

Received 17 February 2017 Accepted 21 February 2017

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; cytotoxic agents; *N*-substituted quinolone; tubulin polymerization; hydrogen bonding.

CCDC reference: 1533984

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 6,7-dimethoxy-1-(4-nitrophenyl)quinolin-4(1*H*)-one: a molecular scaffold for potential tubulin polymerization inhibitors

Vegard Torp Lien,^a Dag Erlend Olberg,^a Jo Klaveness^a and Carl Henrik Görbitz^{b*}

^aDepartment of Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N-0371 Oslo, Norway, and ^bDepartment of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway. *Correspondence e-mail: c.h.gorbitz@kjemi.uio.no

The protein tubulin is central for maintaining normal cellular processes, and molecules interfering with the tubulin dynamics have potential in the treatment of cancerous diseases. The title compound, $C_{17}H_{14}N_2O_5$, was prepared as a lead compound in a project dedicated to the development of therapeutic agents binding to the colchicine binding site on tubulin, thereby interfering with the cell division in cancer cells. It holds many of the main structural characteristics for colchicine binding and has the potential for further modification and functionalization. In the title molecule, the benzene ring is inclined to the quinoline ring by 76.10 (8)°. In the crystal, molecules are linked by two pairs of $C-H\cdots O$ hydrogen bonds, forming tubular-like arrangements, propagating along the direction of the diagonals of the *ab* plane, and enclosing $R_2^2(26)$ and $R_2^2(16)$ ring motifs.

1. Chemical context

Due to the elevated rate of cell division in cancer cells, agents targeting proteins central to the mitotic process are attractive for cancer treatment (Hanahan & Weinberg, 2011). The protein tubulin polymerizes during the mitotic phase into microtubules, and this process is vital for the correct cell division (Parker *et al.*, 2014). Based on the structures of the natural products colchicine and comberastatin A-4, a great amount of research on the synthesis and biological evaluation has been carried out (Lu *et al.*, 2012). All these analogs bind to the colchicine binding site, and the pharmacophore and binding site is well known (Nguyen *et al.*, 2005).

NO₂

research communications

medicinal chemistry project in our group, the title compound, (I), appeared as a side product in significant amounts. The structure was rationalized from NMR studies and confirmed by X-ray crystallography. Based on the literature and knowledge of the characteristics of molecules binding to the colchicine binding site on tubulin, it is reasonable that analogs

Figure 1

(a) Schematic drawing of two analogues of (I) in the Cambridge Structural Database (CSD, Version 5.37; Groom *et al.*, 2016) identified by their six-letter reference codes. (b) Number of entries in the CSD retrieved by using various search fragments. The raw quinolin-4(1*H*)-one skeleton (with potential substituents on all C and N atoms) yields 759 hits (including a small number of duplicates). Three types of specifications and combinations thereof are then explored: introduction of bonds to O atoms (-OH, alkoxy or phenoxy) from C6 and C7, N1-substitution (blue, subset aromatic ring), and including only acyclic bonds from C2 and C3 atoms (red, X = any atom type, subset H only). Green and violet colours indicate the two molecules in (a). (c) Final CSD search fragment used in the conformational analysis. Dashed bonds have bond type 'any', Q is N or C, Z is 'not hydrogen', while T3 means the atom has three bonded atoms. The indicated torsion angle runs between the encircled atoms through the two ring centroids.

Table 1		
Hydrogen-b	ond geometry (Å, °).

$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.93	2.53	3.320 (2)	143
0.96	2.60	3.512 (3)	160
	<i>D</i> —Н 0.93 0.96	$\begin{array}{c c} D - H & H \cdots A \\ \hline 0.93 & 2.53 \\ 0.96 & 2.60 \end{array}$	$D-H$ $H \cdots A$ $D \cdots A$ 0.93 2.53 3.320 (2) 0.96 2.60 3.512 (3)

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x, -y + 1, -z + 1.

of this structure might be potent cytotoxic agents. The reported structure can easily be further modified to improve binding affinities in correspondence with reported structure-activity studies (Lai *et al.*, 2011; Wang *et al.*, 2013; Patil *et al.*, 2012). Herein, we present the synthesis and the crystal structure of the title compound, 6,7-dimethoxy-1-(4-nitrophenyl)-quinolin-4(1*H*)-one (I).

2. Database survey

The frequencies of molecules in the Cambridge Structural Database (CSD, version 5.37; Groom *et al.*, 2016) incorporating various modifications of the quinolin-4(1*H*)-one fragment are shown in Fig. 1*b*. It can be seen that only one previous compound, 4-[6-methoxy-4-oxoquinolin-1(4*H*)yl]benzonitrile (CSD refcode PEBDIL; Hirano *et al.*, 2008) share with (I) the lack of substituents at C2 and C3 as well as having an aromatic N-substituent, while 1-ethyl-1,4-dihydro-6,7-methylenedioxy-4-oxo-3-quinolinecarboxylic acid (CSD refcode DAHWEO; Cygler & Huber, 1985) is alone in incorporating C2–H, C3–H, C6–O and C7–O bonds (Fig. 1*a*). Even though (I) is a rather simple covalent structure, it thus represents a rather unique combination of functionalities.

3. Structural commentary

The molecular structure of (I) is depicted in Fig. 2*a*, where the short, double-bond nature of the C2=C3 bond [1.342 (2) Å] is clearly visible. While the bicyclic ring systems of DAHWOE and PEBDIL (Fig. 1*a*) are perfectly coplanar with the C6 and C7 substituents as well as the C1'-atom attached to N1, this is not the case for (I); the nitrobenzene ring is inclined to the quinoline ring system by 76.10 (8)°, and the torsion angle defined by atom C9, the two ring centroids and atom C1' is *ca* 167.7°; see Fig. 2*a* and 2*b*. The more extended search fragment in Fig. 1*c* found 157 such torsion angles in 62 CSD entries, and in only nine compounds does this torsion angle deviate by more than *ca* 13.3° from planarity.

4. Supramolecular features

The reason for the unusual molecular conformation of (I) can be seen in Fig. 2b and 2c, where close contacts to two neighbouring molecules are apparent; these force the methoxy group and the nitrophenyl group out of the quinolinone mean plane. In the crystal, molecules are linked by two pairs of $C-H \cdots O$ hydrogen bonds, forming tubular-like arrangements

(a) The molecular structure of (I) with some selected bond lengths (Å; s.u.'s = 0.002 Å) at 295 K. Displacement ellipsoids are shown at the 50% probability level. Pink spheres are the centroids for the two six-membered rings, and the dashed green lines defines the torsion angle discussed in the text. (b) View along the centroid–centroid vector showing the torsion angle from (a) and two neighbouring molecules A and B at (-x + 1, -y + 2, -z + 1) and (x - 1, y, z), respectively. (c) As in (b), but rotated ca 27° around the vertical axis to display two short intermolecular interactions involving the nitrophenyl substituent; H2'···O1(-x + 1, -y + 2, -z + 1) is 2.53 Å, while H3'···C4A(x - 1, y, z) is 2.72 Å.

propagating along the direction of the diagonals of the *ab* plane, and enclosing $R_2^2(26)$ and $R_2^2(16)$ ring motifs (Table 1 and Fig. 3). Within the tubular-like arrangements, molecules are also linked by offset π - π interactions; the shortest interaction involves inversion-related pyridine rings with an intercentroid distance $Cg1\cdots Cg1(-x + 1, -y + 2, -z + 1) =$

3.659 (1) Å [*Cg*1 is the centroid of the N1/C2–C4/C4A/C8A ring; interplanar distance = 3.580 (1) Å, slippage = 0.754 Å]. The crystal density is comparatively high at 1.415 g cm⁻³, and no voids were calculated by *Mercury* (Macrae *et al.*, 2008) using the default settings (probe radius 1.2 Å, grid spacing 0.7 Å).

Figure 3

A viewed along the normal to (110) of the crystal packing of compound (I). Hydrogen bonds are shown as dashed lines (see Table 1). For clarity, only H atoms, H2' and H103, have been included.

research communications

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{17}H_{14}N_2O_5$
$M_{\rm r}$	326.30
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	295
a, b, c (Å)	8.3736 (4), 11.7694 (5), 15.5623 (8)
β (°)	93.251 (1)
$V(Å^3)$	1531.23 (13)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.11
Crystal size (mm)	$0.66 \times 0.27 \times 0.08$
Data collection	
Diffractometer	Bruker D8 Venture diffractometer
	with a Photon 100 CMOS
	detector
Absorption correction	Multi-scan (SADABS: Bruker.
I I I I I I I I I I I I I I I I I I I	2016)
T _{min} , T _{min}	0.930. 1.000
No. of measured, independent and	20516, 3142, 2298
observed $[I > 2\sigma(I)]$ reflections	,,,
Rint	0.032
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.626
(control finax (control final	
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.047, 0.127, 1.03
No. of reflections	3142
No. of parameters	219
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.20, -0.21
, max, , mm ()	*

Computer programs: APEX3 and SAINT-Plus (Bruker, 2016), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and Mercury (Macrae et al., 2008).

5. Synthesis and crystallization

Cs₂CO₃ (0.212 g, 0.65 mmol) and 6,7-dimethoxyquinolin-4-ol (67 mg, 0.326 mmol) were weighed out in a round-bottom flask, to which was added 3 ml DMF and 1 ml MeCN. The mixture was then stirred for 15 min. 1-Fluoro-4-nitrobenzene (101 mg, 0.716 mmol) in 2 ml 1:1 DMF:MeCN was then added, and the reaction mixture was stirred for 20 h at 328 K. The crude product was washed with water (4 × 10 ml) and brine (10 ml), and then purified by column chromatography [Hep:EtOAc (4:1) \rightarrow Hep:EtOAc:MeOH (10:10:1)]. The title compound (I) was obtained as a yellow solid (40 mg, 38%). ¹H NMR (CDCl₃, 400 MHz): δ 8.48 (*d*, 2H, *J* = 8.8 Hz), 7.79 (*s*, 1H), 7.67 (*d*, 2H, *J* = 8.8 Hz), 7.48 (*d*, 1H, *J* = 7.8 Hz), 6.35 (*d*,

1H, J = 7.7 Hz), 6.32 (*s*, 1H), 3.98 (*s*, 3H), 3.72 (*s*, 3H). ¹³C NMR (CDCl₃, 101 MHz): δ 176.98, 153.56, 147.96, 147.71, 146.91, 140.54, 136.08, 128.64, 125.92, 120.99, 110.68, 106.17, 98.10, 56.46, 56.21. HRMS (ESI⁺) *m/z* calculated for C₁₇H₁₅N₂O₅ [*M*+H]⁺: 327.0975, found 327.0976. Yellow crystals of compound (I) were grown from a heptane:EtOAc:MeOH (10:10:1) solution by slow evaporation of the solvent.

6. 1 Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were included in calculated positions and treated as riding: C—H = 0.93–0.96 Å with $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm C}{\rm -methyl})$ and $1.2U_{\rm eq}({\rm C})$ for other H atoms.

References

- Bruker (2016). *APEX3*, *SAINT-Plus* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cygler, M. & Huber, C. P. (1985). Acta Cryst. C41, 1052-1055.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hanahan, D. & Weinberg, R. A. (2011). Cell, 144, 646-674.
- Hirano, J., Hamase, K., Akita, T. & Zaitsu, K. (2008). *Luminescence*, **23**, 350–355.
- Lai, M.-J., Chang, J.-Y., Lee, H.-Y., Kuo, C.-C., Lin, M.-H., Hsieh, H.-P., Chang, C.-Y., Wu, J.-S., Wu, S.-Y., Shey, K.-S. & Liou, J.-P. (2011). Eur. J. Med. Chem. 46, 3623–3629.
- Lu, Y., Chen, J., Xiao, M., Li, W. & Miller, D. D. (2012). *Pharm. Res.* **29**, 2943–2971.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Nguyen, T. L., McGrath, C., Hermone, A. R., Burnett, J. C., Zaharevitz, D. W., Day, B. W., Wipf, P., Hamel, E. & Gussio, R. (2005). J. Med. Chem. 48, 6107–6116.
- Parker, A. L., Kavallaris, M. & McCarroll, J. A. (2014). Front. Oncol. 4, 1–19.
- Patil, S. A., Patil, R. & Miller, D. D. (2012). Future Med. Chem. 4, 2085–2115.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Wang, X.-F., Wang, S.-B., Ohkoshi, E., Wang, L.-T., Hamel, E., Qian, K., Morris-Natschke, S. L., Lee, K.-H. & Xie, L. (2013). *Eur. J. Med. Chem.* 67, 196–207.

supporting information

Acta Cryst. (2017). E73, 441-444 [https://doi.org/10.1107/S2056989017002948]

Crystal structure of 6,7-dimethoxy-1-(4-nitrophenyl)quinolin-4(1*H*)-one: a molecular scaffold for potential tubulin polymerization inhibitors

Vegard Torp Lien, Dag Erlend Olberg, Jo Klaveness and Carl Henrik Görbitz

Computing details

Data collection: *APEX3* (Bruker, 2016); cell refinement: *SAINT-Plus* (Bruker, 2016); data reduction: *SAINT-Plus* (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015b).

6,7-Dimethoxy-1-(4-nitrophenyl)quinolin-4(1H)-one

Crystal data

 $C_{17}H_{14}N_2O_5$ $M_r = 326.30$ Monoclinic, $P2_1/n$ a = 8.3736 (4) Å b = 11.7694 (5) Å c = 15.5623 (8) Å $\beta = 93.251$ (1)° V = 1531.23 (13) Å³ Z = 4

Data collection

Bruker D8 Venture diffractometer with a Photon 100 CMOS detector Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3 pixels mm⁻¹ Sets of exposures each taken over $0.5^{\circ} \omega$ rotation scans Absorption correction: multi-scan (SADABS; Bruker, 2016)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.127$ S = 1.033142 reflections 219 parameters 0 restraints F(000) = 680 $D_x = 1.415 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8925 reflections $\theta = 2.6-26.4^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 295 KFlat lens, yellow $0.66 \times 0.27 \times 0.08 \text{ mm}$

 $T_{\min} = 0.930, T_{\max} = 1.000$ 20516 measured reflections 3142 independent reflections 2298 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.032$ $\theta_{\max} = 26.4^\circ, \theta_{\min} = 2.2^\circ$ $h = -10 \rightarrow 10$ $k = -14 \rightarrow 14$ $l = -19 \rightarrow 19$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0557P)^{2} + 0.4805P] \qquad \Delta \rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.21 \text{ e} \text{ Å}^{-3}$ $(\Delta/\sigma)_{max} < 0.001$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.82921 (15)	0.99910 (12)	0.42505 (8)	0.0623 (4)	
02	0.86545 (15)	0.77881 (14)	0.70970 (8)	0.0684 (4)	
03	0.59678 (16)	0.67943 (13)	0.71853 (8)	0.0679 (4)	
N1	0.41894 (16)	0.81504 (12)	0.43553 (9)	0.0477 (4)	
C2	0.4438 (2)	0.88507 (16)	0.36804 (11)	0.0528 (4)	
H2	0.3660	0.8887	0.3230	0.063*	
C3	0.5757 (2)	0.94908 (16)	0.36357 (12)	0.0538 (5)	
H3	0.5850	0.9969	0.3165	0.065*	
C4	0.7020(2)	0.94582 (15)	0.42906 (11)	0.0466 (4)	
C5	0.7864 (2)	0.86419 (15)	0.57179 (11)	0.0461 (4)	
Н5	0.8813	0.9051	0.5704	0.055*	
C6	0.7612 (2)	0.79688 (16)	0.64091 (11)	0.0501 (4)	
C7	0.6135 (2)	0.73853 (16)	0.64500 (11)	0.0508 (4)	
C8	0.5013 (2)	0.74416 (16)	0.57787 (11)	0.0491 (4)	
H8	0.4056	0.7045	0.5803	0.059*	
C9	1.0221 (2)	0.8218 (2)	0.70451 (15)	0.0789 (7)	
H91	1.0657	0.7957	0.6523	0.118*	
H92	1.0879	0.7955	0.7530	0.118*	
H93	1.0191	0.9033	0.7047	0.118*	
C10	0.4431 (3)	0.6342 (2)	0.73209 (14)	0.0791 (7)	
H101	0.3652	0.6941	0.7281	0.119*	
H102	0.4437	0.6002	0.7882	0.119*	
H103	0.4164	0.5777	0.6892	0.119*	
C4A	0.67157 (18)	0.87302 (14)	0.50243 (10)	0.0422 (4)	
C8A	0.53089 (18)	0.81007 (14)	0.50514 (10)	0.0430 (4)	
01′	-0.2498 (2)	0.57251 (18)	0.39917 (15)	0.1105 (7)	
O2′	-0.0978 (2)	0.42948 (16)	0.37958 (14)	0.1038 (6)	
N1′	-0.1179 (2)	0.52979 (17)	0.39326 (12)	0.0718 (5)	
C1′	0.2824 (2)	0.74056 (15)	0.42899 (11)	0.0460 (4)	
C2′	0.1327 (2)	0.78390 (16)	0.43907 (12)	0.0547 (5)	
H2′	0.1198	0.8597	0.4540	0.066*	
C3′	0.0017 (2)	0.71397 (17)	0.42679 (13)	0.0588 (5)	
H3′	-0.1009	0.7421	0.4327	0.071*	
C4′	0.0242 (2)	0.60273 (16)	0.40578 (12)	0.0532 (5)	
C5′	0.1729 (2)	0.55765 (18)	0.39643 (14)	0.0663 (6)	
H5′	0.1852	0.4815	0.3823	0.080*	

supporting information

C6′	0.3036 (2)	0.62773 (17)	0.40849 (14)	0.0635 (5)
H6′	0.4060	0.5992	0.4028	0.076*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0581 (8)	0.0703 (9)	0.0589 (8)	-0.0198 (7)	0.0065 (6)	0.0060 (7)
O2	0.0502 (7)	0.0978 (11)	0.0556 (8)	-0.0166 (7)	-0.0109 (6)	0.0185 (7)
03	0.0605 (8)	0.0899 (10)	0.0524 (8)	-0.0207 (7)	-0.0041 (6)	0.0208 (7)
N1	0.0440 (8)	0.0555 (9)	0.0431 (8)	-0.0060 (7)	-0.0013 (6)	-0.0012 (7)
C2	0.0568 (10)	0.0594 (11)	0.0413 (10)	-0.0010 (9)	-0.0040 (8)	0.0006 (9)
C3	0.0608 (11)	0.0567 (11)	0.0439 (10)	-0.0062 (9)	0.0039 (8)	0.0050 (8)
C4	0.0493 (10)	0.0459 (9)	0.0452 (10)	-0.0034 (8)	0.0088 (7)	-0.0055 (8)
C5	0.0388 (8)	0.0533 (10)	0.0463 (10)	-0.0070 (7)	0.0041 (7)	-0.0036 (8)
C6	0.0437 (9)	0.0621 (11)	0.0438 (10)	-0.0031 (8)	-0.0022 (7)	0.0008 (8)
C7	0.0498 (10)	0.0593 (11)	0.0433 (10)	-0.0067 (8)	0.0043 (8)	0.0055 (8)
C8	0.0418 (9)	0.0583 (10)	0.0470 (10)	-0.0109 (8)	0.0023 (7)	0.0011 (8)
C9	0.0613 (13)	0.0953 (17)	0.0772 (15)	-0.0268 (12)	-0.0206 (11)	0.0183 (13)
C10	0.0775 (14)	0.1009 (18)	0.0584 (13)	-0.0415 (13)	0.0006 (10)	0.0181 (12)
C4A	0.0407 (8)	0.0448 (9)	0.0414 (9)	-0.0013 (7)	0.0061 (7)	-0.0053 (7)
C8A	0.0403 (9)	0.0494 (10)	0.0391 (9)	0.0002 (7)	0.0021 (7)	-0.0051 (7)
01′	0.0539 (10)	0.1104 (14)	0.165 (2)	-0.0167 (10)	-0.0103 (10)	-0.0218 (13)
O2′	0.0966 (13)	0.0717 (12)	0.1419 (18)	-0.0284 (10)	-0.0051 (11)	-0.0223 (11)
N1′	0.0650 (12)	0.0740 (13)	0.0750 (12)	-0.0178 (10)	-0.0073 (9)	-0.0091 (10)
C1′	0.0446 (9)	0.0528 (10)	0.0402 (9)	-0.0043 (8)	-0.0018 (7)	-0.0047 (8)
C2′	0.0497 (10)	0.0523 (10)	0.0616 (12)	0.0017 (8)	-0.0004 (8)	-0.0110 (9)
C3′	0.0430 (10)	0.0652 (12)	0.0681 (13)	0.0017 (9)	0.0013 (9)	-0.0098 (10)
C4′	0.0504 (10)	0.0596 (11)	0.0489 (10)	-0.0094 (9)	-0.0037 (8)	-0.0077 (9)
C5′	0.0638 (12)	0.0512 (11)	0.0842 (15)	-0.0031 (10)	0.0050 (10)	-0.0163 (10)
C6′	0.0481 (10)	0.0614 (12)	0.0813 (14)	0.0039 (9)	0.0061 (9)	-0.0145 (11)

Geometric parameters (Å, °)

01—C4	1.241 (2)	С9—Н91	0.9600
O2—C6	1.359 (2)	С9—Н92	0.9600
O2—C9	1.412 (2)	С9—Н93	0.9600
O3—C7	1.353 (2)	C10—H101	0.9600
O3—C10	1.419 (2)	C10—H102	0.9600
N1-C2	1.360 (2)	C10—H103	0.9600
N1—C8A	1.393 (2)	C4A—C8A	1.394 (2)
N1—C1′	1.440 (2)	O1′—N1′	1.222 (2)
C2—C3	1.342 (2)	O2'—N1'	1.213 (2)
С2—Н2	0.9300	N1′—C4′	1.471 (2)
C3—C4	1.427 (3)	C1′—C2′	1.370 (2)
С3—Н3	0.9300	C1′—C6′	1.380 (3)
C4—C4A	1.461 (2)	C2'—C3'	1.376 (3)
C5—C6	1.362 (2)	C2'—H2'	0.9300
C5—C4A	1.408 (2)	C3′—C4′	1.365 (3)

С5—Н5	0.9300	C3'—H3'	0.9300
C6—C7	1.419 (2)	C4'—C5'	1.369 (3)
C7—C8	1.366 (2)	C5'—C6'	1.375 (3)
C8—C8A	1.406 (2)	C5'—H5'	0.9300
С8—Н8	0.9300	C6'—H6'	0.9300
С6—О2—С9	117.12 (15)	O3—C10—H102	109.5
C7—O3—C10	117.17 (15)	H101—C10—H102	109.5
C2—N1—C8A	120.01 (14)	O3—C10—H103	109.5
C2—N1—C1′	118.03 (14)	H101—C10—H103	109.5
C8A—N1—C1′	121.74 (14)	H102—C10—H103	109.5
C3—C2—N1	122.86 (16)	C8A—C4A—C5	118.63 (15)
С3—С2—Н2	118.6	C8A—C4A—C4	121.33 (15)
N1—C2—H2	118.6	C5—C4A—C4	120.03 (15)
C2—C3—C4	121.77 (17)	N1—C8A—C4A	119.12 (15)
С2—С3—Н3	119.1	N1—C8A—C8	120.52 (15)
C4—C3—H3	119.1	C4A - C8A - C8	120.35 (15)
01 - C4 - C3	123.65 (16)	02' - N1' - 01'	123 3 (2)
01 - C4 - C4A	121.58 (16)	02' - N1' - C4'	123.3(2) 118 15 (19)
$C_3 - C_4 - C_4 A$	114 77 (15)	01' - N1' - C4'	118 53 (19)
C6-C5-C4A	121 24 (15)	C2'-C1'-C6'	121.02(17)
C6-C5-H5	119.4	C2' - C1' - N1	119 55 (16)
C4A - C5 - H5	119.1	C6' - C1' - N1	119.35 (16)
$0^{2}-16-15$	126 29 (16)	C1'-C2'-C3'	119.35 (10)
02 - C6 - C7	120.29(10) 114.29(15)	C1' - C2' - H2'	120.4
$C_{2} = C_{0} = C_{1}$	119.43 (16)	C1'' C2'' H2''	120.4
03 - 07 - 08	124.88 (16)	$C_{4'} - C_{3'} - C_{2'}$	120.4 119 14 (17)
03 - 07 - 06	114 76 (15)	C4' - C3' - H3'	120.4
C_{8}^{-}	120.36 (16)	$C_{1}^{2} = C_{2}^{2} = H_{2}^{2}$	120.4
C_{7} C_{8} C_{8}	119.83 (16)	$C_{2}^{2} - C_{3}^{2} - H_{3}^{2}$	120.4 122.41(17)
C7 - C8 - H8	120.1	$C_{3}^{\prime} - C_{4}^{\prime} - N_{1}^{\prime}$	122.41(17) 118.02(17)
	120.1	C5' - C4' - N1'	110.02(17) 110.57(18)
02 - 0 - H91	120.1	C4' - C5' - C6'	119.37 (18)
02 - 02 - 00 - 002 - 02 - 02 - 02 - 02	109.5	C4' - C5' - C5'	120.8
H_{91} C_{9} H_{92}	109.5	$C_{4} = C_{5} = H_{5}$	120.8
$\Omega^2 - C^9 - H^{93}$	109.5	C5'-C6'-C1'	119.82 (18)
H_{91} C_{9} H_{93}	109.5	C5' - C6' - H6'	120.1
$H_{02} = C_{0} = H_{03}$	109.5	$C_{1}^{\prime} - C_{6}^{\prime} - H_{6}^{\prime}$	120.1
03 - C10 - H101	109.5	01-00-110	120.1
05	109.5		
C8A N1 C2 C3	10(3)	C1/ N1 C8A C8	-0.0(2)
$C_{0} = -C_{1} = -C_{2} = -C_{3}$	-172.90(17)	$C_1 = N_1 = C_0 = C_0$ $C_2 = C_4 = C_0 = C_0$	-177.76(15)
N1 - C2 - C3 - C4	1/2.90(17) 1.6(3)	$C4 - C4\Delta - C8A = N1$	14(2)
$C_{2}^{-}C_{3}^{-}C_{4}^{-}O_{4}^{-}$	176 06 (18)	$C_{-} C_{-} C_{-$	3 4 (2)
$C_2 = C_3 = C_4 = C_1$	-33(3)	$C_{4} - C_{4} - C_{8} - C_{8}$	-177 AA (15)
$C_2 - C_3 - C_4 - C_4 - C_4 - C_5$	-86(3)	$C_{7} = C_{7} = N_{1}$	178 84 (15)
$C_{1} = 02 = 00 = 03$	171 73 (19)	$C7 - C8 - C8 \wedge C4 \wedge$	-22(2)
$C_{1} = C_{2} = C_{1} = C_{1}$	17751(17)	$C_{1} = C_{0} = C_{0} = C_{4}$	2.3(3) -75 8(3)
01-02	1//.31(1/)	02 - 101 - 01 - 02	13.0(2)

C4A C5 C6 C7	-29(3)	C8A N1 $C1'$ $C2'$	100 47 (10)
	2.9 (3)		109.47 (19)
C10—O3—C7—C8	-9.8 (3)	C2-N1-C1'-C6'	101.0 (2)
C10—O3—C7—C6	170.42 (18)	C8A—N1—C1′—C6′	-73.7 (2)
O2—C6—C7—O3	3.4 (2)	C6'—C1'—C2'—C3'	-1.3 (3)
C5—C6—C7—O3	-176.25 (17)	N1—C1′—C2′—C3′	175.48 (17)
O2—C6—C7—C8	-176.36 (18)	C1'—C2'—C3'—C4'	0.7 (3)
C5—C6—C7—C8	4.0 (3)	C2'—C3'—C4'—C5'	0.1 (3)
O3—C7—C8—C8A	178.89 (17)	C2'—C3'—C4'—N1'	179.83 (18)
C6—C7—C8—C8A	-1.4 (3)	O2'—N1'—C4'—C3'	-175.7 (2)
C6—C5—C4A—C8A	-0.8 (2)	O1'—N1'—C4'—C3'	2.5 (3)
C6—C5—C4A—C4	-179.93 (16)	O2'—N1'—C4'—C5'	4.1 (3)
O1—C4—C4A—C8A	-177.59 (16)	O1'—N1'—C4'—C5'	-177.7 (2)
C3—C4—C4A—C8A	1.8 (2)	C3'—C4'—C5'—C6'	-0.2 (3)
O1—C4—C4A—C5	1.6 (2)	N1'-C4'-C5'-C6'	179.99 (19)
C3—C4—C4A—C5	-179.05 (16)	C4'—C5'—C6'—C1'	-0.4 (3)
C2—N1—C8A—C4A	-3.3 (2)	C2'—C1'—C6'—C5'	1.1 (3)
C1'—N1—C8A—C4A	171.27 (15)	N1—C1′—C6′—C5′	-175.66 (18)
C2—N1—C8A—C8	175.52 (16)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C2'—H2'…O1 ⁱ	0.93	2.53	3.320 (2)	143
C10—H103…O1′ ⁱⁱ	0.96	2.60	3.512 (3)	160

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) -*x*, -*y*+1, -*z*+1.