

Received 13 February 2017 Accepted 19 February 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; tetrakis-thioethersubstituted pyrazines; silver(I) nitrate; metalorganic chain (MOC); metal-organic network (MON); metal-organic framework (MOF); C— H···O and C—H···S hydrogen bonds.

CCDC references: 1533573; 1533572; 1533571

Supporting information: this article has supporting information at journals.iucr.org/e

Silver(I) nitrate complexes of three tetrakis-thioether-substituted pyrazine ligands: metal-organic chain, network and framework structures

Tokouré Assoumatine^a and Helen Stoeckli-Evans^{b*}

^aCanAm Bioresearch Inc., 9-1250 Waverley Street, Winnipeg, Manitoba R3T 6C6, Canada, and ^bInstitute of Physics, University of Neuchâtel, rue Emile-Argand11, CH-2000 Neuchâtel, Switzerland. *Correspondence e-mail: helen.stoeckli-evans@unine.ch

The reaction of the ligand 2,3,5,6-tetrakis[(methylsulfanyl)methyl]pyrazine (L1) with silver(I) nitrate led to $\{[Ag(C_{12}H_{20}N_2S_4)](NO_3)\}_n$, (I), catena-poly[[sil $ver(I)-\mu-2,3,5,6$ -tetrakis[(methylsulfanyl)methyl]pyrazine] nitrate], a compound with a metal-organic chain structure. The asymmetric unit is composed of two half ligands, located about inversion centres, with one ligand coordinating to the silver atoms in a bis-tridentate manner and the other in a bis-bidentate manner. The charge on the metal atom is compensated for by a free nitrate anion. Hence, the silver atom has a fivefold S₃N₂ coordination sphere. The reaction of the ligand 2,3,5,6-tetrakis[(phenylsulfanyl)methyl]pyrazine (L2) with silver(I) nitrate, led to $[Ag_2(NO_3)_2(C_{32}H_{28}N_2S_4)]_n$, (II), poly[di- μ -nitrato-bis{ μ -2,3,5,6tetrakis[(phenylsulfanyl)methyl]pyrazine}disilver], a compound with a metalorganic network structure. The asymmetric unit is composed of half a ligand, located about an inversion centre, that coordinates to the silver atoms in a bistridentate manner. The nitrate anion coordinates to the silver atom in a bidentate/monodentate manner, bridging the silver atoms, which therefore have a sixfold S_2NO_3 coordination sphere. The reaction of the ligand 2,3,5,6tetrakis[(pyridin-2-ylsulfanyl)methyl]pyrazine (L3) with silver(I) nitrate led to $[Ag_3(NO_3)_3(C_{28}H_{24}N_6S_4)]_n$, (III), poly[trinitrato{ μ_6 -2,3,5,6-tetrakis[(pyridin-2ylsulfanyl)methyl]pyrazine{trisilver(I)], a compound with a metal-organic framework structure. The asymmetric unit is composed of half a ligand, located about an inversion centre, that coordinates to the silver atoms in a bis-tridentate manner. One pyridine N atom bridges the monomeric units, so forming a chain structure. Two nitrate O atoms also coordinate to this silver atom, hence it has a sixfold $S_2N_2O_2$ coordination sphere. The chains are linked via a second silver atom, located on a twofold rotation axis, coordinated by the second pyridine N atom. A second nitrate anion, also lying about the twofold rotation axis, coordinates to this silver atom via an Ag-O bond, hence this second silver atom has a threefold N_2O coordination sphere. In the crystal of (I), the nitrate anion plays an essential role in forming C-H···O hydrogen bonds that link the metal-organic chains to form a three-dimensional supramolecular structure. In the crystal of (II), the metal-organic networks (lying parallel to the bc plane) stack up the *a*-axis direction but there are no significant intermolecular interactions present between the layers. In the crystal of (III), there are a number of $C-H \cdots O$ hydrogen bonds present within the metal-organic framework. The role of the nitrate anion in the formation of the coordination polymers is also examined.

1. Chemical context

A series of tetrakis-thioether pyrazine ligands have been prepared in order to study their coordination behaviour with various transition metals (Assoumatine, 1999). The ligands 2,3,5,6-tetrakis[(methylsulfanyl)methyl]pyrazine (L1), 2,3,5,6-

tetrakis[(phenylsulfanyl)methyl]pyrazine (L2) and 2,3,5,6tetrakis[(pvridin-2-vlsulfanvl)methvl]pvrazine (L3). were synthesized by the reaction of 2,3,5,6-tetrakis(bromomethyl)pyrazine (Assoumatine & Stoeckli-Evans, 2014b), with the appropriate 2-mercapto derivative. Their crystal structures and syntheses have been reported previously: L1 (Assoumatine & Stoeckli-Evans, 2014a), L2 (Assoumatine et al., 2007) and L3 (Assoumatine & Stoeckli-Evans, 2016). The reaction of similar ligands with various silver(I) salts have also resulted in the formation of coordination polymers. For example, 2-{[(pyridin-4-ylmethyl)sulfanyl]methyl}pyrazine (Black & Hanton, 2007) led to metal-organic frameworks, while ligands 2,3-bis{[(pyridin-2-ylmethyl)sulfanyl]methyl}pyrazine (Caradoc-Davies & Hanton, 2001) and 2,5-bis{[(pyridin-2-ylmethyl)sulfanyl]methyl}pyrazine (Caradoc-Davies et al., 2001) both resulted in compounds with metal-organic chains.

2. Structural commentary

The reaction of the ligand 2,3,5,6-tetrakis[(methylsulfanyl)methyl]pyrazine (L1) with silver(I) nitrate, led to the formation of a metal-organic chain (MOC) structure, (I) (Fig. 1). Selected bond lengths and angles involving the Ag1 atom are given in Table 1. The asymmetric unit is composed of two half ligands, located about inversion centres, with one ligand coordinating to the silver atom in a bis-tridentate manner and the other in a bis-bidentate manner. Their pyrazine rings are almost normal to one another, making a dihedral angle of 88.6 $(2)^{\circ}$. The charge on the metal atom is compensated for by a free nitrate anion. The silver atom, Ag1, has a fivefold S_3N_2 coordination sphere with a highly distorted shape and a τ_5 value of 0.63 ($\tau_5 = 0$ for an ideal square-pyramidal coordination sphere, and = 1 for an ideal trigonal-pyramidal coordination sphere; Addison et al., 1984). Within the MOC structure, there are significant $C-H \cdots S$ interactions present, involving the thioether substituent that does not coordinate to the silver atom, viz. atom S3 (Table 4 and Fig. 1).

The reaction of the ligand 2,3,5,6-tetrakis[(phenyl-sulfanyl)methyl]pyrazine (L2) with silver(I) nitrate, led to the

The molecular entities of compound (I), with atom labelling for the asymmetric unit. Unlabelled atoms are related to labelled atoms by symmetry operation (i) = -x, -y + 1, -z + 1, for the ligand involving atom N2, and by symmetry operation (ii) = -x + 1, -y + 1, -z + 2, for the ligand involving atom N1. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular C-H···S contacts are shown as dashed lines (see Table 4).

research communications

Selected geometric parameters (Å, °) for (I).					
Ag1-N1	2.714 (4)	Ag1-S2	2.5987 (16)		
Ag1-N2	2.436 (5)	Ag1-S4 ⁱ	2.5910 (15)		
Ag1-S1	2.5895 (15)	-			
N1-Ag1-N2	167.75 (13)	N2-Ag1-S2	109.60 (11)		
N1-Ag1-S1	64.36 (9)	N2-Ag1-S4 ⁱ	77.43 (10)		
N1-Ag1-S2	72.54 (9)	S1-Ag1-S2	129.99 (5)		
$N1 - Ag1 - S4^{i}$	113.79 (9)	S1-Ag1-S4 ⁱ	111.41 (5)		
N2-Ag1-S1	107.74 (11)	S4 ⁱ -Ag1-S2	108.26 (5)		

Symmetry code: (i) -x, -y + 1, -z + 1.

Table 2

Table 1

Selected geometric parameters (Å, $^{\circ}$) for (II).

Ag1-N1	2.527 (4)	Ag1-O1	2.551 (4)
Ag1-S1	2.6560 (15)	Ag1-O2	2.507 (4)
Ag1-S2 ⁱ	2.6790 (14)	Ag1-O2 ⁱⁱ	2.539 (4)
N1-Ag1-S1	76.40 (9)	O2 ⁱⁱ -Ag1-O1	49.56 (12)
$N1 - Ag1 - S2^{i}$	70.89 (9)	O2-Ag1-S1	80.10 (11)
S1-Ag1-S2 ⁱ	146.98 (4)	O2 ⁱⁱ -Ag1-S1	101.67 (11)
O2-Ag1-N1	112.54 (12)	O1-Ag1-S1	120.09 (11)
$O2 - Ag1 - O2^{ii}$	117.32 (8)	O2-Ag1-S2 ⁱ	116.46 (10)
N1-Ag1-O2 ⁱⁱ	128.98 (12)	$O2^{ii}$ -Ag1-S2 ⁱ	95.47 (11)
O2-Ag1-O1	75.15 (13)	O1-Ag1-S2 ⁱ	92.47 (11)
N1-Ag1-O1	163.34 (14)	-	

Symmetry codes: (i) -x + 2, -y + 2, -z + 1; (ii) x, $-y + \frac{3}{2}$, $z + \frac{1}{2}$.

formation of a metal–organic network (MON) structure, (II) (Fig. 2). Selected bond lengths and angles involving atom Ag1 are given in Table 2. The asymmetric unit is composed of half a ligand, located about an inversion centre, a silver atom and a nitrate anion. The ligand coordinates to the silver atoms in a

Figure 2

The molecular entities of compound (II), with atom labelling for the asymmetric unit. For the ligand, unlabelled atoms are related to the labelled atoms by symmetry operation (i) -x + 2, -y + 2, -z + 1; other symmetry codes are (ii) x, $-y + \frac{3}{2}$, $z + \frac{1}{2}$; (iii) -x + 2, $y + \frac{1}{2}$, $-z + \frac{1}{2}$. Displacement ellipsoids are drawn at the 50% probability level.

Table 3					
Selected	geometric	parameters	(Å, '	°) for	(III)

-	-		
Ag1-N1	2.578 (3)	Ag1-011	2.700 (5)
Ag1-N2 ⁱ	2.267 (3)	Ag1-O13	2.752 (5)
Ag1-S1	2.7943 (13)	Ag2-N3	2.208 (3)
Ag1-S2 ⁱⁱ	2.6010 (11)	Ag2-O21	2.567 (5)
N1-Ag1-N2 ⁱ	155.31 (11)	S2 ⁱⁱ -Ag1-O13	120.26 (10)
S1-Ag1-S2 ⁱⁱ	122.71 (3)	O11-Ag1-N1	73.76 (11)
S1-Ag1-N1	68.98 (7)	O11-Ag1-N2 ⁱ	99.33 (12)
S1-Ag1-N2 ⁱ	96.92 (8)	O13-Ag1-N1	69.73 (11)
S2 ⁱⁱ -Ag1-N1	70.29(7)	O13-Ag1-N2 ⁱ	88.28 (12)
S2 ⁱⁱ -Ag1-N2 ⁱ	133.03 (8)	O11-Ag1-O13	45.99 (14)
S1-Ag1-O11	122.18 (10)	N3-Ag2-N3 ⁱⁱⁱ	175.41 (12)
S1-Ag1-O13	79.78 (10)	O21-Ag2-N3	92.30 (9)
S2 ⁱⁱ -Ag1-O11	81.18 (10)	0	. ,

Symmetry codes: (i) -x, -y + 1, -z; (ii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$; (iii) $-x + 1, y, -z + \frac{1}{2}$.

bis-tridentate manner. The nitrate anion coordinates to the silver atom in a bidentate/monodentate manner, bridging the silver atoms, which therefore have a sixfold S_2NO_3 coordination sphere, best described as a highly distorted octahedron (Table 2).

The reaction of the ligand 2,3,5,6-tetrakis[(pyridin-2-ylsulfanyl)methyl]pyrazine (L3) with silver(I) nitrate, led to the formation of a metal-organic framework (MOF) structure, (III) (Fig. 3). Selected bond lengths and angles involving atoms Ag1 and Ag2 are given in Table 3. The asymmetric unit is composed of half a ligand, located about an inversion centre, a silver atom and a nitrate anion, plus half a second AgNO₃ unit located about a twofold rotation axis. The organic ligand coordinates to the silver atoms (Ag1), in a bis-tridentate manner. One pyridine N atom, N2, bridges the monomeric units, so forming a chain structure along the *b*-axis direction. The nitrate O atoms, O11 and O13, coordinate to silver atom Ag1, hence it has a highly distorted octahedral $S_2N_2O_2$ coordination sphere (Table 3). The chains are linked via a second silver atom, Ag2, located on a twofold rotation axis, coordinated by the second pyridine N atom, N3. A second nitrate anion, also lying about the twofold rotation axis,

The molecular entities of compound (III), with atom labelling for the asymmetric unit. For the ligand, unlabelled atoms are related to the labelled atoms by symmetry operation (ii) $-x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z; other symmetry codes are (i) -x, -y + 1, -z; (iii) -x + 1, y, $-z + \frac{1}{2}$; (iv) $x + \frac{1}{2}$, $y - \frac{1}{2}$; z. Displacement ellipsoids are drawn at the 50% probability level.

Table 4Hydrogen-bond geometry (Å, $^{\circ}$) for (I).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C9−H9C···S2	0.96	2.86	3.650 (8)	141
C11-H11A···S3	0.97	2.74	3.502 (6)	136
$C11 - H11B \cdots O13A$	0.97	2.52	3.438 (17)	157
$C2-H2A\cdots O11^{ii}$	0.97	2.55	3.460 (9)	156
$C2-H2B\cdots O12A^{iii}$	0.97	2.53	3.431 (15)	154
$C3-H3C\cdots O12A^{iii}$	0.96	2.37	3.171 (17)	141
$C3-H3C\cdots O12B^{iii}$	0.96	2.57	3.364 (16)	140
$C6-H6A\cdots O13A^{i}$	0.96	2.52	3.375 (19)	149
$C9-H9A\cdotsO11^{iv}$	0.96	2.58	3.503 (10)	162

Symmetry codes: (1) -x, -y + 1, -z + 1; (ii) x + -x + 1, -y + 1, -z + 1; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}.$

Table 5Hydrogen-bond geometry (Å, $^{\circ}$) for (III).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathrm{H} \cdots A$
C11_H11O21	0.94	2 57	3 287 (5)	133
$C3-H3B\cdots O21^{iv}$	0.98	2.40	3.253 (4)	145
$C3-H3B\cdots O22^{iv}$	0.98	2.49	3.420 (6)	158
$C7-H7\cdots O13^{v}$	0.94	2.51	3.268 (6)	138
$C9-H9A\cdots O22^{iv}$	0.98	2.32	3.291 (6)	171
$C12-H12\cdots O11^{vi}$	0.94	2.51	3.310(7)	142
$C14-H14\cdots O22^{iv}$	0.94	2.59	3.349 (7)	138

Symmetry codes: (iv) $x - \frac{1}{2}$, $y + \frac{1}{2}$, z; (v) $x + \frac{1}{2}$, $y + \frac{1}{2}$, z; (vi) -x, -y, -z.

coordinates to this silver atom *via* an Ag2-O21 bond, hence silver atom Ag2 has a T-shaped N₂O coordination sphere.

It can be seen from Tables 1–3 that the Ag-N(pyrazine)and Ag-S bond lengths differ considerably for the three compounds. In compound (I), the Ag1-N2 bond length, involving the ligand that coordinates in a bis-bidentate manner, is considerably shorter at 2.436 (5) Å, compared to the Ag1-N1 bond length of 2.714 (4) Å, involving the ligand that coordinates in a bis-tridentate manner. These Ag-N(pyrazine) bond lengths contrast with those for compounds (II) and (III), where both ligands coordinate in a bis-tridentate

Figure 4 A partial view, normal to plane $(1\overline{10})$, of the metal–organic chain structure of compound (I). The H atoms have been omitted for clarity

Figure 5

A view along the *b* axis of compound (I), with emphasis on the crystal packing. Hydrogen bonds are shown as dashed lines (see Table 4), and only those H atoms involved in intermolecular $C-H\cdots O$ hydrogen bonds have been included.

manner, with values of 2.527 (4) and 2.578 (3) Å, respectively. The Ag1-S bond lengths in compound (I) are almost the same, varying from 2.5895 (15) to 2.5987 (16) Å. These distances are shorter than those in (II), which are 2.6560 (15) and 2.6790 (14) Å, but similar to bond length $Ag1-S2^{ii}$ = 2.6010 (11) Å in (III). The longest Ag-S distance [2.7943 (13) Å] is found for bond Ag1-S1 in (III). Finally, in compound (III), the two Ag-N(pyridine) bond lengths also differ; Ag1–N2ⁱ is 2.267 (3) Å, while bond length Ag2–N3 is shorter at 2.208 (3) Å (see Table 3). Despite the large variation in the Ag-N(pyrazine), Ag-S or Ag-N(pyridine) bond lengths, which perhaps indicates how flexible the ligands are, the values are within the limits observed for similar silver coordinating pyrazine, thioether or pyridine ligands, when compared to the values observed for such structures present in the Cambridge Structural Database (Groom et al., 2016). The various histograms of the bond lengths have skewed-right distributions and the values vary from 2.10 to 2.75 Å for Ag-

Figure 6

A view along the *a* axis of compound (II), illustrating the role of the NO_3^- anion in forming the network structure. H atoms have been omitted for clarity

research communications

Figure 7

A view along the c axis of compound (III). H atoms have been omitted for clarity

N(pyrazine), from 2.48 to 2.79 Å for Ag-S, and 1.90 to 2.99 Å for Ag-N(pyridine).

3. Supramolecular features

In the crystal of (I), the metal-organic chains (Fig. 4) propagate along [101]. They are linked *via* a number of $C-H\cdots O$ hydrogen bonds (Table 4), forming a three-dimensional supramolecular structure, as illustrated in Fig. 5.

In the crystal of (II), the metal-organic networks extend parallel to the bc plane and stack up the a axis (Fig. 6), but there are no significant intermolecular interactions present between the layers.

In the crystal of (III), the metal–organic framework (Fig. 7) is reinforced by a number of $C-H\cdots O$ hydrogen bonds (Table 5). The voids in this three-dimensional structure, occupied by disordered solvent molecules, amount to only *ca* 3.7% of the total volume of the unit cell.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, first update November 2016; Groom *et al.*, 2016) for tetrakissubstituted pyrazine ligands gave 774 hits, which include 194 hits for compounds involving tetramethylpyrazine. The first such ligand, tetrakis-2,3,5,6-(2'-pyridyl)pyrazine, was synthesized by Goodwin & Lions (1959), and the crystal structures of three polymorphs have been reported; a monoclininc $P2_1/n$ polymorph (VUKGAJ01; Bock *et al.*, 1992), a tetragonal $I4_1/a$ polymorph (VUKGAJ; Greaves & Stoeckli-Evans, 1992) and a second monoclinic C2/c polymorph (VUKGAJ03; Behrens & Rehder, 2009). The most recent tetrakis-substituted pyrazine ligand to be described is N,N',N'',N'''-tetraethylpyrazine-2,3,5,6-tetracarboxamide (OSUTIH; Lohrman *et al.*, 2016). In the last update of the CSD there are a total of three tetrakissubstituted thioether pyrazine compounds, *viz*. two polymorphs of compound 2,3,5,6-tetrakis(naphthalen-2-ylsulfan-ylmethyl)pyrazine (Pacifico & Stoeckli-Evans, 2004), and the ligands **L1** and **L2**.

The role of the anion in coordination chemistry is often essential for the formation of multi-dimensional structures. The nitrate anion can be present as an isolated anion, coordinating to the metal atom or even bridging metal atoms. A search of the CSD for silver nitrate complexes vielded 2192 hits, among which it was noted that the nitrate anion can coordinate in at least 10 different manners. In the present study, three different situations are observed. In (I), the nitrate anion is present as an isolated anion. Its role here is to form $C-H \cdots O$ hydrogen bonds, resulting in the formation of a three-dimensional supramolecular structure (Fig. 5 and Table 4). In (II), the nitrate anion is essential in forming the network structure. The -Ag-L2-Ag-L2- chains, which propagate along [010], are linked by the nitrate anion in the [001] direction, so forming the metal-organic network (Fig. 6 and Table 2). Finally, there are two independent nitrate anions present in (III). They coordinate to the metal atoms in different manners, but they do not appear to be the essential elements in forming the three-dimensional framework (Fig. 7 and Table 3). Here, it is the presence of the pyridine rings, which twist about the $S-C_{ar}$ bonds, that enables the metal atoms to cross-link, so forming the metal-organic framework.

5. Synthesis and crystallization

Compound (I):

A solution of **L1** (50 mg, 0.16 mmol; Assoumatine & Stoeckli-Evans, 2014*a*) in CH₂Cl₂ (5 ml) was introduced into a 16 mm diameter glass tube and layered with MeCN (2 ml) as a buffer zone. Then a solution of AgNO₃ (27 mg, 0.16 mmol) in MeCN (5 ml) was added very gently to avoid possible mixing. The glass tube was sealed and left in the dark at room temperature for at least two weeks, whereupon yellow plate-like crystals of complex (I) were isolated at the interface between the two solutions. IR (KBr disc, cm⁻¹): v = 2985 w, 2912 w, 1406 bm, 1341 bs, 1141 w, 1115 w, 982 w, 828 w, 777 w, 701 vw, 478 vw.

Compound (II):

A solution of **L2** (50 mg, 0.09 mmol; Assoumatine *et al.*, 2007) in THF (5 ml) was introduced into a 16 mm diameter glass tube and layered with MeCN (2 ml) as a buffer zone. Then a solution of AgNO₃ (15 mg, 0.09 mmol) in MeCN (5 ml) was added very gently to avoid possible mixing. The glass tube was sealed and left in the dark at room temperature for at least three weeks, whereupon yellow block-like crystals of complex (II) were isolated from the bottom of the tube. IR (KBr disc, cm⁻¹): v = 3053 vw, 2962 vw, 2927 vw, 1583 w, 1480 w, 1386 bs, 1278 vs, 1133 vw, 1023 w, 850 vw, 738 s, 690 m, 495 vw, 478 vw.

Compound (III):

A solution of L3 (50 mg, 0.09 mmol; Assoumatine & Stoeckli-Evans, 2016) in $CHCl_3$ (5 ml) was introduced into a 16 mm diameter glass tube and layered with MeCN (2 ml) as a

Table 6Experimental details.

	(I)	(II)	(III)
Crystal data			
Chemical formula	$[Ag(C_{12}H_{20}N_2S_4](NO_3)$	$[Ag_{2}(NO_{3})_{2}(C_{32}H_{28}N_{2}S_{4})]$	$[Ag_3(NO_3)_3(C_{28}H_{24}N_6S_4)]$
M_r	490.42	908.56	1082.41
Crystal system, space group	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/c$	Monoclinic, C2/c
Temperature (K)	293	293	223
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.167 (2), 13.482 (3), 13.377 (3)	11.8437 (14), 18.5674 (14), 7.8444 (12)	13.6319 (9), 16.2211 (10), 15.7201 (11)
β (°)	100.838 (19)	96.856 (11)	96.607 (8)
$V(Å^3)$	1800.9 (7)	1712.7 (4)	3453.0 (4)
Ζ	4	2	4
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	1.60	1.44	1.99
Crystal size (mm)	$0.61 \times 0.61 \times 0.17$	$0.46 \times 0.46 \times 0.38$	$0.45 \times 0.08 \times 0.08$
Data collection			
Diffractometer	Stoe AED2 4-circle	Stoe AED2 4-circle	STOE IPDS1
Absorption correction	Analytical (ABST; Spek, 2009)	_	Multi-scan (MULABS; Spek, 2009)
T_{\min}, \hat{T}_{\max}	0.457, 0.789	_	0.949, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	3318, 3318, 2857	3178, 3178, 2606	13264, 3311, 1936
R _{int}	0	0	0.072
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.607	0.606	0.614
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.056, 0.161, 1.09	0.045, 0.100, 1.16	0.030, 0.052, 0.76
No. of reflections	3318	3178	3311
No. of parameters	207	218	242
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	1.97, -1.50	0.62, -0.61	0.43, -0.44

Computer programs: STAD14 and X-RED (Stoe & Cie, 1997), EXPOSE, CELL and INTEGRATE in IPDS-I (Stoe & Cie, 1998), SHELXS97 (Sheldrick, 2008), SHELXL2014/6 (Sheldrick, 2015), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publicIF (Westrip, 2010).

buffer zone. Then a solution of AgNO₃ (15 mg, 0.09 mmol) in MeCN (5 ml) was added very gently to avoid possible mixing. The glass tube was sealed and left in the dark at room temperature for at least two weeks, whereupon pale-yellow needle-like crystals of complex (III) were isolated at the interface between the two solutions. IR (KBr disc, cm⁻¹): v = 3097 vw, 2899 vw, 1581 m, 1562 w, 1460 m, 1386 bs, 1305 bs, 1163 w, 1126 w, 1032 vw, 1004 vw, 825 vw, 759 m, 723 vw, 461vw.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6. Complexes (I) and (II) were measured at 293 K on a four-circle diffractometer, while complex (III) was measured at 223 K on a one-circle imageplate diffractometer. In complex (I), the nitrate ion is positionally disordered and atoms O12A/O12B and O13A/O13B were refined with a fixed occupancy ratio of 0.5:0.5. No absorption correction was applied for complex (II) owing to the irregular shape of the crystal, and as there were no suitable reflections for ψ scans. For complex (III), a region of disordered electron density (25 electrons for a solvent-accessible volume of 130 Å³) was corrected for using the SQUEEZE routine in *PLATON* (Spek, 2015). Their formula mass and unit-cell characteristics were not taken into account for the final model. For complexs (I) and (II), only one equivalent of data were measured, hence $R_{int} = 0$. In all three complexes, the H atoms were included in calculated positions and refined as riding: C-H = 0.96–0.97 Å for (I), 0.93–0.97 Å for (II) and 0.94–0.98 Å for (III), with $U_{iso}(H) = 1.5U_{eq}(C-methyl)$ and $1.2U_{eq}(C)$ for other H atoms.

Funding information

Funding for this research was provided by: Swiss National Science Foundation; University of Neuchâtel.

References

- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Assoumatine, T. (1999). PhD thesis, University of Neuchâtel, Switzerland.
- Assoumatine, T., Gasser, G. & Stoeckli-Evans, H. (2007). Acta Cryst. C63, o219–o222.
- Assoumatine, T. & Stoeckli-Evans, H. (2014a). Acta Cryst. E70, 51–53.
- Assoumatine, T. & Stoeckli-Evans, H. (2014*b*). Acta Cryst. E**70**, 0887–0888.
- Assoumatine, T. & Stoeckli-Evans, H. (2016). *IUCrData*, **1**, x161977. Behrens, A. & Rehder, D. (2009). Private Communication (CCDC
- No. 261615, refcode VUKGAJ03). CCDC, Cambridge, England.
- Black, C. A. & Hanton, L. R. (2007). *Cryst. Growth Des.* 7, 1868–1871.
 Bock, H., Vaupel, T., Näther, C., Ruppert, K. & Havlas, Z. (1992). *Angew. Chem. Int. Ed. Engl.* 31, 299–301.
- Caradoc-Davies, P. L. & Hanton, L. R. (2001). Chem. Commun. pp. 1098–1099.

research communications

- Caradoc-Davies, P. L., Hanton, L. R. & Henderson, W. (2001). J. Chem. Soc. Dalton Trans. pp. 2749–2755.
- Goodwin, H. A. & Lions, F. (1959). J. Am. Chem. Soc. 81, 6415-6422.
- Greaves, B. & Stoeckli-Evans, H. (1992). Acta Cryst. C48, 2269-2271.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B**72**, 171–179.
- Lohrman, J., Telikepalli, H., Johnson, T. S., Jackson, T. A., Day, V. W. & Bowman-James, K. (2016). *Inorg. Chem.* **55**, 5098–5100.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Pacifico, J. & Stoeckli-Evans, H. (2004). Acta Cryst. C60, o152-o155.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.
- Stoe & Cie (1998). *IPDS-I Bedienungshandbuch*. Stoe & Cie GmbH, Darmstadt, Germany.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2017). E73, 434-440 [https://doi.org/10.1107/S2056989017002791]

Silver(I) nitrate complexes of three tetrakis-thioether-substituted pyrazine ligands: metal-organic chain, network and framework structures

Tokouré Assoumatine and Helen Stoeckli-Evans

Computing details

Data collection: *STADI4* (Stoe & Cie, 1997) for (I), (II); *EXPOSE* in *IPDS-I* (Stoe & Cie, 1998) for (III). Cell refinement: *STADI4* (Stoe & Cie, 1997) for (I), (II); *CELL* in *IPDS-I* (Stoe & Cie, 1998) for (III). Data reduction: *X-RED* (Stoe & Cie, 1997) for (I), (II); *INTEGRATE* in *IPDS-I* (Stoe & Cie, 1998) for (III). For all compounds, program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014/6* (Sheldrick, 2015); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2014/6* (Sheldrick, 2015), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

(I) catena-Poly[[silver(I)-µ-2,3,5,6-tetrakis[(methylsulfanyl)methyl]pyrazine] nitrate]

Crystal data

[Ag(C₁₂H₂₀N₂S₄](NO₃) $M_r = 490.42$ Monoclinic, $P2_1/n$ a = 10.167 (2) Å b = 13.482 (3) Å c = 13.377 (3) Å $\beta = 100.838$ (19)° V = 1800.9 (7) Å³ Z = 4

Data collection

Stoe AED2 4-circle diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: analytical (*ABST*; Spek, 2009) $T_{\rm min} = 0.457, T_{\rm max} = 0.789$ 3318 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.161$ S = 1.093318 reflections F(000) = 992 $D_x = 1.809 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 31 reflections $\theta = 14.1-19.7^{\circ}$ $\mu = 1.60 \text{ mm}^{-1}$ T = 293 KPlate, yellow $0.61 \times 0.61 \times 0.17 \text{ mm}$

3318 independent reflections 2857 reflections with $I > 2\sigma(I)$ $R_{int} = 0.000$ $\theta_{max} = 25.6^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -11 \rightarrow 12$ $k = 0 \rightarrow 16$ $l = 0 \rightarrow 16$ 2 standard reflections every 120 min intensity decay: 5%

207 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0974P)^2 + 4.9525P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$

Special details

$$\begin{split} &\Delta\rho_{\rm max} = 1.97~{\rm e~\AA^{-3}}\\ &\Delta\rho_{\rm min} = -1.50~{\rm e~\AA^{-3}}\\ &\rm Extinction~correction:~SHELXL-2016/6\\ &({\rm Sheldrick~2015}),\\ &{\rm Fc^*}{=}{\rm kFc}[1{+}0.001{\rm xFc^2}\lambda^3/{\rm sin}(2\theta)]^{-1/4}\\ &\rm Extinction~coefficient:~0.0035~(8) \end{split}$$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

				TT	
	X	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Ag1	0.23796 (5)	0.48987 (4)	0.75616 (3)	0.0401 (2)	
S 1	0.43682 (14)	0.37806 (10)	0.73224 (10)	0.0323 (3)	
S2	0.11067 (14)	0.50053 (10)	0.90707 (11)	0.0320 (3)	
S3	-0.06264 (16)	0.24651 (10)	0.63652 (12)	0.0413 (4)	
S4	-0.26369 (13)	0.33208 (10)	0.31050 (10)	0.0330 (3)	
N1	0.4152 (4)	0.4454 (3)	0.9286 (3)	0.0292 (9)	
N2	0.0779 (5)	0.4916 (3)	0.5959 (4)	0.0282 (10)	
C1	0.5407 (5)	0.4649 (4)	0.9166 (4)	0.0272 (11)	
C2	0.5796 (6)	0.4261 (5)	0.8198 (4)	0.0360 (13)	
H2A	0.645719	0.373887	0.836842	0.043*	
H2B	0.620036	0.479211	0.787138	0.043*	
C3	0.4998 (7)	0.3836 (5)	0.6154 (5)	0.0486 (16)	
H3A	0.430481	0.364140	0.559808	0.073*	
H3B	0.574665	0.339421	0.619518	0.073*	
H3C	0.527752	0.450091	0.604654	0.073*	
C4	0.3736 (5)	0.4814 (4)	1.0107 (4)	0.0268 (11)	
C5	0.2294 (5)	0.4566 (4)	1.0169 (4)	0.0322 (11)	
H5A	0.207925	0.486153	1.078010	0.039*	
H5B	0.220455	0.385218	1.022356	0.039*	
C6	0.1099 (7)	0.6312 (5)	0.9332 (6)	0.0512 (16)	
H6A	0.047093	0.663787	0.880930	0.077*	
H6B	0.197800	0.657895	0.934761	0.077*	
H6C	0.084358	0.641823	0.997925	0.077*	
C7	0.0317 (5)	0.4104 (4)	0.5426 (4)	0.0273 (10)	
C10	-0.0478 (5)	0.4186 (4)	0.4465 (4)	0.0265 (10)	
C11	-0.0956 (5)	0.3274 (4)	0.3842 (4)	0.0334 (12)	
H11A	-0.089767	0.271140	0.430044	0.040*	
H11B	-0.034496	0.315052	0.337994	0.040*	
C8	0.0713 (5)	0.3120 (4)	0.5925 (4)	0.0313 (11)	
H8A	0.143563	0.322787	0.650060	0.038*	
H8B	0.105664	0.270039	0.544339	0.038*	
C9	-0.0972 (9)	0.3316 (5)	0.7311 (6)	0.062 (2)	
H9A	-0.161874	0.302866	0.766452	0.093*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H9B	-0.132267	0.392150	0.698934	0.093*		
H9C	-0.016152	0.345284	0.778694	0.093*		
C12	-0.3592 (7)	0.3497 (6)	0.4101 (6)	0.0569 (18)		
H12A	-0.451820	0.359680	0.380318	0.085*		
H12B	-0.326070	0.406797	0.449937	0.085*		
H12C	-0.350633	0.292137	0.453042	0.085*		
N10	0.2281 (6)	0.3702 (5)	0.3423 (5)	0.0544 (15)		
011	0.2331 (7)	0.2979 (5)	0.3953 (5)	0.0842 (13)		
012A	0.2834 (16)	0.4447 (11)	0.3565 (11)	0.0842 (13)	0.5	
013A	0.1631 (17)	0.3451 (10)	0.2526 (12)	0.0842 (13)	0.5	
O12B	0.2588 (16)	0.4507 (11)	0.4035 (11)	0.0842 (13)	0.5	
O13B	0.1847 (18)	0.3871 (10)	0.2537 (12)	0.0842 (13)	0.5	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.0397 (3)	0.0501 (3)	0.0284 (3)	0.00285 (18)	0.0014 (2)	0.00409 (17)
S1	0.0349 (7)	0.0359 (7)	0.0280 (7)	-0.0023 (5)	0.0105 (5)	-0.0025 (5)
S2	0.0243 (7)	0.0424 (8)	0.0293 (7)	-0.0031 (5)	0.0056 (5)	-0.0003(5)
S3	0.0473 (9)	0.0327 (7)	0.0422 (8)	-0.0100 (6)	0.0044 (7)	0.0024 (6)
S4	0.0312 (7)	0.0361 (7)	0.0315 (7)	-0.0046 (5)	0.0056 (5)	-0.0069(5)
N1	0.022 (2)	0.040(2)	0.027 (2)	-0.0010 (18)	0.0078 (18)	-0.0002 (18)
N2	0.030(2)	0.029 (2)	0.027 (2)	0.0020 (17)	0.0065 (19)	-0.0017 (16)
C1	0.028 (3)	0.035 (3)	0.020 (2)	0.005 (2)	0.007 (2)	0.0033 (19)
C2	0.029 (3)	0.054 (3)	0.029 (3)	0.002 (2)	0.016 (2)	-0.006(2)
C3	0.061 (4)	0.056 (4)	0.031 (3)	-0.010 (3)	0.017 (3)	-0.011 (3)
C4	0.022 (3)	0.037 (3)	0.023 (2)	0.005 (2)	0.007 (2)	0.004 (2)
C5	0.023 (3)	0.041 (3)	0.034 (3)	-0.005 (2)	0.010 (2)	0.005 (2)
C6	0.060 (4)	0.038 (3)	0.059 (4)	0.003 (3)	0.022 (3)	0.004 (3)
C7	0.025 (2)	0.028 (2)	0.030 (3)	-0.0005 (19)	0.008 (2)	-0.002(2)
C10	0.024 (2)	0.028 (2)	0.028 (2)	0.0012 (19)	0.007 (2)	-0.002 (2)
C11	0.031 (3)	0.033 (3)	0.034 (3)	0.000 (2)	0.001 (2)	-0.009(2)
C8	0.034 (3)	0.031 (3)	0.027 (3)	0.001 (2)	0.000(2)	0.003 (2)
С9	0.077 (5)	0.046 (4)	0.076 (5)	-0.009(3)	0.047 (4)	-0.005 (4)
C12	0.056 (4)	0.062 (4)	0.063 (4)	-0.006 (3)	0.036 (4)	-0.003 (3)
N10	0.038 (3)	0.061 (4)	0.068 (4)	-0.006 (3)	0.020 (3)	0.006 (3)
O11	0.109 (4)	0.071 (3)	0.076 (3)	-0.016 (3)	0.026 (3)	0.011 (3)
O12A	0.109 (4)	0.071 (3)	0.076 (3)	-0.016 (3)	0.026 (3)	0.011 (3)
O13A	0.109 (4)	0.071 (3)	0.076 (3)	-0.016 (3)	0.026 (3)	0.011 (3)
O12B	0.109 (4)	0.071 (3)	0.076 (3)	-0.016 (3)	0.026 (3)	0.011 (3)
O13B	0.109 (4)	0.071 (3)	0.076 (3)	-0.016 (3)	0.026 (3)	0.011 (3)

Geometric parameters (Å, °)

Ag1—N1	2.714 (4)	C4—C5	1.522 (7)
Ag1—N2	2.436 (5)	С5—Н5А	0.9700
Ag1—S1	2.5895 (15)	С5—Н5В	0.9700
Ag1—S2	2.5987 (16)	С6—Н6А	0.9600

Ag1—S4 ⁱ	2.5910 (15)	С6—Н6В	0.9600
S1—C3	1.798 (6)	С6—Н6С	0.9600
S1—C2	1.805 (6)	C7—C10	1.389 (7)
S2—C6	1.797 (7)	C7—C8	1.506 (7)
S2—C5	1.817 (6)	C10—C11	1.513 (7)
S3—C9	1.791 (7)	C11—H11A	0.9700
S3—C8	1.812 (6)	C11—H11B	0.9700
S4—C11	1 806 (5)	C8—H8A	0 9700
S4—C12	1 806 (7)	C8—H8B	0.9700
N1—C4	1.341(7)	C9H9A	0.9600
N1_C1	1.341(7) 1 342(7)	C9_H9B	0.9600
N2 C7	1.342(7) 1.342(7)	C_{0} H0C	0.9600
$N_2 = C_1^{0i}$	1.342(7) 1.248(6)		0.9000
$N_2 = C_{10}$	1.340(0) 1.281(8)	C12 - H12R	0.9000
C1 = C2	1.581 (8)		0.9600
	1.517(7)	C12—H12C	0.9600
C2—H2A	0.9700	N10-012A	1.148 (15)
C2—H2B	0.9700	N10—011	1.202 (8)
C3—H3A	0.9600	N10—O13B	1.205 (17)
С3—Н3В	0.9600	N10—O13A	1.301 (17)
С3—Н3С	0.9600	N10—O12B	1.360 (16)
N1—Ag1—N2	167.75 (13)	С4—С5—Н5В	109.1
N1—Ag1—S1	64.36 (9)	S2—C5—H5B	109.1
N1—Ag1—S2	72.54 (9)	H5A—C5—H5B	107.8
$N1 - Ag1 - S4^{i}$	113.79 (9)	S2—C6—H6A	109.5
N2—Ag1—S1	107.74 (11)	S2—C6—H6B	109.5
N2—Ag1—S2	109.60 (11)	H6A—C6—H6B	109.5
$N2 - Ag1 - S4^{i}$	77.43 (10)	S2—C6—H6C	109.5
S1 - Ag1 - S2	129.99 (5)	Н6А—С6—Н6С	109.5
$S1 - Ag1 - S4^{i}$	111.41 (5)	H6B—C6—H6C	109.5
$S4^{i}$ Ag1 S2	108 26 (5)	N_{2} C_{7} C_{10}	120.8 (5)
$C_{3}=S_{1}=C_{2}$	100.20(0)	N_{2} C7 C8	1165(4)
$C_3 = S_1 = A_g_1$	1108(2)	$C_{10} - C_{7} - C_{8}$	122.8(4)
$C_2 = S_1 + A_{g1}$	115.0(2) 105.22(10)	$N2^{i}$ C10 C7	122.0(4)
C_{2} C_{3} C_{5}	100.22(1)) 100.9(3)	$N2^{i}$ C10 C11	120.3(4)
$C_{0} = S_{2} = C_{3}$	100.9(3) 103.1(2)	$C_{7} = C_{10} = C_{11}$	110.3(3) 121.1(4)
C_{0} S_{2} A_{g1}	103.1(2) 104.08(18)	$C_1 = C_1 = C_1 = C_1$	121.1(4)
$C_3 = S_2 = Ag_1$	104.90(10) 100.2(2)	C10 - C11 - 54	108.2
$C_{9} = S_{3} = C_{8}$	100.2(3)	CIU—CII—HIIA	108.2
C11 = S4 = C12	100.8(3)	S4—CII—HIIA	108.2
C12 = C12 = C12 = C12	94.24 (19)	CIO-CII-HIIB	108.2
C12—S4—Ag1 ⁴	103.6 (3)	S4—CII—HIIB	108.2
C4—N1—C1	118.7 (5)	H11A—C11—H11B	107.3
$C7-N2-C10^{1}$	118.7 (5)	C7—C8—S3	114.8 (4)
C7—N2—Ag1	124.7 (3)	С7—С8—Н8А	108.6
C10 ⁱ —N2—Ag1	116.1 (3)	S3—C8—H8A	108.6
N1-C1-C4 ⁱⁱ	120.5 (5)	С7—С8—Н8В	108.6
N1—C1—C2	116.1 (5)	S3—C8—H8B	108.6
$C4^{ii}$ — $C1$ — $C2$	123.4 (5)	H8A—C8—H8B	107.6

C1—C2—S1	111.8 (4)	S3—C9—H9A	109.5
C1—C2—H2A	109.3	S3—C9—H9B	109.5
S1—C2—H2A	109.3	H9A—C9—H9B	109.5
C1—C2—H2B	109.3	S3—C9—H9C	109.5
S1—C2—H2B	109.3	H9A—C9—H9C	109.5
H2A—C2—H2B	107.9	H9B—C9—H9C	109.5
S1—C3—H3A	109.5	S4—C12—H12A	109.5
S1—C3—H3B	109.5	S4—C12—H12B	109.5
НЗА—СЗ—НЗВ	109.5	H12A—C12—H12B	109.5
S1—C3—H3C	109.5	S4—C12—H12C	109.5
НЗА—СЗ—НЗС	109.5	H12A—C12—H12C	109.5
НЗВ—СЗ—НЗС	109.5	H12B—C12—H12C	109.5
N1-C4-C1 ⁱⁱ	120.8 (5)	O12A—N10—O11	130.3 (10)
N1—C4—C5	114.9 (5)	O11—N10—O13B	134.4 (9)
C1 ⁱⁱ —C4—C5	124.3 (5)	O12A-N10-O13A	121.9 (11)
C4—C5—S2	112.6 (4)	O11—N10—O13A	106.9 (8)
C4—C5—H5A	109.1	O11—N10—O12B	108.2 (8)
S2—C5—H5A	109.1	O13B-N10-O12B	116.2 (10)
C4—N1—C1—C4 ⁱⁱ	1.9 (8)	C10 ⁱ —N2—C7—C8	178.5 (5)
C4—N1—C1—C2	-177.3 (5)	Ag1—N2—C7—C8	7.0 (6)
N1-C1-C2-S1	9.1 (6)	N2-C7-C10-N2 ⁱ	1.3 (8)
$C4^{ii}$ — $C1$ — $C2$ — $S1$	-170.1 (4)	C8-C7-C10-N2 ⁱ	-178.4 (5)
C3—S1—C2—C1	159.3 (4)	N2-C7-C10-C11	177.5 (5)
Ag1—S1—C2—C1	34.5 (4)	C8—C7—C10—C11	-2.3 (8)
C1-N1-C4-C1 ⁱⁱ	-1.9 (8)	N2 ⁱ —C10—C11—S4	-41.6 (6)
C1—N1—C4—C5	179.2 (5)	C7—C10—C11—S4	142.1 (4)
N1—C4—C5—S2	-58.1 (6)	C12—S4—C11—C10	-60.4 (5)
C1 ⁱⁱ —C4—C5—S2	123.1 (5)	Ag1 ⁱ —S4—C11—C10	44.3 (4)
C6—S2—C5—C4	-74.8 (5)	N2—C7—C8—S3	107.7 (5)
Ag1—S2—C5—C4	32.1 (4)	C10—C7—C8—S3	-72.5 (6)
C10 ⁱ —N2—C7—C10	-1.3 (8)	C9—S3—C8—C7	-63.6 (5)
Ag1—N2—C7—C10	-172.8 (4)		

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H···A
C9—H9 <i>C</i> ···S2	0.96	2.86	3.650 (8)	141
C11—H11A····S3	0.97	2.74	3.502 (6)	136
C11—H11 <i>B</i> ···O13 <i>A</i>	0.97	2.52	3.438 (17)	157
C2—H2A···O11 ⁱⁱⁱ	0.97	2.55	3.460 (9)	156
C2—H2 <i>B</i> ···O12 <i>A</i> ^{iv}	0.97	2.53	3.431 (15)	154
C3—H3 <i>C</i> ···O12 <i>A</i> ^{iv}	0.96	2.37	3.171 (17)	141
C3—H3 <i>C</i> ···O12 <i>B</i> ^{iv}	0.96	2.57	3.364 (16)	140

C6—H6 <i>A</i> ···O13 <i>A</i> ⁱ	0.96	2.52	3.375 (19)	149
С9—Н9А…О11 ^v	0.96	2.58	3.503 (10)	162

F(000) = 908

Symmetry codes: (i) -x, -y+1, -z+1; (iii) x+1/2, -y+1/2, z+1/2; (iv) -x+1, -y+1, -z+1; (v) x-1/2, -y+1/2, z+1/2.

(II) Poly[di-µ-nitrato-bis{µ-2,3,5,6-tetrakis[(phenylsulfanyl)methyl]pyrazine}disilver]

Crystal data

 $[Ag_{2}(NO_{3})_{2}(C_{32}H_{28}N_{2}S_{4})]$ $M_{r} = 908.56$ Monoclinic, $P2_{1}/c$ a = 11.8437 (14) Å b = 18.5674 (14) Å c = 7.8444 (12) Å $\beta = 96.856 (11)^{\circ}$ $V = 1712.7 (4) Å^{3}$ Z = 2

Data collection

Stoe AED2 4-circle diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans 3178 measured reflections 3178 independent reflections 2606 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.100$ S = 1.163178 reflections 218 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map $D_x = 1.762 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 24 reflections $\theta = 11.2-17.7^{\circ}$ $\mu = 1.44 \text{ mm}^{-1}$ T = 293 KBlock, pale yellow $0.46 \times 0.46 \times 0.38 \text{ mm}$

$R_{int} = 0.0$ $\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -9 \rightarrow 9$ $k = 0 \rightarrow 22$ $l = 0 \rightarrow 14$ 2 standard reflections every 120 min intensity decay: 2%

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0308P)^2 + 3.2342P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.62$ e Å⁻³ $\Delta\rho_{min} = -0.61$ e Å⁻³ Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0018 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F 1		1	1	• , •		• 1 /	• , •	1. 1	,	,	18	21
Fractional	atomic	coordinates	and	isofronic i	or e	auivalent	isofronic	displa	cement	narameters	IA^4	-)
i i actionat	aronne	coordinates		ison opic .	01 0	quiraction	isonopie	anspia	content	parameters	(**	/

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ag1	1.03726 (4)	0.81386 (2)	0.31389 (6)	0.05335 (17)	
S1	0.82101 (11)	0.85133 (7)	0.23374 (16)	0.0473 (3)	
S2	0.75690 (11)	1.14870 (6)	0.53250 (17)	0.0458 (3)	

01	1.0997 (4)	0.6845 (2)	0.2690 (5)	0.0699 (12)
O2	1.0189 (4)	0.7981 (2)	-0.0056 (5)	0.0671 (11)
O3	1.0734 (4)	0.5953 (2)	0.4353 (5)	0.0786 (13)
N1	1.0335 (3)	0.94469 (19)	0.4019 (4)	0.0368 (8)
N10	1.0647 (4)	0.6592 (2)	0.4005 (5)	0.0464 (10)
C1	0.9323 (4)	0.9750 (2)	0.3633 (5)	0.0354 (10)
C2	0.8967 (4)	1.0317 (2)	0.4638 (5)	0.0365 (10)
C3	0.8593 (4)	0.9458 (2)	0.2087 (6)	0.0435 (11)
H3A	0.8998	0.9505	0.1089	0.052*
H3B	0.7904	0.9743	0.1886	0.052*
C4	0.7519 (4)	0.8528 (3)	0.4246 (6)	0.0446 (11)
C5	0.8133 (5)	0.8402 (3)	0.5828 (7)	0.0529 (13)
Н5	0.8919	0.8349	0.5915	0.063*
C6	0.7584 (6)	0.8354 (3)	0.7273 (7)	0.0625 (15)
Н6	0.8002	0.8266	0.8332	0.075*
C7	0.6437 (6)	0.8435 (4)	0.7171 (9)	0.0738 (18)
H7	0.6072	0.8402	0.8154	0.089*
C8	0.5828 (6)	0.8564 (5)	0.5616 (10)	0.091 (2)
H8	0.5044	0.8621	0.5545	0.110*
C9	0.6358 (5)	0.8613 (4)	0.4139 (9)	0.0767 (19)
Н9	0.5933	0.8701	0.3084	0.092*
C10	0.7834 (4)	1.0681 (2)	0.4170 (6)	0.0406 (10)
H10A	0.7241	1.0337	0.4334	0.049*
H10B	0.7763	1.0797	0.2957	0.049*
C11	0.7013 (4)	1.1194 (3)	0.7201 (6)	0.0439 (11)
C12	0.6681 (5)	1.1731 (3)	0.8251 (7)	0.0588 (14)
H12	0.6784	1.2211	0.7969	0.071*
C13	0.6194 (5)	1.1561 (4)	0.9719 (8)	0.0700 (17)
H13	0.5977	1.1926	1.0422	0.084*
C14	0.6031 (5)	1.0855 (4)	1.0141 (7)	0.0710 (19)
H14	0.5694	1.0742	1.1119	0.085*
C15	0.6368 (5)	1.0312 (4)	0.9113 (7)	0.0646 (16)
H15	0.6262	0.9832	0.9401	0.078*
C16	0.6866 (5)	1.0481 (3)	0.7647 (7)	0.0539 (13)
H16	0.7101	1.0115	0.6963	0.065*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.0616 (3)	0.0377 (2)	0.0624 (3)	0.00179 (19)	0.01433 (19)	-0.00855 (18)
S1	0.0601 (8)	0.0426 (7)	0.0388 (6)	-0.0055 (6)	0.0047 (6)	-0.0088(5)
S2	0.0516 (7)	0.0354 (6)	0.0513 (7)	0.0076 (5)	0.0109 (6)	0.0029 (5)
O1	0.107 (3)	0.057 (2)	0.052 (2)	0.015 (2)	0.034 (2)	0.0080 (19)
02	0.097 (3)	0.057 (2)	0.052 (2)	-0.019 (2)	0.029 (2)	-0.0007 (18)
O3	0.130 (4)	0.040 (2)	0.070 (3)	0.010 (2)	0.024 (3)	0.0085 (19)
N1	0.047 (2)	0.0323 (19)	0.0303 (19)	0.0022 (17)	0.0034 (16)	-0.0011 (15)
N10	0.058 (3)	0.041 (2)	0.041 (2)	0.003 (2)	0.0092 (19)	0.0019 (19)
C1	0.047 (3)	0.028 (2)	0.031 (2)	-0.0015 (19)	0.0042 (19)	0.0014 (17)

C2	0.047 (3)	0.031 (2)	0.032 (2)	-0.003 (2)	0.006 (2)	0.0035 (18)	
C3	0.059 (3)	0.037 (2)	0.032 (2)	0.003 (2)	-0.003 (2)	0.0010 (19)	
C4	0.050 (3)	0.040 (3)	0.044 (3)	-0.003 (2)	0.005 (2)	-0.002 (2)	
C5	0.046 (3)	0.062 (3)	0.052 (3)	0.009 (3)	0.009 (2)	0.006 (3)	
C6	0.078 (4)	0.064 (4)	0.048 (3)	0.011 (3)	0.015 (3)	0.006 (3)	
C7	0.079 (5)	0.080 (4)	0.069 (4)	-0.001 (4)	0.035 (4)	-0.002 (3)	
C8	0.049 (4)	0.132 (7)	0.096 (6)	-0.002 (4)	0.022 (4)	-0.005 (5)	
C9	0.054 (4)	0.109 (6)	0.065 (4)	-0.003 (4)	-0.005 (3)	-0.004 (4)	
C10	0.048 (3)	0.036 (2)	0.037 (2)	0.002 (2)	0.004 (2)	0.000(2)	
C11	0.040 (3)	0.050 (3)	0.043 (3)	-0.001 (2)	0.006 (2)	-0.003 (2)	
C12	0.065 (4)	0.056 (3)	0.057 (3)	0.002 (3)	0.013 (3)	-0.017 (3)	
C13	0.066 (4)	0.090 (5)	0.055 (4)	0.002 (4)	0.011 (3)	-0.019 (3)	
C14	0.052 (3)	0.122 (6)	0.041 (3)	-0.012 (4)	0.010 (3)	0.001 (3)	
C15	0.060 (4)	0.079 (4)	0.055 (3)	-0.016 (3)	0.009 (3)	0.012 (3)	
C16	0.060 (3)	0.052 (3)	0.051 (3)	-0.002 (3)	0.013 (3)	-0.001 (2)	

Geometric parameters (Å, °)

Ag1—N1	2.527 (4)	C4—C9	1.376 (8)
Ag1—S1	2.6560 (15)	C4—C5	1.382 (7)
Ag1—S2 ⁱ	2.6790 (14)	C5—C6	1.376 (7)
Ag1—O1	2.551 (4)	С5—Н5	0.9300
Ag1—O2	2.507 (4)	C6—C7	1.359 (9)
Ag1—O2 ⁱⁱ	2.539 (4)	С6—Н6	0.9300
S1—C4	1.790 (5)	C7—C8	1.363 (10)
S1—C3	1.828 (5)	С7—Н7	0.9300
S2—C11	1.768 (5)	C8—C9	1.385 (9)
S2—C10	1.796 (4)	C8—H8	0.9300
S2—Ag1 ⁱ	2.6790 (14)	С9—Н9	0.9300
O1—N10	1.248 (5)	C10—H10A	0.9700
O2—N10 ⁱⁱⁱ	1.250 (5)	C10—H10B	0.9700
O2—Ag1 ⁱⁱⁱ	2.539 (4)	C11—C12	1.381 (7)
O3—N10	1.219 (5)	C11—C16	1.385 (7)
N1—C1	1.326 (6)	C12—C13	1.385 (8)
N1—C2 ⁱ	1.334 (5)	C12—H12	0.9300
N10—O2 ⁱⁱ	1.250 (5)	C13—C14	1.372 (9)
C1—C2	1.409 (6)	С13—Н13	0.9300
C1—C3	1.504 (6)	C14—C15	1.380 (9)
C2—N1 ⁱ	1.334 (5)	C14—H14	0.9300
C2-C10	1.508 (6)	C15—C16	1.390 (7)
С3—НЗА	0.9700	C15—H15	0.9300
С3—Н3В	0.9700	C16—H16	0.9300
N1—Ag1—S1	76.40 (9)	C9—C4—C5	119.3 (5)
N1—Ag1—S2 ⁱ	70.89 (9)	C9—C4—S1	120.3 (4)
S1—Ag1—S2 ⁱ	146.98 (4)	C5—C4—S1	120.2 (4)
O2—Ag1—N1	112.54 (12)	C6—C5—C4	120.1 (5)
O2—Ag1—O2 ⁱⁱ	117.32 (8)	C6—C5—H5	120.0

N1—Ag1—O2 ⁱⁱ	128.98 (12)	C4—C5—H5	120.0
O2—Ag1—O1	75.15 (13)	C7—C6—C5	120.8 (6)
N1—Ag1—O1	163.34 (14)	С7—С6—Н6	119.6
O2 ⁱⁱ —Ag1—O1	49.56 (12)	С5—С6—Н6	119.6
O2—Ag1—S1	80.10 (11)	C6—C7—C8	119.4 (6)
O2 ⁱⁱ —Ag1—S1	101.67 (11)	С6—С7—Н7	120.3
O1—Ag1—S1	120.09 (11)	С8—С7—Н7	120.3
$O2$ — $Ag1$ — $S2^i$	116.46 (10)	C7—C8—C9	121.1 (6)
$O2^{ii}$ —Ag1—S2 ⁱ	95.47 (11)	С7—С8—Н8	119.5
$O1 - Ag1 - S2^i$	92.47 (11)	С9—С8—Н8	119.5
C4—S1—C3	102.6 (2)	C4—C9—C8	119.4 (6)
C4—S1—Ag1	109.31 (17)	С4—С9—Н9	120.3
C3—S1—Ag1	91.85 (17)	С8—С9—Н9	120.3
C11—S2—C10	105.6 (2)	C2—C10—S2	117.1 (3)
C11—S2—Ag1 ⁱ	96.58 (16)	C2-C10-H10A	108.0
$C10$ — $S2$ — $Ag1^i$	103.79 (16)	S2—C10—H10A	108.0
N10-01-Ag1	96.3 (3)	C2—C10—H10B	108.0
$N10^{iii}$ — $O2$ —Ag1	121.5 (3)	S2-C10-H10B	108.0
$N10^{iii}$ — $O2$ — $Ag1^{iii}$	96.8 (3)	H10A—C10—H10B	107.3
$Ag1 - 02 - Ag1^{iii}$	130.58 (17)	C12—C11—C16	119.1 (5)
$C1-N1-C2^{i}$	119.9 (4)	C12—C11—S2	115.8 (4)
C1—N1—Ag1	113.0 (3)	C16-C11-S2	125.1 (4)
$C2^{i}$ N1 Ag1	120.2 (3)	C11—C12—C13	120.5 (6)
03—N10—O1	121.6 (4)	C11—C12—H12	119.8
$03 - N10 - 02^{ii}$	121.1(4)	C13—C12—H12	119.8
$01 - N10 - 02^{ii}$	117.3 (4)	C_{14} C_{13} C_{12} C_{12}	120.3 (6)
N1-C1-C2	120 8 (4)	C_{14} C_{13} H_{13}	119.9
N1-C1-C3	1166(4)	C12—C13—H13	119.9
$C_2 - C_1 - C_3$	122.6 (4)	C_{13} C_{14} C_{15}	119.9 (5)
$N1^{i} - C^{2} - C^{1}$	119 2 (4)	C_{13} C_{14} H_{14}	120.0
$N1^{i}$ C2 C10	119.6 (4)	C_{15} C_{14} H_{14}	120.0
C1 - C2 - C10	121 1 (4)	C_{14} C_{15} C_{16}	119.9 (6)
C1 - C3 - S1	1127(3)	C14-C15-H15	120.0
C1 - C3 - H3A	109.1	C16-C15-H15	120.0
S1—C3—H3A	109.1	C_{11} $-C_{16}$ $-C_{15}$	120.0
C1 - C3 - H3B	109.1	$C_{11} - C_{16} - H_{16}$	119.8
S1_C3_H3B	109.1	C_{15} C_{16} H_{16}	119.0
H_{3A} C_{3} H_{3B}	107.8		117.0
IISA CS IISB	107.0		
Ασ1-01-N10-03	178 4 (5)	C5-C6-C7-C8	0.0(10)
$Ag1_{1}_{1}_{1}_{1}_{1}_{1}_{1}_{1}_{1}_{1$	-0.7(5)	$C_{6} - C_{7} - C_{8} - C_{9}$	0.0(10) 0.2(12)
C^{i} N1—C1—C2	-0.7(3)	$C_{5} - C_{4} - C_{9} - C_{8}$	-0.4(10)
Ag1 = N1 = C1 = C2	150 3 (3)	S1-C4-C9-C8	174.8 (6)
C^{2i} N1 C^{1} C^{3}	1793(4)	C7 - C8 - C9 - C4	0.0(12)
$Ag1_N1_C1_C3$	-297(5)	$N1^{i}$ C2 C10 S2	71(6)
$N_1 - C_1 - C_2 - N_1^{i}$	0.7(7)	C1 - C2 - C10 - 52	-1701(3)
C_{3} C_{1} C_{2} N_{1i}	-1793(4)	C11 = S2 = C10 = S2	-864(4)
$N_1 = C_1 = C_2 = C_1 O_1$	177.9(1)	Δa^{1i} S2 C10 C2	14.6 (4)
101 - 01 - 02 - 010	1//.7 (4)	$ng_1 - 32 - C_10 - C_2$	14.0 (4)

C3—C1—C2—C10	-2.2 (6)	C10—S2—C11—C12	-176.3 (4)
N1-C1-C3-S1	62.9 (5)	Ag1 ⁱ —S2—C11—C12	77.3 (4)
C2-C1-C3-S1	-117.1 (4)	C10—S2—C11—C16	1.8 (5)
C4—S1—C3—C1	57.2 (4)	Ag1 ⁱ —S2—C11—C16	-104.5 (5)
Ag1—S1—C3—C1	-53.1 (3)	C16—C11—C12—C13	-0.7 (8)
C3—S1—C4—C9	92.2 (5)	S2-C11-C12-C13	177.6 (5)
Ag1—S1—C4—C9	-171.3 (5)	C11—C12—C13—C14	-0.4 (9)
C3—S1—C4—C5	-92.6 (5)	C12—C13—C14—C15	1.0 (10)
Ag1—S1—C4—C5	3.9 (5)	C13—C14—C15—C16	-0.4 (9)
C9—C4—C5—C6	0.6 (9)	C12-C11-C16-C15	1.3 (8)
S1—C4—C5—C6	-174.6 (4)	S2-C11-C16-C15	-176.8 (4)
C4—C5—C6—C7	-0.4 (9)	C14—C15—C16—C11	-0.8 (9)

Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) x, -y+3/2, z+1/2; (iii) x, -y+3/2, z-1/2.

(III) Poly[[trinitrato{µ₆-2,3,5,6-tetrakis[(pyridin-2-ylsulfanyl)methyl]pyrazine}trisilver(I)]

Crystal data

 $[Ag_{3}(NO_{3})_{3}(C_{28}H_{24}N_{6}S_{4})]$ $M_{r} = 1082.41$ Monoclinic, C2/c a = 13.6319 (9) Å b = 16.2211 (10) Å c = 15.7201 (11) Å $\beta = 96.607$ (8)° V = 3453.0 (4) Å³ Z = 4

Data collection

STOE IPDS 1
diffractometer
Radiation source: fine-focus sealed tube
Plane graphite monochromator
φ rotation scans
Absorption correction: multi-scan
(MULABS; Spek, 2009)
$T_{\min} = 0.949, \ T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.052$ S = 0.763311 reflections 242 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 2128 $D_x = 2.082 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5000 reflections $\theta = 2.0-25.9^{\circ}$ $\mu = 1.99 \text{ mm}^{-1}$ T = 223 KNeedle, pale yellow $0.45 \times 0.08 \times 0.08 \text{ mm}$

13264 measured reflections 3311 independent reflections 1936 reflections with $I > 2\sigma(I)$ $R_{int} = 0.072$ $\theta_{max} = 25.9^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -16 \rightarrow 16$ $k = -19 \rightarrow 19$ $l = -19 \rightarrow 18$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0179P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.43$ e Å⁻³ $\Delta\rho_{min} = -0.44$ e Å⁻³ Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.00014 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ag1	0.01942 (2)	0.37808 (2)	-0.08024 (3)	0.04096 (12)	
Ag2	0.5000	-0.03325 (3)	0.2500	0.05015 (18)	
S1	0.09150 (7)	0.43818 (6)	0.08153 (8)	0.0309 (3)	
S2	0.37324 (7)	0.12904 (6)	0.20654 (7)	0.0293 (3)	
011	0.0033 (3)	0.2151 (3)	-0.1140 (3)	0.0993 (17)	
O12	0.0505 (3)	0.1241 (2)	-0.0186 (3)	0.0881 (13)	
O13	-0.0038 (3)	0.2406 (3)	0.0181 (3)	0.0871 (14)	
O21	0.5000	-0.1915 (3)	0.2500	0.082 (2)	
O22	0.5755 (3)	-0.3025 (3)	0.2419 (3)	0.0890 (15)	
N1	0.1890 (2)	0.31443 (19)	-0.0280(2)	0.0228 (8)	
N2	0.1418 (2)	0.59202 (19)	0.0729 (2)	0.0278 (8)	
N3	0.3466 (2)	-0.0278 (2)	0.1875 (2)	0.0277 (8)	
N11	0.0173 (3)	0.1915 (3)	-0.0375 (4)	0.0643 (14)	
N21	0.5000	-0.2669 (3)	0.2500	0.0365 (13)	
C1	0.2093 (3)	0.2984 (2)	0.0553 (3)	0.0232 (9)	
C2	0.2715 (3)	0.2341 (2)	0.0833 (3)	0.0217 (9)	
C3	0.1631 (3)	0.3497 (2)	0.1204 (3)	0.0306 (11)	
H3A	0.2161	0.3689	0.1632	0.037*	
H3B	0.1204	0.3136	0.1499	0.037*	
C4	0.1816 (3)	0.5165 (2)	0.0793 (3)	0.0295 (10)	
C5	0.2821 (3)	0.5034 (3)	0.0844 (3)	0.0517 (14)	
Н5	0.3082	0.4497	0.0867	0.062*	
C6	0.3433 (3)	0.5714 (3)	0.0861 (4)	0.0617 (16)	
H6	0.4122	0.5645	0.0912	0.074*	
C7	0.3033 (3)	0.6488 (3)	0.0803 (3)	0.0518 (14)	
H7	0.3442	0.6956	0.0814	0.062*	
C8	0.2039 (3)	0.6569 (3)	0.0731 (3)	0.0407 (12)	
H8	0.1768	0.7102	0.0679	0.049*	
C9	0.2962 (3)	0.2171 (2)	0.1786 (3)	0.0279 (10)	
H9A	0.2341	0.2099	0.2036	0.034*	
H9B	0.3290	0.2660	0.2053	0.034*	
C11	0.2968 (3)	-0.0982 (3)	0.1679 (3)	0.0406 (12)	
H11	0.3317	-0.1483	0.1722	0.049*	
C12	0.1982 (4)	-0.0998 (3)	0.1421 (3)	0.0568 (15)	
H12	0.1653	-0.1501	0.1296	0.068*	
C13	0.1476 (4)	-0.0263 (3)	0.1347 (4)	0.0654 (17)	
H13	0.0792	-0.0260	0.1174	0.079*	
C14	0.1966 (3)	0.0468 (3)	0.1524 (3)	0.0492 (13)	
H14	0.1631	0.0976	0.1466	0.059*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

α	1	~
		~
· • •		
U	T	J

0.2959 (3)

0.0433 (2)

0.1789 (3)

0.0276 (10)

Atomic displa	acement parameters	$(Å^2)$	
---------------	--------------------	---------	--

	1 1					
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Agl	0.02369 (17)	0.0330 (2)	0.0673 (3)	0.00667 (16)	0.01013 (16)	0.0075 (2)
Ag2	0.0223 (3)	0.0276 (3)	0.0975 (5)	0.000	-0.0062 (3)	0.000
S 1	0.0246 (5)	0.0246 (6)	0.0447 (7)	0.0066 (5)	0.0092 (5)	0.0023 (5)
S2	0.0227 (5)	0.0279 (6)	0.0354 (6)	0.0041 (5)	-0.0043 (5)	0.0031 (6)
011	0.080 (3)	0.112 (4)	0.097 (4)	-0.053 (3)	-0.026 (3)	0.032 (3)
012	0.058 (2)	0.044 (2)	0.160 (4)	0.010 (2)	0.000 (2)	0.016 (3)
013	0.053 (2)	0.061 (3)	0.154 (4)	-0.013 (2)	0.037 (3)	-0.001 (3)
O21	0.106 (4)	0.025 (3)	0.129 (5)	0.000	0.077 (4)	0.000
O22	0.070 (3)	0.100 (3)	0.105 (3)	0.054 (3)	0.041 (3)	0.036 (3)
N1	0.0195 (17)	0.0221 (18)	0.027 (2)	0.0040 (14)	0.0037 (16)	0.0043 (16)
N2	0.0240 (18)	0.0266 (19)	0.033 (2)	0.0020 (15)	0.0058 (16)	-0.0011 (16)
N3	0.0243 (18)	0.0279 (19)	0.030(2)	-0.0017 (16)	0.0012 (16)	0.0009 (18)
N11	0.030 (2)	0.048 (3)	0.114 (5)	-0.015 (2)	0.004 (3)	-0.004 (4)
N21	0.032 (3)	0.037 (3)	0.041 (4)	0.000	0.005 (3)	0.000
C1	0.017 (2)	0.018 (2)	0.034 (3)	0.0004 (16)	0.0019 (19)	0.000(2)
C2	0.017 (2)	0.018 (2)	0.030 (3)	0.0008 (16)	0.0046 (19)	0.005 (2)
C3	0.034 (2)	0.029 (2)	0.031 (3)	0.0115 (19)	0.016 (2)	0.006 (2)
C4	0.022 (2)	0.035 (3)	0.031 (3)	0.0032 (19)	0.0019 (19)	0.000 (2)
C5	0.033 (3)	0.043 (3)	0.082 (4)	0.010 (2)	0.014 (3)	-0.001 (3)
C6	0.026 (3)	0.062 (4)	0.098 (5)	-0.002 (3)	0.012 (3)	-0.002 (3)
C7	0.036 (3)	0.050(3)	0.070 (4)	-0.010 (2)	0.008 (3)	-0.009 (3)
C8	0.037 (3)	0.034 (3)	0.053 (3)	0.001 (2)	0.010 (2)	0.000(2)
C9	0.026 (2)	0.023 (2)	0.034 (3)	0.0067 (18)	0.000 (2)	0.000 (2)
C11	0.041 (3)	0.032 (3)	0.048 (3)	-0.005 (2)	-0.003 (2)	0.003 (2)
C12	0.048 (3)	0.044 (3)	0.072 (4)	-0.015 (3)	-0.020 (3)	0.006 (3)
C13	0.034 (3)	0.054 (4)	0.100 (5)	-0.007 (3)	-0.026 (3)	0.018 (3)
C14	0.032 (3)	0.038 (3)	0.074 (4)	0.006 (2)	-0.010 (2)	0.014 (3)
C15	0.025 (2)	0.030 (2)	0.028 (3)	0.0002 (19)	0.0030 (19)	0.006 (2)

Geometric parameters (Å, °)

Ag1—N1	2.578 (3)	N21—O22 ⁱⁱⁱ	1.200 (4)
Ag1—N2 ⁱ	2.267 (3)	C1—C2	1.384 (5)
Ag1—S1	2.7943 (13)	C1—C3	1.512 (5)
Ag1—S2 ⁱⁱ	2.6010 (11)	C2—N1 ⁱⁱ	1.331 (5)
Ag1011	2.700 (5)	C2—C9	1.523 (5)
Ag1-013	2.752 (5)	С3—НЗА	0.9800
Ag2—N3	2.208 (3)	С3—Н3В	0.9800
Ag2—N3 ⁱⁱⁱ	2.208 (3)	C4—C5	1.379 (6)
Ag2—O21	2.567 (5)	C5—C6	1.382 (6)
S1—C4	1.770 (4)	С5—Н5	0.9400
S1—C3	1.802 (4)	C6—C7	1.368 (6)
S2—C15	1.769 (4)	С6—Н6	0.9400

\$2	1 798 (4)	C7-C8	1 353 (6)
$S_2 = C_2$	2.6011(11)	C7 H7	0.9400
011 N11	1 255 (6)		0.9400
012 N11	1.233(0) 1.208(5)		0.9400
012—N11	1.208(5) 1.230(6)		0.9800
013—N11	1.239 (0)	C11 C12	0.9800
021—N21	1.225 (0)		1.360 (6)
022—N21	1.200 (4)		0.9400
NI-C2"	1.331 (5)		1.3//(6)
NI—CI	1.332 (5)	С12—Н12	0.9400
N2—C4	1.339 (5)	C13—C14	1.374 (6)
N2—C8	1.351 (5)	C13—H13	0.9400
N2—Ag1 ⁱ	2.266 (3)	C14—C15	1.372 (6)
N3—C15	1.343 (5)	C14—H14	0.9400
N3—C11	1.345 (5)		
N1—Ag1—N2 ⁱ	155.31 (11)	N1 ⁱⁱ —C2—C9	118.4 (3)
S1—Ag1—S2 ⁱⁱ	122.71 (3)	C1—C2—C9	120.4 (4)
S1—Ag1—N1	68.98 (7)	C1—C3—S1	117.4 (3)
$S1 - Ag1 - N2^{i}$	96.92 (8)	C1—C3—H3A	107.9
$S2^{ii}$ —Ag1—N1	70.29 (7)	S1—C3—H3A	107.9
$S2^{ii}$ Ag1 $N2^{i}$	133.03 (8)	C1—C3—H3B	107.9
S1 - Ag1 - O11	122.18 (10)	S1—C3—H3B	107.9
S1 - Ag1 - O13	79 78 (10)	H_{3A} C_{3} H_{3B}	107.2
S^{2i} $Ag1 - 011$	81 18 (10)	N2-C4-C5	107.2 122 4 (4)
$S2^{ii}$ Ag1 Q13	120.26(10)	N2 C4 S1	122.4(4) 112.5(3)
32 - Ag1 - 013	73 76 (11)	112 - 04 - 51	112.3(3) 125.1(3)
$O_{11} = A_{g1} = N_{1}^{2}$	75.70(11) 00.22(12)	$C_{4} = C_{5} = C_{6}$	123.1(3)
$O12 A_{21} N1$	99.55(12)	C4 - C5 - U5	110.2 (4)
O13 - Ag1 - N1	09.75 (11)	C4 - C5 - H5	120.9
$O13 - Ag1 - N2^{-1}$	00.20 (12) 45.00 (14)	Co-Co-H3	120.9
011—Ag1—013	45.99 (14)	C/-CO-CS	119.7 (4)
$N_3 - Ag_2 - N_3$	1/5.41 (12)	C/C6H6	120.1
O_{21} —Ag2—N3	92.30 (9)	C5—C6—H6	120.1
021—Ag2—N3 ^m	92.30 (9)	C8—C7—C6	118.8 (4)
C4—S1—C3	103.19 (19)	C8—C7—H7	120.6
C4—S1—Ag1	113.84 (14)	С6—С/—Н/	120.6
C3—S1—Ag1	98.68 (14)	N2—C8—C7	123.1 (4)
C15—S2—C9	104.50 (18)	N2—C8—H8	118.4
C15—S2—Ag1 ⁱⁱ	98.56 (13)	С7—С8—Н8	118.4
C9—S2—Ag1 ⁱⁱ	102.31 (13)	C2—C9—S2	116.1 (3)
N21—O21—Ag2	180.0	С2—С9—Н9А	108.3
$C2^{ii}$ —N1—C1	118.2 (3)	S2—C9—H9A	108.3
C2 ⁱⁱ —N1—Ag1	116.4 (3)	С2—С9—Н9В	108.3
C1—N1—Ag1	118.0 (2)	S2—C9—H9B	108.3
C4—N2—C8	117.6 (3)	Н9А—С9—Н9В	107.4
C4—N2—Ag1 ⁱ	125.4 (2)	N3—C11—C12	122.7 (4)
C8—N2—Ag1 ⁱ	116.4 (3)	N3—C11—H11	118.6
C15—N3—C11	117.8 (3)	C12—C11—H11	118.6
C15—N3—Ag2	121.9 (3)	C11—C12—C13	118.5 (4)

C11—N3—Ag2	119.7 (3)	C11—C12—H12	120.8
O12—N11—O13	121.3 (6)	C13—C12—H12	120.8
O12—N11—O11	121.5 (6)	C14—C13—C12	120.3 (4)
O13—N11—O11	117.2 (6)	C14—C13—H13	119.9
O22—N21—O22 ⁱⁱⁱ	122.4 (6)	C12—C13—H13	119.9
O22—N21—O21	118.8 (3)	C15—C14—C13	117.7 (4)
O22 ⁱⁱⁱ —N21—O21	118.8 (3)	C15—C14—H14	121.1
N1—C1—C2	120.7 (3)	C13—C14—H14	121.1
N1—C1—C3	120.1 (3)	N3—C15—C14	123.0 (4)
C2—C1—C3	119.2 (4)	N3—C15—S2	111.5 (3)
N1 ⁱⁱ —C2—C1	121.1 (4)	C14—C15—S2	125.5 (3)
C2 ⁱⁱ —N1—C1—C2	1.2 (6)	C5—C6—C7—C8	0.0 (8)
Ag1—N1—C1—C2	150.0 (3)	C4—N2—C8—C7	-0.8 (6)
C2 ⁱⁱ —N1—C1—C3	-177.7 (3)	Agl ⁱ —N2—C8—C7	171.1 (4)
Ag1—N1—C1—C3	-28.9 (4)	C6—C7—C8—N2	1.4 (8)
N1-C1-C2-N1 ⁱⁱ	-1.3 (6)	N1 ⁱⁱ —C2—C9—S2	-2.7 (5)
C3—C1—C2—N1 ⁱⁱ	177.7 (3)	C1—C2—C9—S2	177.3 (3)
N1—C1—C2—C9	178.7 (3)	C15—S2—C9—C2	-72.0 (3)
C3—C1—C2—C9	-2.3 (5)	Ag1 ⁱⁱ —S2—C9—C2	30.3 (3)
N1—C1—C3—S1	-6.3 (5)	C15—N3—C11—C12	-1.6 (6)
C2-C1-C3-S1	174.7 (3)	Ag2—N3—C11—C12	169.3 (4)
C4—S1—C3—C1	-85.5 (3)	N3-C11-C12-C13	0.9 (7)
Ag1—S1—C3—C1	31.6 (3)	C11—C12—C13—C14	0.6 (8)
C8—N2—C4—C5	-1.0 (6)	C12—C13—C14—C15	-1.2 (8)
Ag1 ⁱ —N2—C4—C5	-172.2 (3)	C11—N3—C15—C14	0.9 (6)
C8—N2—C4—S1	178.2 (3)	Ag2—N3—C15—C14	-169.7 (3)
Ag1 ⁱ —N2—C4—S1	7.1 (4)	C11—N3—C15—S2	-179.5 (3)
C3—S1—C4—N2	-164.1 (3)	Ag2—N3—C15—S2	9.8 (4)
Ag1—S1—C4—N2	90.0 (3)	C13—C14—C15—N3	0.4 (7)
C3—S1—C4—C5	15.1 (5)	C13—C14—C15—S2	-179.1 (4)
Ag1—S1—C4—C5	-90.8 (4)	C9—S2—C15—N3	173.2 (3)
N2-C4-C5-C6	2.3 (7)	$Ag1^{ii}$ —S2—C15—N3	68.1 (3)
S1—C4—C5—C6	-176.8 (4)	C9—S2—C15—C14	-7.2 (4)
C4—C5—C6—C7	-1.7 (8)	Ag1 ⁱⁱ —S2—C15—C14	-112.4 (4)

Symmetry codes: (i) -*x*, -*y*+1, -*z*; (ii) -*x*+1/2, -*y*+1/2, -*z*; (iii) -*x*+1, *y*, -*z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —H	Н…А	D····A	D—H··· A
С11—Н11…О21	0.94	2.57	3.287 (5)	133
C3—H3 B ···O21 ^{iv}	0.98	2.40	3.253 (4)	145
C3—H3 B ···O22 ^{iv}	0.98	2.49	3.420 (6)	158
C7—H7…O13 ^v	0.94	2.51	3.268 (6)	138
C9—H9 <i>A</i> ···O22 ^{iv}	0.98	2.32	3.291 (6)	171

			supporting informatio		
C12—H12…O11 ^{vi}	0.94	2.51	3.310 (7)	142	
C14—H14····O22 ^{iv}	0.94	2.59	3.349 (7)	138	

Symmetry codes: (iv) *x*-1/2, *y*+1/2, *z*; (v) *x*+1/2, *y*+1/2, *z*; (vi) -*x*, -*y*, -*z*.