COMMUNICATIONS

ISSN 2056-9890

Received 6 December 2016
Accepted 26 January 2017

Edited by G. Smith, Queensland University of Technology, Australia

Keywords: crystal structure; polynuclear complexes; coordination polymer; cobalt carboxylates; cobalt(II) isobutyrate dihydrate.

CCDC reference: 1529830

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \odot ACCESS

Crystal structure of a Co ${ }^{\text {II }}$ coordination polymer: catena-poly[[μ-aqua-bis(μ-2-methylpropanoato)$\kappa^{2} O: O^{\prime} ; \kappa^{2} O: O$-cobalt(II)] monohydrate]

Andrei I. Fischer, ${ }^{\text {a* }}$ Vladislav V. Gurzhiy, ${ }^{\text {b* }}$ Julia V. Aleksandrova ${ }^{\text {a }}$ and Maria I. Pakina ${ }^{\text {a }}$

${ }^{\text {a }}$ St Petersburg State Institute of Technology, Moskovsky pr. 26, 190013, St Petersburg, Russian Federation, and ${ }^{\mathbf{b}}$ Institute of Earth Sciences, St Petersburg State University, University Emb. 7/9, 199034, St Petersburg, Russian Federation.
*Correspondence e-mail: andreasfischer@mail.ru, vladgeo17@mail.ru

In the title cobalt(II) coordination polymer with isobutyrate ligands, $\left\{\left[\mathrm{Co}\left\{\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}_{2}\right\}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, the Co^{2+} ion is hexacoordinated in a slightly distorted octahedral coordination environment defined by two O atoms from two bridging water molecules and four O atoms from four bridging carboxylate ligands. The carboxylates adopt two different coordination modes, $\mu-\left(\kappa^{2} O: O^{\prime}\right)$ and $\mu-\left(\kappa^{2} O: O\right)$, forming a one-dimensional polymeric chain extending along [010]. The intra-chain cobalt \cdots cobalt separation is 3.2029 (2) A. The polymeric chains are linked by hydrogen bonds involving the water molecules of solvation, giving a two-dimensional network structure lying parallel to (100).

1. Chemical context

Carboxylate anions still remain a popular choice as bridging ligands because of their ability to form diverse oligo- and polynuclear structures. Oligo- and polynuclear cobalt carboxylates in turn have attracted great attention because of their utilization in homogeneous oxidation catalysis (Gates, 1992; Parshall \& Ittel, 1992; Partenheimer, 1995; Ward et al., 2013a), and their interesting magnetic properties (Ward et al., 2013b; Eremenko et al., 2009). Recently, we have reported on the crystal structures of the hydrated polymeric cobalt(II) propionate (Fischer et al., 2010) and butyrate (Fischer et al., 2011), which were prepared by the reaction of cobalt(II) carbonate hydrate with the corresponding aqueous carboxylic acid. The aim of these studies was to investigate the influence of the steric features of the carboxylate anion on the structure of the resulting compounds. Cobalt(II) carboxylates are of interest for our group as starting materials for the synthesis of mixed-valence cobalt carboxylates (Fischer, Kuznetsov \& Belyaev, 2012; Fischer, Kuznetsov, Shchukarev \& Belyaev, 2012). In addition, we intend to examine the catalytic activity of the cobalt(II) carboxylates obtained, which will be used for introduction into the sodalite cages of synthetic NaY zeolites, modified by decationation and dealuminizing methods.
As a part of our ongoing studies on these compounds, we describe here synthesis and crystal structure of the title compound, $\left\{\left[\mathrm{Co}\left\{\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}_{2}\right\}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, (I).

Table 1
Selected geometric parameters (${ }^{\AA},{ }^{\circ}$).

$\mathrm{Co} 1-\mathrm{O} 1 A$	$2.0449(6)$	$\mathrm{Co} 1-\mathrm{O} 1 B^{\mathrm{i}}$	$2.1198(6)$
$\mathrm{Co} 1-\mathrm{O} 2 A^{\mathrm{i}}$	$2.0142(6)$	$\mathrm{Co} 1-\mathrm{O} 1 W$	$2.1768(6)$
$\mathrm{Co} 1-\mathrm{O} 1 B$	$2.1100(6)$	$\mathrm{Co} 1-\mathrm{O} 1 W^{\mathrm{i}}$	$2.1777(6)$
$\mathrm{O} 1 A-\mathrm{Co} 1-\mathrm{O} 1 B$	$88.13(3)$	$\mathrm{O} 2 A^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1 W^{\mathrm{i}}$	$88.33(3)$
$\mathrm{O} 1 A-\mathrm{Co} 1-\mathrm{O} 1 B^{\mathrm{i}}$	$89.41(3)$	$\mathrm{O} 1 B-\mathrm{Co} 1-\mathrm{O} 1 B^{\mathrm{i}}$	$170.29(2)$
$\mathrm{O} 1 A-\mathrm{Co} 1-\mathrm{O} 1 W$	$92.18(3)$	$\mathrm{O} 1 B-\mathrm{Co} 1-\mathrm{O} 1 W$	$79.22(2)$
$\mathrm{O} 1 A-\mathrm{Co} 1-\mathrm{O} 1 W^{\mathrm{i}}$	$88.29(3)$	$\mathrm{O} 1 B^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1 W$	$91.49(2)$
$\mathrm{O} 2 A^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1 A$	$175.30(3)$	$\mathrm{O} 1 B-\mathrm{Co} 1-\mathrm{O} 1 W^{\mathrm{i}}$	$110.31(2)$
$\mathrm{O} 2 A^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1 B$	$89.99(3)$	$\mathrm{O} 1 B^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1 W^{\mathrm{i}}$	$78.99(2)$
$\mathrm{O} 2 A^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1 B^{\mathrm{i}}$	$93.14(3)$	$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{O} 1 W^{\mathrm{i}}$	$170.46(2)$
$\mathrm{O} 2 A^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1 W$	$91.70(3)$		

Symmetry code: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$.

2. Structural commentary

The structure of (I) contains one independent Co^{2+} cation coordinated by four O atoms from four bridging isobutyrate ligands and two O atoms from two bridging water molecules (O1W) in a distorted octahedral coordination. A water molecule of solvation ($\mathrm{O} 2 W$) is also present (Fig. 1). The $\mathrm{Co}-\mathrm{O}$ bond lengths are in the range 2.0142 (6)-2.1777 (6) \AA (Table 1) and the cis-angles about the Co^{2+} atom vary in the range 78.99 (3)-110.31 (2) ${ }^{\circ}$. This data correlates with the angles and the distances in cobalt(II) acetate dihydrate which has a similar structure (Jiao et al., 2000), as well as with the closely related cobalt(II) propionate dihydrate (Fischer et al., 2010) and cobalt(II) butyrate 1.7-hydrate (Fischer et al., 2011).

The structure of (I) is based on infinite chains with ${ }_{\infty}\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOO}\right)_{2}\right]$ composition, extending along [010] (Fig. 2). The Co . Co distance within the chain is 3.2029 (2) A. The formation of polymeric chains may be a plausible reason for the crystal growth being predominantly along the b axis. The bridging carboxylate groups adopt two coordination modes, $\mu-\left(\kappa^{2} O: O^{\prime}\right)$ and $\mu-\left(\kappa^{2} O: O\right)$. The $\mathrm{C}-\mathrm{O}$ bond lengths of the first group (involving $\mathrm{O} 1 A$ and $\mathrm{O} 2 A$) have close values $[1.2755$ (10) and 1.2533 (10) \AA], whereas those of the second group (involving O1B and O2B) have a more striking difference $[1.2878(9)$ and $1.2510(11) \AA]$. The carboxylate $\mathrm{O} 2 B$ atom of the second group forms an inter-unit

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 2 W$	0.79 (2)	1.91 (2)	2.6638 (10)	161 (2)
$\mathrm{O} 1 W-\mathrm{H} 1 W 2 \cdots \mathrm{O} 2 B^{\mathrm{i}}$	0.88 (2)	1.79 (2)	2.6206 (9)	158 (2)
$\mathrm{O} 2 W-\mathrm{H} 2 W 1 \cdots \mathrm{O} 1 A^{\text {ii }}$	0.86 (1)	2.01 (1)	2.7967 (9)	151 (1)
$\mathrm{O} 2 W-\mathrm{H} 2 W 2 \cdots \mathrm{O} 2 B^{\text {iii }}$	0.88 (1)	1.95 (1)	2.8087 (9)	163 (1)
$\mathrm{C} 2 B-\mathrm{H} 2 B \cdots \mathrm{O} 2 A^{\mathrm{i}}$	0.98	2.47	3.3094 (11)	144
Symmetry codes: $\begin{equation*} x,-y+\frac{1}{2}, z+\frac{1}{2} . \tag{iii} \end{equation*}$	$\begin{equation*} -x+1, y+\frac{1}{2},-z+\frac{1}{2} \tag{i} \end{equation*}$		$\begin{equation*} -x+1, y-\frac{1}{2},-z+\frac{1}{2} \tag{ii} \end{equation*}$	

hydrogen bond with the bridging water molecule [O1W$\mathrm{H} \cdots \mathrm{O} 2 B^{\mathrm{i}}=2.6206$ (9) Å] (Fig. 2, Table 2).

3. Supramolecular features

Metal-organic chain polymers are linked together through the water molecule of solvation ($\mathrm{O} 2 W$) by a system of hydrogen bonds, forming a sheet structure arranged parallel to (100) (Table 2, Fig. 3). Only weak van der Waals interactions link neighboring sheets in the crystal structure.

Figure 1
The coordination mode and atom-numbering scheme for (I). Displacement ellipsoids of the non H -atoms are drawn at the 50% probability level, with H atoms shown as spheres of arbitrary radius. [Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$.

Figure 2
The one-dimensional polymeric structure of (I) extending along [010], with the intramolecular hydrogen bond shown as a dashed line. The carbon-bound H atoms and the water molecule of solvation have been omitted.

4. Database survey

A survey of the Cambridge Structural Database (Groom et al., 2016) reveals only the following related one-dimensional polymeric structures of cobalt(II) carboxylates with composition ${ }_{\infty}\left[\mathrm{Co}(R \mathrm{COO})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$: acetate (Jiao et al., 2000), propionate (Fischer et al., 2010) and butyrate (Fischer et al., 2011).

5. Synthesis and crystallization

The title compound was synthesized using a similar procedure as for the synthesis of the analogous carboxylates cobalt(II) propionate dihydrate (Fischer et al., 2010) and cobalt(II) butyrate 1.7-hydrate (Fischer et al., 2011). To a mixture of

Table 3
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
a, b, c (\AA)
$\beta\left({ }^{\circ}\right)$
$V\left(\mathrm{~A}^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$
269.15

Monoclinic, $P 2{ }_{1} / c$
100
11.9999 (4), 6.3815 (2), 16.1374 (6)
109.540 (2)
1164.59 (7)

4
Mo $K \alpha$
1.48
$0.35 \times 0.15 \times 0.1$

Bruker APEXII CCD
Multi-scan (SADABS; Bruker, 2014)
0.304, 0.417

25308, 5082, 4459
0.070
0.807
$0.026,0.068,1.03$
5082
152
4
H atoms treated by a mixture of independent and constrained refinement
$1.25,-0.51$

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2012 (Sheldrick, 2015), DIAMOND (Brandenburg, 2012) and OLEX2 (Dolomanov et al., 2009).
isobutyric acid ($8.8 \mathrm{~g}, 100 \mathrm{mmol}$) and water (100 ml), an excess of fresh cobalt(II) carbonate hexahydrate, $\mathrm{CoCO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, $(13.6 \mathrm{~g}, 60 \mathrm{mmol})$ was added. The reaction mixture was periodically stirred in an ultrasonic bath at room temperature until the liberation of carbon dioxide ceased. The unreacted $\mathrm{CoCO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was removed by filtration, and the filtrate was

Figure 3

The packing diagram of (I), showing the interactions between the coordination polymer chains. Hydrogen bonds are shown as dashed lines. The carbonbound H atoms are omitted for clarity.
allowed to stand at room temperature for slow evaporation. Red single crystals of (I) suitable for X-ray diffraction were obtained after several days. The yield was 81%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The hydrogen atoms of the water molecules were located from differenc maps and refined in an isotropic approximation with $U_{\text {iso }}(\mathrm{H})$ set to $1.5 U_{\text {eq }}(\mathrm{O})$. Other hydrogen atoms were placed in calculated positions and refined using a riding model with $d(\mathrm{C}-\mathrm{H})=0.98 \AA, U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for the tertiary carbon atoms and $d(\mathrm{C}-\mathrm{H})=$ $0.96 \AA, U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl groups.

Acknowledgements

The authors thank the Research Center of X-ray Diffraction Studies at St Petersburg State University for the data collection. The work was supported financially within the state contract No. 14.Z50.31.0013 of March 19, 2014.

References

Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker, (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Eremenko, I. L., Sidorov, A. A. \& Kiskin, M. A. (2009). Magnetic Nanoparticles, edited by S. P. Gubin, pp. 349-391. Weinheim: WileyVCH.
Fischer, A. I., Gurzhiy, V. V. \& Belyaev, A. N. (2010). Acta Cryst. E66, m1498.
Fischer, A. I., Gurzhiy, V. V. \& Belyaev, A. N. (2011). Acta Cryst. E67, m807-m808.
Fischer, A. I., Kuznetsov, V. A. \& Belyaev, A. N. (2012). Russ. J. Gen. Chem. 82, 508-509.
Fischer, A. I., Kuznetsov, V. A., Shchukarev, A. V. \& Belyaev, A. N. (2012). Russ. Chem. Bull. 61, 821-827.

Gates, B. C. (1992). In Catalytic Chemistry, New York: Wiley Interscience.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Jiao, X.-D., Guzei, I. A. \& Espenson, J. H. (2000). Z. Kristallogr. New Cryst. Struct. 215, 173-174.
Parshall, G. W. \& Ittel, S. D. (1992). In Homogenous Catalysis. New York: Wiley Interscience.
Partenheimer, W. (1995). Catal. Today, 23, 69-158.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Ward, A. J., Masters, A. F. \& Maschmeyer, T. (2013a). Comprehensive Inorganic Chemistry II, ch. 6.23, pp. 665-684. Amsterdam: Elsevier.
Ward, A. J., Masters, A. F. \& Maschmeyer, T. (2013b). Comprehensive Inorganic Chemistry II, ch. 8.05, pp. 191-228. Amsterdam: Elsevier.

supporting information

Acta Cryst. (2017). E73, 318-321 [https://doi.org/10.1107/S2056989017001360]

Crystal structure of a Coll coordination polymer: catena-poly[$[\mu$-aqua-bis $(\mu-2-$ methylpropanoato)- $\kappa^{2} O: O^{\prime} ; \kappa^{2} O: O$-cobalt(II)] monohydrate]

Andrei I. Fischer, Vladislav V. Gurzhiy, Julia V. Aleksandrova and Maria I. Pakina

Computing details

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).
catena-Poly[[μ-aqua-bis(μ-2-methylpropanoato)- $\kappa^{2} O: O^{\prime} ; \kappa^{2} O: O$-cobalt(II)] monohydrate]

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=269.15$
Monoclinic, $P 2_{1} / c$
$a=11.9999$ (4) \AA
$b=6.3815$ (2) \AA
$c=16.1374(6) \AA$
$\beta=109.540(2)^{\circ}$
$V=1164.59(7) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
$T_{\text {min }}=0.304, T_{\text {max }}=0.417$
$F(000)=564$
$D_{\mathrm{x}}=1.535 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9959 reflections
$\theta=3.5-49.6^{\circ}$
$\mu=1.48 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, red
$0.35 \times 0.15 \times 0.1 \mathrm{~mm}$

25308 measured reflections
5082 independent reflections
4459 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.070$
$\theta_{\text {max }}=35.0^{\circ}, \theta_{\text {min }}=3.5^{\circ}$
$h=-17 \rightarrow 19$
$k=-10 \rightarrow 4$
$l=-26 \rightarrow 26$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.068$
$S=1.03$
5082 reflections
152 parameters
4 restraints

> Primary atom site location: structure-invariant \quad direct methods
> Hydrogen site location: mixed
> H atoms treated by a mixture of independent \quad and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0362 P)^{2}\right]$
> where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=1.25$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.51 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Col	0.49462 (2)	0.68360 (2)	0.24090 (2)	0.00839 (4)
O1A	0.66165 (5)	0.60756 (10)	0.24434 (4)	0.01230 (11)
O2A	0.67317 (6)	0.26293 (11)	0.27311 (4)	0.01275 (11)
O1B	0.43294 (5)	0.41595 (10)	0.16212 (4)	0.01065 (11)
O2B	0.34759 (6)	0.20179 (10)	0.05000 (4)	0.01437 (12)
O1W	0.49903 (6)	0.45171 (10)	0.34088 (4)	0.01116 (11)
H1W1	0.4417 (17)	0.463 (3)	0.3540 (16)	0.017*
H1W2	0.5573 (18)	0.505 (3)	0.3843 (15)	0.017*
O2W	0.29615 (6)	0.39794 (11)	0.37156 (4)	0.01612 (12)
H2W1	0.2869 (13)	0.290 (2)	0.3380 (10)	0.024*
H2W2	0.3027 (13)	0.344 (2)	0.4235 (8)	0.024*
C1A	0.71817 (7)	0.43527 (13)	0.26448 (5)	0.01045 (14)
C2A	0.85034 (8)	0.44468 (14)	0.28101 (6)	0.01530 (15)
H2A	0.8621	0.5188	0.2314	0.018*
C3A	0.90702 (9)	0.2299 (2)	0.28691 (9)	0.0292 (2)
H3A1	0.9021	0.1576	0.3377	0.044*
H3A2	0.9885	0.2457	0.2917	0.044*
H3A3	0.8663	0.1508	0.2350	0.044*
C4A	0.90875 (11)	0.5731 (2)	0.36327 (11)	0.0409 (4)
H4A1	0.8738	0.7102	0.3563	0.061*
H4A2	0.9918	0.5855	0.3726	0.061*
H4A3	0.8976	0.5050	0.4130	0.061*
C1B	0.36124 (7)	0.38036 (14)	0.08390 (5)	0.01115 (14)
C2B	0.29432 (9)	0.56464 (14)	0.03069 (6)	0.01593 (16)
H2B	0.2944	0.6787	0.0714	0.019*
C3B	0.16552 (9)	0.50628 (19)	-0.02026 (7)	0.0238 (2)
H3B1	0.1637	0.3970	-0.0616	0.036*
H3B2	0.1245	0.6271	-0.0512	0.036*
H3B3	0.1278	0.4583	0.0201	0.036*
C4B	0.35856 (10)	0.64054 (17)	-0.03141 (6)	0.02213 (19)
H4B1	0.4358	0.6907	0.0025	0.033*
H4B2	0.3142	0.7519	-0.0676	0.033*
H4B3	0.3660	0.5265	-0.0680	0.033*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	$0.00921(6)$	$0.00625(7)$	$0.00890(5)$	$0.00009(3)$	$0.00197(4)$	$-0.00013(3)$
O1A	$0.0120(3)$	$0.0092(3)$	$0.0155(3)$	$0.0012(2)$	$0.0043(2)$	$0.0020(2)$

supporting information

O2A	$0.0116(3)$	$0.0097(3)$	$0.0164(3)$	$0.0002(2)$	$0.0040(2)$	$0.0016(2)$
O1B	$0.0120(3)$	$0.0083(3)$	$0.0091(2)$	$0.00017(19)$	$0.00020(19)$	$-0.00006(17)$
O2B	$0.0182(3)$	$0.0100(3)$	$0.0114(3)$	$0.0011(2)$	$0.0003(2)$	$-0.00154(19)$
O1W	$0.0129(3)$	$0.0097(3)$	$0.0104(2)$	$-0.0009(2)$	$0.0032(2)$	$-0.00094(18)$
O2W	$0.0229(3)$	$0.0121(3)$	$0.0144(3)$	$-0.0006(2)$	$0.0076(2)$	$-0.0006(2)$
C1A	$0.0106(3)$	$0.0103(4)$	$0.0103(3)$	$0.0002(2)$	$0.0032(2)$	$0.0001(2)$
C2A	$0.0105(3)$	$0.0139(4)$	$0.0217(4)$	$-0.0002(3)$	$0.0057(3)$	$0.0017(3)$
C3A	$0.0138(4)$	$0.0223(6)$	$0.0489(7)$	$0.0050(4)$	$0.0071(4)$	$-0.0045(5)$
C4A	$0.0179(5)$	$0.0483(9)$	$0.0492(8)$	$-0.0048(5)$	$0.0013(5)$	$-0.0285(6)$
C1B	$0.0123(3)$	$0.0107(4)$	$0.0093(3)$	$0.0010(3)$	$0.0022(2)$	$0.0000(2)$
C2B	$0.0209(4)$	$0.0117(4)$	$0.0114(3)$	$0.0047(3)$	$0.0004(3)$	$0.0006(3)$
C3B	$0.0187(4)$	$0.0263(6)$	$0.0210(4)$	$0.0078(4)$	$-0.0005(3)$	$0.0026(3)$
C4B	$0.0326(5)$	$0.0146(4)$	$0.0179(4)$	$-0.0008(4)$	$0.0067(4)$	$0.0039(3)$

Geometric parameters (\AA, ${ }^{\circ}$)

Col-O1A	2.0449 (6)	$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	1.5176 (16)
Col-O2A ${ }^{\text {i }}$	2.0142 (6)	C3A-H3A1	0.9600
Co1-O1B	2.1100 (6)	C3A-H3A2	0.9600
$\mathrm{Co1-O1B}{ }^{\text {i }}$	2.1198 (6)	C3A-H3A3	0.9600
Col-O1W	2.1768 (6)	C4A-H4A1	0.9600
Col-O1W ${ }^{\text {i }}$	2.1777 (6)	C4A-H4A2	0.9600
O1A-C1A	1.2755 (10)	C4A-H4A3	0.9600
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	1.2533 (10)	C1B-C2B	1.5179 (12)
O1B-C1B	1.2878 (9)	C2B-H2B	0.9800
O2B-C1B	1.2510 (11)	C2B-C3B	1.5340 (14)
O1W-H1W1	0.79 (2)	C2B-C4B	1.5329 (14)
O1W-H1W2	0.88 (2)	C3B-H3B1	0.9600
O2W-H2W1	0.861 (12)	C3B-H3B2	0.9600
$\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{~W} 2$	0.884 (11)	C3B-H3B3	0.9600
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	1.5191 (12)	C4B-H4B1	0.9600
C2A-H2A	0.9800	C4B-H4B2	0.9600
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	1.5187 (15)	C4B-H4B3	0.9600
O1A-Co1-O1B	88.13 (3)	$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	111.50 (9)
O1A-Col-O1B ${ }^{\text {i }}$	89.41 (3)	$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A} 1$	109.5
O1A-Col-O1W	92.18 (3)	$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A} 2$	109.5
O1A-Col-O1W ${ }^{\text {i }}$	88.29 (3)	$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A} 3$	109.5
$\mathrm{O} 2 \mathrm{~A}^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1 \mathrm{~A}$	175.30 (3)	H3A1-C3A-H3A2	109.5
$\mathrm{O} 2 \mathrm{~A}^{\mathrm{i}}$ - $\mathrm{Col}-\mathrm{O} 1 \mathrm{~B}$	89.99 (3)	H3A1-C3A-H3A3	109.5
$\mathrm{O} 2 \mathrm{~A}^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1 \mathrm{~B}^{\mathrm{i}}$	93.14 (3)	H3A2-C3A-H3A3	109.5
O 2 A - $\mathrm{Col}-\mathrm{O} 1 \mathrm{~W}$	91.70 (3)	$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{H} 4 \mathrm{~A} 1$	109.5
$\mathrm{O} 2 \mathrm{~A}^{\mathrm{i}}-\mathrm{Col}-\mathrm{O} 1 \mathrm{~W}^{\mathrm{i}}$	88.33 (3)	$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{H} 4 \mathrm{~A} 2$	109.5
O1B-Col-O1B ${ }^{\text {i }}$	170.29 (2)	C2A-C4A-H4A3	109.5
O1B-Col-O1W	79.22 (2)	H4A1-C4A-H4A2	109.5
O1B-Col-O1W	91.49 (2)	$\mathrm{H} 4 \mathrm{~A} 1-\mathrm{C} 4 \mathrm{~A}-\mathrm{H} 4 \mathrm{~A} 3$	109.5
O1B-Col-O1W ${ }^{\text {i }}$	110.31 (2)	H4A $2-\mathrm{C} 4 \mathrm{~A}-\mathrm{H} 4 \mathrm{~A} 3$	109.5
O1B- ${ }^{\text {Col }}$ - $\mathrm{O}^{\text {1 }}{ }^{\text {i }}$	78.99 (2)	$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	118.13 (8)

O1W-Col-O1W ${ }^{\text {i }}$	170.46 (2)	$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{O} 1 \mathrm{~B}$	122.42 (8)
C1A-O1A-Co1	130.11 (6)	$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	119.42 (7)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}-\mathrm{Co} 1^{\text {ii }}$	131.28 (6)	$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$	108.3
Col-O1B-Co1 ${ }^{\text {ii }}$	98.44 (2)	C1B-C2B-C3B	111.27 (8)
C1B-O1B-Col	135.89 (6)	$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	109.15 (8)
C1B-O1B-Co1i	125.09 (6)	$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$	108.3
Co1-O1W-Col ${ }^{\text {ii }}$	94.70 (2)	$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$	108.3
Col-O1W-H1W1	109.1 (16)	$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	111.30 (8)
Col ${ }^{\text {ii- }}$ O1W-H1W1	116.6 (14)	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 1$	109.5
Co1-O1W-H1W2	98.2 (15)	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 2$	109.5
Col ${ }^{\text {ii- }} \mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1 \mathrm{~W} 2$	127.6 (14)	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 3$	109.5
H1W1-O1W-H1W2	106 (2)	H3B1-C3B-H3B2	109.5
H2W1-O2W-H2W2	103.8 (14)	H3B1-C3B-H3B3	109.5
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}$	124.94 (8)	H3B2-C3B-H3B3	109.5
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	118.59 (7)	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{~B} 1$	109.5
O1A-C1A-C2A	116.46 (7)	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{~B} 2$	109.5
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	107.6	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{~B} 3$	109.5
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	113.25 (8)	H4B1-C4B-H4B2	109.5
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	107.6	$\mathrm{H} 4 \mathrm{~B} 1-\mathrm{C} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{~B} 3$	109.5
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	108.94 (8)	H4B2-C4B-H4B3	109.5
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	107.6		
$\mathrm{Co}-\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	-166.13 (6)	$\mathrm{Col}{ }^{\text {iii }}-\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B}$	-16.84 (12)
Col-O1A-C1A-O2A	12.38 (12)	$\mathrm{Co} 1-\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	-4.15 (12)
O1A-C1A-C2A-C3A	-168.74 (8)	$\mathrm{Co} 1^{\mathrm{ii}}-\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	165.09 (6)
$\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	66.57 (12)	$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	-138.98 (8)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	12.65 (12)	$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	97.80 (9)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	-112.03 (11)	$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	42.89 (11)
$\mathrm{Co}-\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B}$	173.93 (6)	$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	-80.33 (10)

Symmetry codes: (i) $-x+1, y+1 / 2,-z+1 / 2$; (ii) $-x+1, y-1 / 2,-z+1 / 2$.

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 2 W$	$0.79(2)$	$1.91(2)$	$2.6638(10)$	$161(2)$
$\mathrm{O} 1 W-\mathrm{H} 1 W 2 \cdots \mathrm{O} 2 B^{\mathrm{i}}$	$0.88(2)$	$1.79(2)$	$2.6206(9)$	$158(2)$
$\mathrm{O} 2 W-\mathrm{H} 2 W 1 \cdots \mathrm{O} 1 A^{\mathrm{ii}}$	$0.86(1)$	$2.01(1)$	$2.7967(9)$	$151(1)$
$\mathrm{O} 2 W-\mathrm{H} 2 W 2 \cdots \mathrm{O} 2 B^{\mathrm{iii}}$	$0.88(1)$	$1.95(1)$	$2.8087(9)$	$163(1)$
$\mathrm{C} 2 B — \mathrm{H} 2 B \cdots \mathrm{O} 2 A^{\mathrm{i}}$	0.98	2.47	$3.3094(11)$	144

Symmetry codes: (i) $-x+1, y+1 / 2,-z+1 / 2$; (ii) $-x+1, y-1 / 2,-z+1 / 2$; (iii) $x,-y+1 / 2, z+1 / 2$.

