-s-indacene

Lijing Yang, Brett Drew, Ravi Shekar Yalagala, Rameez Chaviwala, Razvan Simionescu, Alan J.
Lough and Hongbin Yan

Computing details

Data collection: APEX2 (Bruker, 2014); cell refinement: APEX2 (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3-Amino-1,6-diethyl-2,5,7-trimethyl-4,4-diphenyl-3a,4a-diaza-4-bora-s-indacene

Crystal data

$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{BN}_{3}$
$M_{r}=421.37$
Monoclinic, $P 2_{1}$
$a=9.4938$ (7) \AA
$b=11.5325$ (8) \AA
$c=11.3739(9) \AA$
$\beta=109.557$ (2) ${ }^{\circ}$
$V=1173.45$ (15) \AA^{3}
$Z=2$

Data collection

Bruker Kappa APEX DUO CCD
diffractometer
Radiation source: sealed tube with Bruker
Triumph monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
$T_{\text {min }}=0.701, T_{\text {max }}=0.746$
$F(000)=452$
$D_{\mathrm{x}}=1.193 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4278 reflections
$\theta=2.4-27.5^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=147 \mathrm{~K}$
Plate, red
$0.35 \times 0.27 \times 0.07 \mathrm{~mm}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.104$
$S=1.03$
5032 reflections
302 parameters
1 restraint
Hydrogen site location: mixed

10457 measured reflections
5032 independent reflections
4054 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=1.9^{\circ}$
$h=-12 \rightarrow 12$
$k=-14 \rightarrow 11$
$l=-14 \rightarrow 14$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0464 P)^{2}+0.0459 P\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.19$ e \AA^{-3}
Absolute structure: Flack x determined using
1500 quotients $[(\mathrm{I}+)-(\mathrm{I}-)] /[(\mathrm{I}+)+(\mathrm{I}-)]$ (Parsons et
al, 2013)
Absolute structure parameter: $-1.3(10)$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
N1	0.6209 (2)	0.4011 (2)	0.47877 (19)	0.0171 (5)
N2	0.7753 (2)	0.51637 (19)	0.66391 (19)	0.0174 (5)
N3	0.4280 (3)	0.2624 (2)	0.4350 (3)	0.0291 (6)
C1	0.5218 (3)	0.3302 (3)	0.4010 (3)	0.0204 (6)
C2	0.5273 (3)	0.3383 (3)	0.2759 (3)	0.0223 (6)
C3	0.6299 (3)	0.4212 (3)	0.2787 (2)	0.0191 (6)
C4	0.6900 (3)	0.4631 (2)	0.4057 (2)	0.0174 (6)
C5	0.7876 (3)	0.5506 (2)	0.4559 (2)	0.0187 (6)
H5A	0.8298	0.5927	0.4041	0.022*
C6	0.8277 (3)	0.5803 (2)	0.5833 (2)	0.0172 (6)
C7	0.9196 (3)	0.6704 (2)	0.6497 (3)	0.0192 (6)
C8	0.9259 (3)	0.6587 (2)	0.7743 (3)	0.0208 (6)
C9	0.8385 (3)	0.5641 (3)	0.7804 (2)	0.0202 (6)
C10	0.4334 (4)	0.2669 (3)	0.1690 (3)	0.0348 (8)
H10A	0.4545	0.2885	0.0933	0.052*
H10B	0.3275	0.2805	0.1566	0.052*
H10C	0.4566	0.1846	0.1871	0.052*
C11	0.6694 (3)	0.4692 (3)	0.1714 (3)	0.0243 (7)
H11A	0.6559	0.4081	0.1075	0.029*
H11B	0.7760	0.4924	0.2009	0.029*
C12	0.5734 (4)	0.5736 (3)	0.1125 (3)	0.0434 (9)
H12A	0.6030	0.6028	0.0433	0.065*
H12B	0.5873	0.6348	0.1753	0.065*
H12C	0.4680	0.5506	0.0811	0.065*
C13	0.9925 (3)	0.7628 (3)	0.5969 (3)	0.0279 (7)
H13A	1.0991	0.7672	0.6462	0.042*
H13B	0.9451	0.8377	0.5998	0.042*
H13C	0.9810	0.7439	0.5102	0.042*
C14	1.0172 (3)	0.7322 (3)	0.8821 (3)	0.0260 (7)
H14A	0.9688	0.7331	0.9469	0.031*
H14B	1.0193	0.8129	0.8530	0.031*
C15	1.1776 (3)	0.6883 (3)	0.9400 (3)	0.0365 (8)
H15A	1.2328	0.7394	1.0089	0.055*
H15B	1.2265	0.6880	0.8765	0.055*
H15C	1.1765	0.6094	0.9716	0.055*

C16	0.8189 (3)	0.5127 (3)	0.8948 (3)	0.0263 (7)
H16A	0.7133	0.5161	0.8876	0.039*
H16B	0.8787	0.5565	0.9684	0.039*
H16C	0.8521	0.4317	0.9032	0.039*
C17	0.5151 (3)	0.4325 (2)	0.6603 (2)	0.0182 (6)
C18	0.4069 (3)	0.5069 (3)	0.5835 (3)	0.0269 (7)
H18A	0.4245	0.5410	0.5136	0.032*
C19	0.2748 (3)	0.5331 (3)	0.6051 (3)	0.0355 (8)
H19A	0.2036	0.5835	0.5502	0.043*
C20	0.2475 (3)	0.4855 (3)	0.7068 (3)	0.0347 (8)
H20A	0.1579	0.5036	0.7228	0.042*
C21	0.3512 (3)	0.4115 (3)	0.7851 (3)	0.0337 (8)
H21A	0.3330	0.3783	0.8551	0.040*
C22	0.4828 (3)	0.3855 (3)	0.7615 (3)	0.0261 (7)
H22A	0.5528	0.3341	0.8161	0.031*
C23	0.7586 (3)	0.2907 (2)	0.6849 (2)	0.0177 (6)
C24	0.9149 (3)	0.2865 (3)	0.7172 (3)	0.0239 (6)
H24A	0.9667	0.3550	0.7096	0.029*
C25	0.9962 (3)	0.1863 (3)	0.7597 (3)	0.0301 (7)
H25A	1.1018	0.1870	0.7805	0.036*
C26	0.9244 (4)	0.0857 (3)	0.7719 (3)	0.0295 (7)
H26A	0.9801	0.0169	0.8011	0.035*
C27	0.7705 (4)	0.0853 (3)	0.7414 (3)	0.0276 (7)
H27A	0.7201	0.0160	0.7491	0.033*
C28	0.6900 (3)	0.1866 (3)	0.6996 (3)	0.0238 (6)
H28A	0.5846	0.1853	0.6803	0.029*
B1	0.6672 (3)	0.4083 (3)	0.6269 (3)	0.0181 (6)
H2N	0.359 (4)	0.227 (3)	0.376 (3)	0.035 (10)*
H1N	0.417 (4)	0.268 (3)	0.508 (4)	0.052 (12)*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0158(11)$	$0.0172(13)$	$0.0187(11)$	$-0.0024(9)$	$0.0062(9)$	$0.0003(9)$
N2	$0.0170(11)$	$0.0171(13)$	$0.0173(11)$	$0.0007(9)$	$0.0046(9)$	$0.0019(9)$
N3	$0.0315(15)$	$0.0320(17)$	$0.0225(14)$	$-0.0164(12)$	$0.0072(12)$	$-0.0018(12)$
C1	$0.0202(14)$	$0.0194(17)$	$0.0202(14)$	$-0.0043(11)$	$0.0048(11)$	$-0.0022(11)$
C2	$0.0221(14)$	$0.0232(18)$	$0.0201(14)$	$-0.0028(12)$	$0.0053(11)$	$-0.0008(12)$
C3	$0.0174(13)$	$0.0207(17)$	$0.0200(13)$	$0.0019(11)$	$0.0071(11)$	$-0.0007(11)$
C4	$0.0176(13)$	$0.0166(17)$	$0.0193(14)$	$0.0011(11)$	$0.0079(11)$	$0.0030(10)$
C5	$0.0168(13)$	$0.0206(16)$	$0.0203(13)$	$0.0014(11)$	$0.0084(11)$	$0.0034(11)$
C6	$0.0145(13)$	$0.0170(16)$	$0.0203(13)$	$0.0004(10)$	$0.0057(10)$	$0.0016(11)$
C7	$0.0157(13)$	$0.0168(17)$	$0.0240(14)$	$0.0000(11)$	$0.0052(11)$	$-0.0002(11)$
C8	$0.0189(13)$	$0.0185(18)$	$0.0232(15)$	$0.0019(11)$	$0.0046(11)$	$-0.0023(12)$
C9	$0.0168(13)$	$0.0221(17)$	$0.0195(14)$	$0.0029(11)$	$0.0031(11)$	$-0.0008(11)$
C10	$0.042(2)$	$0.034(2)$	$0.0282(16)$	$-0.0144(15)$	$0.0110(14)$	$-0.0074(15)$
C11	$0.0289(15)$	$0.0261(18)$	$0.0208(15)$	$-0.0028(13)$	$0.0120(12)$	$-0.0013(11)$
C12	$0.055(2)$	$0.044(2)$	$0.0372(19)$	$0.0168(17)$	$0.0241(17)$	$0.0187(17)$

supporting information

C13	$0.0289(16)$	$0.0236(18)$	$0.0307(16)$	$-0.0063(13)$	$0.0095(13)$	$-0.0004(13)$
C14	$0.0299(17)$	$0.0221(18)$	$0.0247(15)$	$-0.0037(12)$	$0.0072(13)$	$-0.0064(12)$
C15	$0.0292(17)$	$0.040(2)$	$0.0307(18)$	$-0.0052(15)$	$-0.0023(14)$	$-0.0083(14)$
C16	$0.0303(15)$	$0.0278(18)$	$0.0209(15)$	$-0.0040(13)$	$0.0086(12)$	$-0.0006(12)$
C17	$0.0170(13)$	$0.0158(16)$	$0.0217(14)$	$-0.0020(10)$	$0.0062(10)$	$-0.0024(11)$
C18	$0.0237(15)$	$0.0267(18)$	$0.0306(16)$	$0.0032(12)$	$0.0094(12)$	$0.0051(13)$
C19	$0.0257(16)$	$0.035(2)$	$0.0425(19)$	$0.0076(14)$	$0.0074(14)$	$0.0016(15)$
C20	$0.0220(15)$	$0.035(2)$	$0.052(2)$	$-0.0011(13)$	$0.0191(15)$	$-0.0099(15)$
C21	$0.0334(18)$	$0.040(2)$	$0.0364(18)$	$-0.0022(15)$	$0.0229(15)$	$0.0010(15)$
C22	$0.0236(15)$	$0.0269(19)$	$0.0281(16)$	$0.0017(12)$	$0.0090(12)$	$0.0027(12)$
C23	$0.0215(14)$	$0.0186(16)$	$0.0144(13)$	$-0.0013(11)$	$0.0079(11)$	$-0.0025(10)$
C24	$0.0230(15)$	$0.0221(17)$	$0.0279(15)$	$-0.0006(12)$	$0.0103(12)$	$-0.0002(12)$
C25	$0.0235(15)$	$0.0296(19)$	$0.0366(18)$	$0.0065(13)$	$0.0094(13)$	$-0.0004(14)$
C26	$0.0336(18)$	$0.0218(19)$	$0.0304(17)$	$0.0104(13)$	$0.0071(13)$	$0.0037(13)$
C27	$0.0345(17)$	$0.0174(18)$	$0.0305(16)$	$0.0002(12)$	$0.0103(13)$	$0.0019(12)$
C28	$0.0206(14)$	$0.0246(18)$	$0.0249(15)$	$-0.0028(12)$	$0.0057(12)$	$0.0019(12)$
B1	$0.0190(15)$	$0.0184(18)$	$0.0170(15)$	$-0.0018(12)$	$0.0060(12)$	$0.0017(12)$

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

N1-C1	1.334 (3)	C13-H13C	0.9800
N1-C4	1.413 (3)	C14-C15	1.529 (4)
N1-B1	1.594 (4)	C14-H14A	0.9900
N2-C9	1.374 (3)	C14-H14B	0.9900
N2-C6	1.392 (3)	C15-H15A	0.9800
N2-B1	1.579 (4)	C15-H15B	0.9800
N3-C1	1.335 (4)	C15-H15C	0.9800
N3-H2N	0.87 (4)	C16-H16A	0.9800
N3-H1N	0.87 (4)	C16-H16B	0.9800
C1-C2	1.445 (4)	C16-H16C	0.9800
C2-C3	1.358 (4)	C17-C22	1.396 (4)
C2-C10	1.492 (4)	C17-C18	1.398 (4)
C3-C4	1.446 (4)	C17-B1	1.635 (4)
C3-C11	1.498 (4)	C18-C19	1.389 (4)
C4-C5	1.360 (4)	C18-H18A	0.9500
C5-C6	1.411 (4)	C19-C20	1.382 (5)
C5-H5A	0.9500	C19-H19A	0.9500
C6-C7	1.404 (4)	C20-C21	1.379 (5)
C7-C8	1.405 (4)	C20-H20A	0.9500
C7-C13	1.501 (4)	C21-C22	1.396 (4)
C8-C9	1.386 (4)	C21-H21A	0.9500
C8-C14	1.505 (4)	C22-H22A	0.9500
C9-C16	1.496 (4)	C23-C28	1.403 (4)
C10-H10A	0.9800	C23-C24	1.405 (4)
C10-H10B	0.9800	C23-B1	1.626 (4)
C10-H10C	0.9800	C24-C25	1.383 (4)
C11-C12	1.523 (4)	C24-H24A	0.9500
C11-H11A	0.9900	C25-C26	1.377 (5)

supporting information

C11-H11B	0.9900
C12-H12A	0.9800
C12-H12B	0.9800
C12-H12C	0.9800
C13-H13A	0.9800
C13-H13B	0.9800
C1-N1-C4	106.5 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{B} 1$	128.0 (2)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{B} 1$	125.2 (2)
C9-N2-C6	106.6 (2)
C9-N2-B1	127.5 (2)
C6-N2-B1	125.9 (2)
C1-N3-H2N	117 (2)
$\mathrm{C} 1-\mathrm{N} 3-\mathrm{H} 1 \mathrm{~N}$	122 (3)
$\mathrm{H} 2 \mathrm{~N}-\mathrm{N} 3-\mathrm{H} 1 \mathrm{~N}$	118 (3)
N1-C1-N3	123.9 (3)
N1-C1-C2	111.3 (2)
N3-C1-C2	124.8 (3)
C3-C2-C1	106.5 (2)
C3-C2-C10	129.6 (3)
C1-C2-C10	123.9 (3)
C2-C3-C4	107.4 (2)
C2-C3-C11	127.9 (3)
C4-C3-C11	124.6 (3)
C5-C4-N1	120.9 (2)
C5-C4-C3	130.7 (2)
N1-C4-C3	108.3 (2)
C4-C5-C6	121.6 (3)
C4-C5-H5A	119.2
C6-C5-H5A	119.2
N2-C6-C7	109.5 (2)
N2-C6-C5	120.9 (2)
C7-C6-C5	129.6 (3)
C6-C7-C8	106.2 (2)
C6-C7-C13	126.7 (2)
C8-C7-C13	127.1 (2)
C9-C8-C7	107.6 (2)
C9-C8-C14	126.4 (3)
C7-C8-C14	125.9 (3)
N2-C9-C8	110.0 (2)
N2-C9-C16	122.6 (3)
C8-C9-C16	127.3 (2)
C2-C10-H10A	109.5
$\mathrm{C} 2-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	109.5
H10A-C10-H10B	109.5
C2-C10-H10C	109.5
H10A-C10-H10C	109.5

C25-H25A	0.9500
C26-C27	1.384 (4)
C26-H26A	0.9500
C27-C28	1.391 (4)
C27-H27A	0.9500
C28-H28A	0.9500
C8-C14-C15	112.5 (3)
C8-C14-H14A	109.1
C15-C14-H14A	109.1
C8-C14-H14B	109.1
C15-C14-H14B	109.1
H14A-C14-H14B	107.8
C14-C15-H15A	109.5
C14-C15-H15B	109.5
H15A-C15-H15B	109.5
C14-C15-H15C	109.5
H15A-C15-H15C	109.5
H15B-C15-H15C	109.5
C9-C16-H16A	109.5
C9-C16-H16B	109.5
H16A-C16-H16B	109.5
C9-C16-H16C	109.5
H16A-C16-H16C	109.5
H16B-C16-H16C	109.5
C22-C17-C18	115.8 (3)
C22-C17-B1	125.5 (2)
C18-C17-B1	118.7 (2)
C19-C18-C17	122.7 (3)
C19-C18-H18A	118.6
C17-C18-H18A	118.6
C20-C19-C18	119.7 (3)
C20-C19-H19A	120.2
C18-C19-H19A	120.2
C21-C20-C19	119.6 (3)
C21-C20-H20A	120.2
C19-C20-H20A	120.2
C20-C21-C22	120.0 (3)
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{H} 21 \mathrm{~A}$	120.0
C22-C21-H21A	120.0
C17-C22-C21	122.2 (3)
C17-C22-H22A	118.9
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~A}$	118.9
C28-C23-C24	115.5 (3)
C28-C23-B1	123.8 (2)
C24-C23-B1	120.6 (2)
C25-C24-C23	122.5 (3)
C25-C24-H24A	118.7

H10B-C10-H10C	109.5
C3-C11-C12	112.0 (3)
C3-C11-H11A	109.2
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	109.2
C3-C11-H11B	109.2
C12-C11-H11B	109.2
H11A-C11-H11B	107.9
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	109.5
C11-C12-H12B	109.5
H12A-C12-H12B	109.5
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
H12A-C12-H12C	109.5
$\mathrm{H} 12 \mathrm{~B}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
C7-C13-H13A	109.5
C7-C13-H13B	109.5
H13A-C13-H13B	109.5
C7-C13-H13C	109.5
H13A-C13-H13C	109.5
H13B-C13-H13C	109.5
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 3$	-175.8 (3)
$\mathrm{B} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 3$	9.8 (5)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	3.0 (3)
$\mathrm{B} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-171.4 (2)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-2.6 (3)
N3-C1-C2-C3	176.2 (3)
N1-C1-C2-C10	177.9 (3)
N3-C1-C2-C10	-3.3 (5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	1.0 (3)
C10-C2-C3-C4	-179.5 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 11$	-175.0 (3)
C10-C2-C3-C11	4.5 (5)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	173.9 (3)
$\mathrm{B} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	-11.4 (4)
C1-N1-C4-C3	-2.3 (3)
$\mathrm{B} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	172.3 (2)
C2-C3-C4-C5	-175.0 (3)
$\mathrm{C} 11-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	1.1 (5)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$	0.8 (3)
$\mathrm{C} 11-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$	176.9 (2)
N1-C4-C5-C6	2.2 (4)
C3-C4-C5-C6	177.5 (3)
C9-N2-C6-C7	-2.0 (3)
$\mathrm{B} 1-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 7$	179.3 (2)
C9-N2-C6-C5	177.7 (2)
$\mathrm{B} 1-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 5$	-1.0 (4)
C4-C5-C6-N2	3.9 (4)
C4-C5-C6-C7	-176.5 (3)

C23-C24-H24A	118.7
C26-C25-C24	120.1 (3)
C26-C25-H25A	120.0
C24-C25-H25A	120.0
C25-C26-C27	119.7 (3)
C25-C26-H26A	120.2
C27-C26-H26A	120.2
C26-C27-C28	119.7 (3)
C26-C27-H27A	120.1
C28- $227-\mathrm{H} 27 \mathrm{~A}$	120.1
C27-C28-C23	122.4 (3)
C27-C28-H28A	118.8
C23-C28-H28A	118.8
N2-B1-N1	104.3 (2)
N2-B1-C23	109.8 (2)
N1-B1-C23	107.8 (2)
N2-B1-C17	110.4 (2)
N1-B1-C17	107.6 (2)
C23-B1-C17	116.1 (2)
C2-C3-C11-C12	89.8 (4)
C4-C3-C11-C12	-85.5 (4)
C9-C8-C14-C15	91.3 (4)
C7-C8-C14-C15	-85.5 (4)
C22-C17-C18-C19	-0.2 (5)
B1-C17-C18-C19	-179.6 (3)
C17-C18-C19-C20	0.6 (5)
C18-C19-C20-C21	-0.6 (5)
C19-C20-C21-C22	0.2 (5)
C18-C17-C22-C21	-0.3 (4)
B1-C17-C22-C21	179.0 (3)
C20-C21-C22-C17	0.3 (5)
C28-C23-C24-C25	0.6 (4)
B1-C23-C24-C25	-176.0 (3)
C23-C24-C25-C26	-0.1 (5)
C24-C25-C26-C27	0.0 (5)
C25-C26-C27-C28	-0.4 (5)
C26-C27-C28-C23	1.0 (4)
C24-C23-C28-C27	-1.0 (4)
$\mathrm{B} 1-\mathrm{C} 23-\mathrm{C} 28-\mathrm{C} 27$	175.4 (3)
C9—-N2-B1-N1	175.5 (2)
C6-N2-B1-N1	-6.1 (3)
C9-N2-B1-C23	-69.2 (3)
C6-N2-B1-C23	109.2 (3)
C9-N2- ${ }^{\text {- } 1-\mathrm{C} 17}$	60.1 (3)
C6-N2-B1-C17	-121.5 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{B} 1-\mathrm{N} 2$	-174.3 (3)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{B} 1-\mathrm{N} 2$	12.3 (3)

$\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$1.5(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-178.1(3)$
$\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 13$	$-176.8(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 13$	$3.5(5)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-0.4(3)$
$\mathrm{C} 13-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$177.9(3)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 14$	$176.9(3)$
$\mathrm{C} 13-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 14$	$-4.8(4)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 8$	$1.8(3)$
$\mathrm{B} 1-\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 8$	$-179.6(2)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 16$	$-174.8(3)$
$\mathrm{B} 1-\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 16$	$3.8(4)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{N} 2$	$-0.9(3)$
$\mathrm{C} 14-\mathrm{C} 8-\mathrm{C} 9-\mathrm{N} 2$	$-178.1(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 16$	$175.5(3)$
$\mathrm{C} 14-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 16$	$-1.7(5)$

$\mathrm{C} 1-\mathrm{N} 1-\mathrm{B} 1-\mathrm{C} 23$	$69.0(3)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{B} 1-\mathrm{C} 23$	$-104.5(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{B} 1-\mathrm{C} 17$	$-57.0(4)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{B} 1-\mathrm{C} 17$	$129.6(3)$
$\mathrm{C} 28-\mathrm{C} 23-\mathrm{B} 1-\mathrm{N} 2$	$161.5(2)$
$\mathrm{C} 24-\mathrm{C} 23-\mathrm{B} 1-\mathrm{N} 2$	$-22.2(3)$
$\mathrm{C} 28-\mathrm{C} 23-\mathrm{B} 1-\mathrm{N} 1$	$-85.4(3)$
$\mathrm{C} 24-\mathrm{C} 23-\mathrm{B} 1-\mathrm{N} 1$	$90.9(3)$
$\mathrm{C} 28-\mathrm{C} 23-\mathrm{B} 1-\mathrm{C} 17$	$35.3(4)$
$\mathrm{C} 24-\mathrm{C} 23-\mathrm{B} 1-\mathrm{C} 17$	$-148.4(2)$
$\mathrm{C} 22-\mathrm{C} 17-\mathrm{B} 1-\mathrm{N} 2$	$-104.1(3)$
$\mathrm{C} 18-\mathrm{C} 17-\mathrm{B} 1-\mathrm{N} 2$	$75.2(3)$
$\mathrm{C} 22-\mathrm{C} 17-\mathrm{B} 1-\mathrm{N} 1$	$142.6(3)$
$\mathrm{C} 18-\mathrm{C} 17-\mathrm{B} 1-\mathrm{N} 1$	$-38.1(3)$
$\mathrm{C} 22-\mathrm{C} 17-\mathrm{B} 1-\mathrm{C} 23$	$21.8(4)$
$\mathrm{C} 18-\mathrm{C} 17-\mathrm{B} 1-\mathrm{C} 23$	$-158.9(3)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg 1 and Cg 2 are the centroids of the $\mathrm{C} 17-\mathrm{C} 22$ and $\mathrm{N} 2 / \mathrm{C} 6-\mathrm{C} 9$ rings, respectively.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3 — \mathrm{H} 1 N \cdots C g 1$	$0.87(4)$	$3.07(3)$	$3.772(2)$	$139(2)$
$\mathrm{N} 3 — \mathrm{H} 2 N \cdots C g 2^{\mathrm{i}}$	$0.87(4)$	$2.44(3)$	$3.223(2)$	$150(2)$

Symmetry code: (i) $-x+1, y-1 / 2,-z+1$.

