

Received 7 December 2016 Accepted 8 February 2017

Edited by G. Smith, Queensland University of Technology, Australia

Keywords: crystal structure; absolute configuration; D-ribono-1,4-lactone; fused five-membered ring system.

CCDC reference: 1531628

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 5-O-benzoyl-2,3-O-isopropylidene-D-ribono-1,4-lactone

Adailton J. Bortoluzzi,^a* Gustavo P. Silveira^b and Marcus M. Sá^a

^aDepto. de Química - Universidade Federal de Santa Catarina, 88040-900 – Florianópolis, Santa Catarina, Brazil, and ^bDepartamento de Química Orgânica - Instituto de Química, Universidade Federal do Rio Grande do Sul, 91501-970 – Porto Alegre, Rio Grande do Sul, Brazil. *Correspondence e-mail: adailton.bortoluzzi@uísc.br

In the title compound, $C_{15}H_{16}O_6$, obtained from the acylation reaction between 2,3-*O*-isopropylidene-D-ribono-1,4-lactone and benzoyl chloride, the known absolute configuration for the lactone moiety of the ester substituent has been confirmed. The five-membered rings of the bicyclic lactone–dioxolane moiety both show envelope conformations and form a dihedral angle of 19.82 (7)° between the lactone ring and the benzene ring. In the crystal, molecules of the acylated sugar are linked by very weak intermolecular C–H···O interactions, forming a three-dimensional network.

1. Chemical context

Aldonolactones are modified sugars with the anomeric center in its higher oxidation state. They have been widely employed as versatile chiral pools for the synthesis of biologically important molecules due to their abundance from sustainable resources as well as their low cost (Corma et al., 2007; Han et al., 1993; Silveira et al., 2015). However, the chemical complexity associated with most carbohydrates, which is mainly due to the subtle differences in the reactivity of similar hydroxyl groups and the simultaneous existence of tautomeric species in equilibrium, may lead to unexpected transformations such as rearrangements and functional group migrations (Baggett et al., 1985; Sá et al., 2008). Therefore, the synthesis of new carbohydrate-based molecules often relies on single crystal X-ray analysis for correct structural and conformational assignments (Booth et al., 2009; Czugler & Pintér, 2011; Sales & Silveira, 2015). In a continuation of our research on the chemistry of carbohydrates (Bortoluzzi et al., 2011; Cardoso et al., 2015; Sá et al., 2002, 2008; Sebrão et al., 2011), we describe herein the crystal structure of 5-O-benzoyl-2,3-Oisopropylidene-D-ribono-1,4-lactone, C₁₅H₁₆O₆, (I).

0

2. Structural commentary

research communications

Figure 1

The molecular structure of (I), with the atom-labeling scheme. Displacement ellipsoids are shown at the 40% probability level.

[Flack factor 0.05 (3) for 1078 quotients (Parsons et al., 2013)], which is consistent with the known configuration for the lactone ring (Sá et al., 2008; Sales & Silveira, 2015). Both fivemembered rings of the bicyclic lactone-dioxolane moiety show envelope conformations. However, the dioxolane ring adopts a more regular envelope conformation, comparing the puckering parameters for O3 $[Q(2) = 0.3141 (15) \text{ Å}, \varphi(2) =$ 284.5 (3)°] with those for C3 [Q(2) = 0.2261(17) Å, $\varphi(2) =$ 121.9 (4)°], but this ring is slightly twisted about the C1–C2 bond. This is indicated by the comparative torsion angles C13-O2-C2-C3 for the dioxolane ring and C4-O4-C1-C2 of the lactone ring of 1.55 (18) and 6.87 (16) $^{\circ}$, respectively. The dihedral angle between the mean plane of the benzene ring and that of the ester group (O6/C6/O5/C5) is $16.59 (9)^{\circ}$. All bond lengths and angles observed for (I) are within the expected range for organic compounds (Bruno et al., 2004).

Table 1	
Hydrogen-bond geometry (Å	., °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C4-H4\cdots O1^{i}$	1.00	2.52	3.2381 (19)	128
C8−H8···O3 ⁱⁱ	0.95	2.65	3.4951 (19)	148
C12−H12···O4 ⁱⁱⁱ	0.95	2.66	3.4682 (19)	143
$C15-H15A\cdots O6^{iv}$	0.98	2.59	3.551 (2)	166

Symmetry codes: (i) $-x + 2, y - \frac{1}{2}, -z + \frac{3}{2}$, (ii) $-x + \frac{3}{2}, -y, z - \frac{1}{2}$, (iii) x - 1, y, z; (iv) $-x + \frac{3}{2}, -y, z + \frac{1}{2}$.

3. Supramolecular features

The molecules of (I) are stacked along the crystallographic *a* axis. Several weak $C-H\cdots O$ interactions (Table 1, Fig. 2) are observed in the crystal, forming an intricate three-dimensional network.

4. Database survey

A search in the current version of the Cambridge Structural Database (Version 5.37, November 2016; Groom *et al.*, 2016) for structures containing a bicyclic lactone-dioxolane moiety revealed only seven entries (refcodes: JOBJOZ, OCAVOE, VAXCAA, VENBAS, YISHAJ, YISHAK01 and YISHOX), which are related to articles published from 1991 to 2012.

5. Synthesis and crystallization

5-*O*-Benzoyl-2,3-*O*-isopropylidene-D-ribono-1,4-lactone (I) was prepared in quantitative yield through the acylation of 2,3-*O*-isopropylidene-D-ribono-1,4-lactone (II) with benzoyl chloride in pyridine followed by aqueous work-up and purif-

Weak $C-H\cdots O$ contacts around the independent molecule.

Figure 3 Reaction scheme for the synthesis of compound (I).

ication according to the reported method (Sá et al., 2002). The two-step preparation of (I) is shown in the reaction scheme (Fig. 3). Slow crystallization from ethanol solution furnished single crystals (m.p. 371-372 K), allowing structural elucidation by X-ray crystallographic techniques. The absolute configuration for (I) was established by refinement of the Flack parameter and is in complete agreement with previous assignments made on the basis of hydrogen- and carbon-NMR shifts for the starting D-ribono-1,4-lactones (II) and (III), and on the homogeneity of the reaction product.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in idealized positions and allowed to ride with C-H distances of 0.95 Å (CH_{Ar}), 1.00 Å (CH), 0.99 Å (CH₂) or 0.98 Å (CH₃) with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C}) \text{ or } 1.5 U_{\rm eq}({\rm C}_{\rm methyl}).$

Funding information

Funding for this research was provided by: Financiadora de Estudos e Projetos; Coordenação de Aperfeicoamento de Pessoal de Nível Superior; Conselho Nacional de Desenvolvimento Científico e Tecnológico.

References

- Baggett, N., Buchanan, J. G., Fatah, M. V., Lachut, C. H., McCullough, K. J. & Webber, J. M. (1985). J. Chem. Soc. Chem. Commun. pp. 1826-1827
- Booth, K. V., Jenkinson, S. F., Fleet, G. W. J. & Watkin, D. J. (2009). Acta Cryst. E65, o2199.
- Bortoluzzi, A. J., Sebrão, D., Sá, M. M. & Nascimento, M. G. (2011). Acta Cryst. E67, o2778.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.
- Cardoso, H. M., Ribeiro, T. F., Sá, M. M., Sebrão, D., Nascimento, M. G. & Silveira, G. P. (2015). J. Braz. Chem. Soc. 26, 755-764.
- Corma, A., Iborra, S. & Velty, A. (2007). Chem. Rev. 107, 2411-2502.
- Czugler, M. & Pintér, I. (2011). Carbohydr. Res. 346, 1610-1616.

Table 2 Experimental details.

Crystal data	
Chemical formula	$C_{15}H_{16}O_{6}$
$M_{ m r}$	292.28
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	200
a, b, c (Å)	5.7574 (1), 12.5703 (3), 20.1888 (4)
$V(Å^3)$	1461.11 (5)
Ζ	4
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	0.87
Crystal size (mm)	$0.20 \times 0.18 \times 0.16$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADARS: Bruker
Ausorphon concerton	2009)
T_{\min}, T_{\max}	0.682, 0.753
No. of measured, independent and	12424, 2655, 2635
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.024
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.602
Refinement	
$R[F^2 > 2\sigma(F^2)] = wR(F^2) S$	0.024.0.068.1.02
No of reflections	2655
No. of parameters	193
H-atom treatment	H-atom parameters constrained
$\Delta \rho = \Delta \rho + (e \text{ Å}^{-3})$	0.13 - 0.10
Absolute structure	Flack x determined using 1078
	quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$
	(Parsons <i>et al.</i> , 2013)
Absolute structure parameter	0.05 (3)

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2012 (Sheldrick, 2015), PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.
- Han, S.-Y., Joullié, M. M., Petasis, N. A., Bigorra, J., Corbera, J., Font, J. & Ortuño, R. M. (1993). Tetrahedron, 49, 349-362.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.
- Sá, M. M., Silveira, G. P., Caro, M. S. B. & Ellena, J. (2008). J. Braz. Chem. Soc. 19, 18-23.
- Sá, M. M., Silveira, G. P., Castilho, M. S., Pavão, F. & Oliva, G. (2002). Arkivoc, 8, 112-124.
- Sales, E. S. & Silveira, G. P. (2015). J. Chem. Educ. 92, 1932-1937.
- Sebrão, D., Sá, M. M. & Nascimento, M. da G. (2011). Process Biochem. 46, 551-556.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Silveira, G. P., Cardozo, H. M., Rossa, T. A. & Sá, M. M. (2015). Curr. Org. Synth. 12, 584-602.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2017). E73, 407-409 [https://doi.org/10.1107/S2056989017002043]

Crystal structure of 5-O-benzoyl-2,3-O-isopropylidene-D-ribono-1,4-lactone

Adailton J. Bortoluzzi, Gustavo P. Silveira and Marcus M. Sá

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2012* (Sheldrick, 2015); molecular graphics: *PLATON* (Spek, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

5-O-Benzoyl-2,3-O-isopropylidene-D-ribono-1,4-lactone

Crystal data

C₁₅H₁₆O₆ $M_r = 292.28$ Orthorhombic, $P2_12_12_1$ a = 5.7574 (1) Å b = 12.5703 (3) Å c = 20.1888 (4) Å V = 1461.11 (5) Å³ Z = 4F(000) = 616

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: Cu IµS microfocus X-ray
source
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min} = 0.682, \ T_{\max} = 0.753$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.068$ S = 1.022655 reflections 193 parameters 0 restraints Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $D_x = 1.329 \text{ Mg m}^{-3}$ Melting point = 371–372 K Cu K α radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9982 reflections $\theta = 4.1-68.1^{\circ}$ $\mu = 0.87 \text{ mm}^{-1}$ T = 200 KIrregular block, colourless $0.20 \times 0.18 \times 0.16 \text{ mm}$

12424 measured reflections 2655 independent reflections 2635 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 68.1^{\circ}, \theta_{min} = 4.1^{\circ}$ $h = -5 \rightarrow 6$ $k = -14 \rightarrow 14$ $l = -24 \rightarrow 24$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.044P)^{2} + 0.1285P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.13 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.10 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL2012 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc²\lambda^{3}/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0059 (7) Absolute structure: Flack *x* determined using 1078 quotients [(*I*⁺)-(*I*)]/[(*I*⁺)+(*I*)] (Parsons *et al.*, 2013) Absolute structure parameter: 0.05 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
05	0.67330 (19)	0.01217 (8)	0.65402 (5)	0.0398 (3)
O3	0.72276 (19)	0.09129 (8)	0.85566 (5)	0.0350 (3)
O4	1.0094 (2)	0.11588 (10)	0.73280 (5)	0.0461 (3)
01	0.9394 (4)	0.28572 (11)	0.70948 (7)	0.0756 (5)
O2	0.5870 (3)	0.24630 (9)	0.81330 (6)	0.0514 (3)
O6	0.8024 (2)	-0.07705 (9)	0.56539 (6)	0.0476 (3)
C10	0.1551 (3)	0.15260 (14)	0.47990 (11)	0.0540 (4)
H10	0.0393	0.1887	0.4550	0.065*
C9	0.3372 (4)	0.10297 (15)	0.44780 (9)	0.0537 (5)
H9	0.3466	0.1057	0.4009	0.064*
C8	0.5059 (3)	0.04941 (12)	0.48336 (8)	0.0433 (4)
H8	0.6298	0.0146	0.4611	0.052*
C7	0.4921 (3)	0.04704 (11)	0.55213 (7)	0.0344 (3)
C6	0.6721 (3)	-0.01296 (11)	0.58914 (7)	0.0338 (3)
C5	0.8325 (3)	-0.04652 (12)	0.69549 (8)	0.0408 (4)
H5A	0.9779	-0.0620	0.6712	0.049*
H5B	0.7620	-0.1147	0.7096	0.049*
C4	0.8814 (3)	0.02301 (12)	0.75469 (7)	0.0359 (3)
H4	0.9769	-0.0175	0.7875	0.043*
C3	0.6671 (3)	0.06717 (11)	0.78883 (7)	0.0325 (3)
Н3	0.5274	0.0205	0.7842	0.039*
C13	0.5968 (3)	0.18470 (12)	0.87332 (7)	0.0321 (3)
C14	0.3543 (3)	0.15824 (18)	0.89603 (12)	0.0622 (6)
H14A	0.2719	0.1206	0.8606	0.093*
H14C	0.2713	0.2241	0.9068	0.093*
H14B	0.3621	0.1129	0.9355	0.093*
C1	0.8711 (4)	0.20229 (13)	0.73049 (7)	0.0451 (4)
C2	0.6335 (3)	0.17742 (12)	0.75949 (7)	0.0384 (4)
H2	0.5079	0.1791	0.7253	0.046*
C11	0.1417 (3)	0.14971 (15)	0.54823 (10)	0.0509 (4)
H11	0.0162	0.1837	0.5703	0.061*
C12	0.3101 (3)	0.09759 (13)	0.58439 (8)	0.0405 (3)
H12	0.3016	0.0963	0.6314	0.049*
C15	0.7316 (3)	0.24526 (13)	0.92440 (8)	0.0419 (4)
H15A	0.7527	0.2008	0.9638	0.063*
H15B	0.6464	0.3099	0.9365	0.063*
H15C	0.8837	0.2647	0.9063	0.063*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
05	0.0462 (6)	0.0393 (5)	0.0339 (5)	0.0110 (5)	-0.0058 (4)	-0.0088 (4)
O3	0.0450 (5)	0.0325 (5)	0.0275 (5)	0.0074 (4)	0.0000 (4)	0.0018 (4)
O4	0.0451 (6)	0.0534 (7)	0.0399 (6)	-0.0117 (5)	0.0069 (5)	-0.0091 (5)
O1	0.1282 (15)	0.0489 (7)	0.0498 (7)	-0.0368 (9)	0.0041 (9)	0.0046 (6)
O2	0.0832 (9)	0.0372 (6)	0.0340 (5)	0.0233 (6)	-0.0032 (6)	-0.0011 (5)
O6	0.0554 (7)	0.0464 (6)	0.0410 (6)	0.0153 (5)	-0.0015 (5)	-0.0115 (5)
C10	0.0549 (10)	0.0435 (9)	0.0636 (11)	0.0005 (8)	-0.0154 (9)	0.0109 (8)
C9	0.0779 (13)	0.0430 (9)	0.0402 (8)	-0.0036 (9)	-0.0121 (9)	0.0041 (7)
C8	0.0576 (10)	0.0350 (8)	0.0374 (8)	0.0003 (7)	0.0002 (7)	-0.0051 (6)
C7	0.0386 (8)	0.0280 (7)	0.0365 (7)	-0.0043 (6)	-0.0002 (6)	-0.0029 (5)
C6	0.0385 (7)	0.0286 (7)	0.0343 (7)	-0.0032 (6)	0.0010 (6)	-0.0061 (5)
C5	0.0468 (9)	0.0370 (7)	0.0386 (8)	0.0107 (7)	-0.0064 (7)	-0.0072 (6)
C4	0.0393 (7)	0.0345 (7)	0.0338 (7)	0.0038 (6)	-0.0019 (6)	-0.0011 (6)
C3	0.0359 (7)	0.0308 (7)	0.0307 (7)	0.0005 (6)	-0.0015 (5)	0.0001 (5)
C13	0.0336 (7)	0.0314 (7)	0.0312 (6)	0.0042 (6)	0.0006 (6)	-0.0006(5)
C14	0.0376 (9)	0.0652 (12)	0.0839 (14)	-0.0097 (9)	0.0146 (9)	-0.0254 (11)
C1	0.0713 (11)	0.0384 (8)	0.0257 (7)	-0.0142 (8)	-0.0022 (7)	-0.0031 (6)
C2	0.0534 (9)	0.0326 (7)	0.0291 (6)	0.0077 (7)	-0.0082 (7)	-0.0027 (6)
C11	0.0408 (9)	0.0483 (9)	0.0636 (11)	0.0046 (8)	0.0013 (8)	0.0053 (8)
C12	0.0375 (7)	0.0409 (8)	0.0430 (8)	-0.0017 (7)	0.0034 (7)	0.0017 (6)
C15	0.0400 (8)	0.0411 (8)	0.0445 (8)	0.0018 (7)	-0.0064 (7)	-0.0053(7)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

O5—C6	1.3475 (17)	C5—H5A	0.9900
O5—C5	1.4440 (18)	С5—Н5В	0.9900
O3—C3	1.4196 (17)	C4—C3	1.518 (2)
O3—C13	1.4253 (17)	C4—H4	1.0000
O4—C1	1.348 (2)	C3—C2	1.520 (2)
O4—C4	1.4496 (19)	С3—Н3	1.0000
01—C1	1.198 (2)	C13—C15	1.498 (2)
O2—C2	1.4148 (18)	C13—C14	1.507 (2)
O2—C13	1.4391 (17)	C14—H14A	0.9800
O6—C6	1.2008 (18)	C14—H14C	0.9800
С10—С9	1.381 (3)	C14—H14B	0.9800
C10-C11	1.382 (3)	C1—C2	1.520 (3)
C10—H10	0.9500	C2—H2	1.0000
С9—С8	1.383 (3)	C11—C12	1.379 (2)
С9—Н9	0.9500	C11—H11	0.9500
C8—C7	1.391 (2)	C12—H12	0.9500
С8—Н8	0.9500	C15—H15A	0.9800
C7—C12	1.388 (2)	C15—H15B	0.9800
С7—С6	1.484 (2)	C15—H15C	0.9800
C5—C4	1.507 (2)		

C6—O5—C5	116.56 (11)	С4—С3—Н3	113.4
C3—O3—C13	107.39 (10)	С2—С3—Н3	113.4
C1—O4—C4	111.05 (12)	O3—C13—O2	104.63 (11)
C2—O2—C13	108.05 (11)	O3—C13—C15	109.11 (12)
C9—C10—C11	119.93 (17)	O2—C13—C15	109.05 (13)
С9—С10—Н10	120.0	O3—C13—C14	111.45 (14)
C11—C10—H10	120.0	02-C13-C14	109.80 (15)
C8—C9—C10	120.63 (17)	C15-C13-C14	112.49 (14)
C8—C9—H9	119.7	C13—C14—H14A	109.5
C10—C9—H9	119.7	C13—C14—H14C	109.5
C9-C8-C7	119 23 (17)	H_{14A} $-C_{14}$ $-H_{14C}$	109.5
C9—C8—H8	120.4	C13—C14—H14B	109.5
C7—C8—H8	120.4	H14A—C14—H14B	109.5
$C_{12} - C_{7} - C_{8}$	120.13 (15)	H14C— $C14$ — $H14B$	109.5
$C_{12} = C_{7} = C_{6}$	121.59(13)	01-C1-04	121.6(2)
C8-C7-C6	118 26 (14)	01-C1-C2	127.0(2) 127.7(2)
06-C6-05	122 84 (13)	04-C1-C2	127.7(2) 110.64(12)
06 - C6 - C7	122.01(13) 125.20(13)	$0^{2}-0^{2}-0^{3}$	106.43(11)
05 - C6 - C7	111.96 (12)	02 - 02 - 03	100.45 (11)
05 - C5 - C4	106 38 (12)	C_{3} C_{2} C_{1}	102.02(11) 102.91(13)
05-C5-H5A	110.5	02-C2-H2	112.91 (13)
C4-C5-H5A	110.5	C_{3} C_{2} H_{2}	112.1
05	110.5	$C_1 - C_2 - H_2$	112.4
C4-C5-H5B	110.5	C_{12} C_{11} C_{10}	112.4 120.07 (18)
H5A_C5_H5B	108.6	C_{12} C_{11} H_{11}	120.07 (10)
04-C4-C5	108.68 (12)	C10-C11-H11	120.0
04 $C4$ $C3$	104.01(11)	C_{11} C_{12} C_{7}	120.00 (16)
$C_{5} - C_{4} - C_{3}$	114 84 (13)	C11 - C12 - C7	120.00 (10)
C_{4} C_{4} H_{4}	100 /	C7 C12 H12	120.0
C_{4}	109.4	$C_{12} = C_{12} = H_{12}$	120.0
$C_3 = C_4 = H_4$	109.4	C13 C15 H15R	109.5
$C_{3} = C_{4} = 114$	109.4	H15A C15 H15D	109.5
03 - 03 - 04	109.02(12) 101.70(11)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_1 = C_2$	101.79(11) 105.05(12)	$H_{15} = C_{15} = H_{15} C_{15}$	109.5
C4 - C3 - C2	103.03 (12)	H15A - C15 - H15C	109.5
05-05-115	115.4	1115 D —C15—1115C	109.5
C11 C10 C9 C8	0.5(3)	C3 O3 C13 C15	-150.12(12)
$C_{10} = C_{10} = C_{20} = C_{30}$	-0.8(3)	$C_{3} = 0_{3} = 0_{13} = 0_{14}$	85.06 (16)
$C_{10} = C_{20} = C_{10} = C_{10}$	0.3(3)	$C_{2} = 0_{2} = 0_{13} = 0_{14}$	18 81 (16)
$C_{9} = C_{8} = C_{7} = C_{12}$	0.3(2) 178 64 (14)	$C_2 = 0_2 = C_{13} = 0_3$	13.81(10) 135.42(14)
$C_{2} = C_{3} = C_{1} = C_{0}$	1/8.04(14) -2.2(2)	$C_2 = 0_2 = C_{13} = C_{13}$	-100.00(16)
$C_{5} = 0_{5} = 0_{6} = 0_{6}$	-3.5(2)	$C_2 = 0_2 = C_{13} = C_{14}$	-100.90(10)
$C_{3} = 0_{3} = 0_{3} = 0_{7}$	1/0.29(12)	C4 - O4 - C1 - O1	-1/3.01(14)
$C_{12} - C_{12} - C_{0} - C_{0}$	102.00(10) -15.7(2)	$C_{4} - C_{4} - C_{1} - C_{2}$	0.07(10)
$C_{0} = C_{1} = C_{0} = C_{0}$	-13.7(2)	$C_{13} = 02 = 02 = 03$	1.33 (18)
$C_{12} - C_{12} - C$	-10.90(19)	$0^{2} - 0^{2} - 0^{2} - 0^{2}$	-109.21(14)
$C_{\delta} = C_{\delta} = C_{\delta}$	164./0(13)	03-02-02	-21.16 (17)
05-05-04	155.62 (13)	C4-C3-C2-O2	-134.80 (13)
C1—O4—C4—C5	104.04 (14)	O3—C3—C2—C1	94.39 (12)

supporting information

C1—O4—C4—C3	-19.24 (15)	C4—C3—C2—C1	-19.24 (14)
O5—C5—C4—O4	-66.95 (15)	O1—C1—C2—O2	-56.6 (2)
O5—C5—C4—C3	50.16 (17)	O4—C1—C2—O2	121.41 (13)
C13—O3—C3—C4	144.09 (12)	O1—C1—C2—C3	-169.62 (16)
C13—O3—C3—C2	33.44 (14)	O4—C1—C2—C3	8.36 (15)
O4—C4—C3—O3	-84.91 (13)	C9-C10-C11-C12	0.2 (3)
C5—C4—C3—O3	155.85 (12)	C10-C11-C12-C7	-0.7 (3)
O4—C4—C3—C2	23.54 (14)	C8—C7—C12—C11	0.4 (2)
C5—C4—C3—C2	-95.70 (15)	C6—C7—C12—C11	-177.87 (15)
C3—O3—C13—O2	-33.54 (14)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C4—H4…O1 ⁱ	1.00	2.52	3.2381 (19)	128
C5— $H5B$ ···O1 ⁱ	0.99	2.68	3.139 (2)	108
C8—H8…O3 ⁱⁱ	0.95	2.65	3.4951 (19)	148
C12—H12…O4 ⁱⁱⁱ	0.95	2.66	3.4682 (19)	143
C15—H15A····O6 ^{iv}	0.98	2.59	3.551 (2)	166
C15—H15 <i>C</i> ···O6 ^v	0.98	2.75	3.497 (2)	134

Symmetry codes: (i) -x+2, y-1/2, -z+3/2; (ii) -x+3/2, -y, z-1/2; (iii) x-1, y, z; (iv) -x+3/2, -y, z+1/2; (v) -x+2, y+1/2, -z+3/2.