

Received 12 June 2018 Accepted 19 June 2018

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: titania-germania; solid solution; rutile structure; high pressure; high temperature; crystal structure.

CCDC reference: 1850471

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

$Ge_{0.57}Ti_{0.43}O_2$: a new high-pressure material with rutile-type crystal structure

Emil Stoyanov,^a* Kurt Leinenweber,^b Thomas L. Groy^c and Abds-Sami Malik^a

^aSandvik Hyperion, 6325 Huntley Road, Worthington, OH 43085, USA, ^bEyring Materials Center, Arizona State University, Tempe, AZ 85287-1604, USA, and ^cSchool of Molecular Sciences, PSD-102 MS-871604, Arizona State University, Tempe, AZ 85287-1604, USA. *Correspondence e-mail: emil.stoyanov@sandvik.com

Single crystals of a GeO₂-TiO₂ solid solution with the corresponding composition Ge_{0.57}Ti_{0.43}O₂ (germanium titanium tetraoxide) were obtained by devitrification of germania-titania glass at high pressure and temperature. The new compound crystallizes in the rutile structure type (space group $P4_2/mnm$), where Ge and Ti share the same position M (site symmetry *m.mm*), with occupancy values of 0.57 (3) and 0.43 (3), respectively, and one O-atom position (*m.2m*). The M site is in a sixfold O-atom coordination and, as in the original TiO₂ rutile structure, an elongation of the O-M-O bonds along the *c*-axis direction of the coordination polyhedron and deviation of the angles from 90° lead to a decrease in the coordination symmetry from octahedral to tetragonal. The Ge and Ti atoms are fully disordered in the structure, which indicates that the rutile structure is surprisingly pliant given the differing sizes of the two cations.

1. Chemical context

At ambient pressure, the GeO₂-TiO₂ phase diagram shows the formation of three phases: rutile-type GeO₂, stable up to 1323 K, β -quartz-type GeO₂, stable above 1323 K and TiO₂ in the form of rutile. A metastable α -quartz-type structured GeO_2 has also been reported as the result of the cooling of the β -quartz-type structure (Sarver, 1961). Additionally, at ambient pressure GeO₂ and TiO₂ exhibit only limited mutual solubility. The GeO₂-TiO₂ phase diagram at elevated pressures and temperatures has not been studied in great detail and the mutual solubility of Ge and Ti in the phases stable at these conditions is still largely unknown. GeO₂ is dimorphous at ambient atmospheric conditions, represented by both rutiletype and α -quartz-structured phases depending on the temperature, but with increasing pressure the GeO_2 rutile becomes more stable, and is the primary phase above two GPa (Micoulaut et al., 2006). At pressures above 25 GPa, the tetragonal rutile-type phase transforms into an orthorhombic CaCl₂-type phase (Haines et al., 2000). TiO₂ rutile undergoes two phase transitions under high pressure of up to 12 GPa: rutile-to- α -PbO₂-type at around 7 GPa and α -PbO₂-tobaddeleyite at 12 GPa (Gerward & Staun Olsen, 1997). We synthesized the title compound while investigating the GeO₂-TiO₂ phase diagram at a pressure of 8 GPa at 2028 K by means of the multi-anvil high-pressure technique. Instead of forming Ge-bearing TiO_2 and Ti-bearing GeO_2 , we discovered that the high pressure and temperature conditions led to the formation of a crystalline, single solid-solution material. At temperatures above 1873 K, crystal growth was significant and high-quality

Table 1Selected geometry	tric parameters (Å,	°).	
Ge1-O1 ⁱ	1.9080 (12)	Ge1-Ti1 ⁱⁱ	
Ge1-O1	1.9441 (19)		

O1 ⁱ -Ge1-O1 ⁱⁱⁱ	99.48 (8)	Ti1 ⁱⁱ -Ge1-Ti1 ^{vi}	180
O1 ⁱ -Ge1-O1 ^{iv}	80.52 (8)	Ti1 ^{vii} –O1–Ti1 ^{viii}	99.48 (8)
O1 ^v -Ge1-O1	180	Ge1 ^{vii} -O1-Ge1	130.26 (4)

Symmetry codes: (i) $y - \frac{1}{2}, -x + \frac{1}{2}, -z + \frac{1}{2}$; (ii) x, y, z + 1; (iii) $y - \frac{1}{2}, -x + \frac{1}{2}, -z - \frac{1}{2}$; (iv) $-y + \frac{1}{2}, x - \frac{1}{2}, z + \frac{1}{2}$; (v) -x, -y, -z; (vi) x, y, z - 1; (vii) $-y + \frac{1}{2}, x + \frac{1}{2}, z + \frac{1}{2}$; (viii) $-y + \frac{1}{2}, x + \frac{1}{2}, z - \frac{1}{2}$; (viii)

single crystals of the solid solution with a composition near TiGeO₄ could be obtained.

2. Structural commentary

The crystal structure of $Ge_{0.57}Ti_{0.43}O_2$ corresponds to the TiO₂ rutile type (space group $P4_2/mnm$). The shared metal site M is in Wyckoff position 2a and is surrounded by six O atoms, thus forming a sixfold coordination polyhedron. 57% of the 2a positions are occupied by Ge and the remaining 43% are occupied by Ti. Each oxygen atom occupies a 4f position and is surrounded by three M sites, forming triangular MO_3 groups in the (110) lattice plane (Fig. 1). The structure is represented by chains of edge-sharing MO_6 octahedra running parallel to the c-axis direction (Fig. 2) and connected to each other by shared corners. Relevant bond lengths and angles are presented in Table 1. In the MO₆ coordination polyhedra, the M-O distances in the xy plane are 1.9080 (12) Å, while the M-O distances along the z axis increase to 1.9441 (19) Å. The $M \cdots M$ distances are equal to 2.9121 (13) Å. The elongation of O-M-O bonds along the z direction of the MO_6 coordina-

Figure 1

View of the structure of $Ge_{0.57}Ti_{0.43}O_2$ looking down the *c* axis. The unit cell is outlined in white. The red ellipsoids represent the oxygen atoms and show the orientation of the displacement ellipsoids for 99% probability. The Ti atom is represented by light blue and the Ge atom by purple, with the percentage occupancy of the *M* site represented as a pie chart on the atom. MO_6 octahedra are represented as transparent polyhedra.

2.9121 (13)

View of the edge-sharing chain of MO_6 octahedra in $Ge_{0.57}Ti_{0.43}O_2$. The symbols are the same as in Fig. 1.

tion polyhedron and the deviation of the angles from 90° lead to a decrease in point group symmetry from octahedral O_h to tetragonal D_{4h} . The unit-cell volume of $\text{Ge}_{0.57}\text{Ti}_{0.43}\text{O}_2$ [58.79 (6) Å³] falls in between the rutile-type GeO_2 [55.3424 (17) Å³] (Gullikson *et al.*, 2015) and TiO₂ rutile [62.435 Å³] (Howard *et al.*, 1991) and indicates a linear relationship between the unit-cell volume and molar fraction of GeO₂, adhering to Vegard's Law.

The somewhat large difference in the ionic radii of the sixfold coordinated Ge⁴⁺ and Ti⁴⁺ (0.53 and 0.605 Å, respectively; Shannon, 1976) may be the reason for the limited mutual solubility of Ge and Ti in the rutile structured oxides at ambient pressure. This might explain why the single solid-solution phase is absent in the GeO₂–TiO₂ system, and why the synthesis of a material with composition near TiGeO₄ requires high-pressure and high-temperature conditions. Disordering at high temperatures (significantly above the ambient-pressure melting point) could assist in the stability of the solid solution even with the two different sized cations.

3. Synthesis and crystallization

The title compound was synthesized by using an industrial multi-anvil high-pressure apparatus. The starting material was

research communications

Table 2Experimental details.

Crystal data	
Chemical formula	$Ge_{1.14}Ti_{0.86}O_4$
$M_{\rm r}$	187.88
Crystal system, space group	Tetragonal, P42/mnm
Temperature (K)	298
a, c (Å)	4.493 (2), 2.9121 (13)
$V(Å^3)$	58.79 (6)
Z	1
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	17.23
Crystal size (mm)	$0.08\times0.08\times0.07$
Data collection	
Diffractometer	Bruker SMART APEX
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2014)
T_{\min}, T_{\max}	0.31, 0.40
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	722, 77, 76
R _{int}	0.022
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.772
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.018, 0.050, 1.20
No. of reflections	77
No. of parameters	10
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.60, -0.93

Computer programs: *APEX2* and *SAINT* (Bruker, 2014), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2014* (Sheldrick, 2015*b*), *CrystalMaker* (Palmer, 2015) and *publCIF* (Westrip, 2010).

a GeO₂-TiO₂ glass produced from the corresponding oxide powders with a molar ratio of 60:40 (Sem-Com Company, Toledo, OH). A Pt foil capsule was loaded with the powdered glass and was subjected to high-pressure/high-temperature (HPHT) conditions of 8 GPa and 2028 K for 30 minutes, followed by cooling for 15 minutes to room temperature and releasing pressure non-isobarically to atmospheric pressure to recover the sample. The temperature was monitored with a W3%Re-W26%Re (C-type) thermocouple. The pressure was estimated by recovering and analyzing SiO₂-GeO₂ glass that was loaded in the Pt foil capsule and pressed in the same highpressure cell. Thus, the pressure standard and the GeO₂-TiO₂ glass were treated at the same conditions. The details on the pressure calibration technique can be found elsewhere (Gullikson et al., 2015; Leinenweber et al., 2015). The applied temperature was sufficient to produce high-quality single crystals with uniform extinction in the optical microscope. A clear colourless tabular-like crystal from the recovered GeO_2 -TiO₂ sample was used for the X-ray crystallographic analysis.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Structure data were standardized according to the *STRUCTURE-TIDY* program (Gelato & Parthé, 1987).

Acknowledgements

We acknowledge the use of facilities within the Eyring Materials Center at Arizona State University. The GeO_2 -TiO₂ crystals were grown in-house at Sandvik Hyperion.

Funding information

The authors thank Sandvik Hyperion (Worthington, OH, USA) for providing research funding for exploratory experiments and X-ray diffraction related to this project. Exploration of the TiO₂–GeO₂ system at ASU was funded by Sandvik Hyperion. Use of the COMPRES Cell Assembly Project was supported by COMPRES under NSF cooperative agreement EAR 1661511.

References

- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
- Gerward, L. & Staun Olsen, J. (1997). J. Appl. Cryst. 30, 259-264.
- Gullikson, A. L., Leinenweber, K., Stoyanov, E., Zhang, H. & Malik, A.-S. (2015). J. Am. Ceram. Soc. 98, 982–989.
- Haines, J., Léger, J. M., Chateau, C. & Pereira, A. S. (2000). Phys. Chem. Miner. 27, 575-582.
- Howard, C. J., Sabine, T. M. & Dickson, F. (1991). Acta Cryst. B47, 462–468.
- Leinenweber, K., Gullikson, A. L., Stoyanov, E. & Malik, A. (2015). J. Solid State Chem. 229, 10–18.
- Micoulaut, M., Cormier, L. & Henderson, G. S. (2006). J. Phys. Condens. Matter, 18, R753–R784.
- Palmer, D. (2015). *CrystalMaker*. CrystalMaker Software Ltd, Bicester, Oxfordshire, England.
- Sarver, J. F. (1961). Am. J. Sci. 259, 709-718.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2018). E74, 1010-1012 [https://doi.org/10.1107/S2056989018008988]

Ge_{0.57}Ti_{0.43}O₂: a new high-pressure material with rutile-type crystal structure

Emil Stoyanov, Kurt Leinenweber, Thomas L. Groy and Abds-Sami Malik

Computing details

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT* (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015*b*); molecular graphics: *CrystalMaker* (Palmer, 2015); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Germanium titanium tetraoxide

Crystal data

Ge_{1.14}Ti_{0.86}O₄ $M_r = 187.88$ Tetragonal, P4₂/mnm a = 4.493 (2) Å c = 2.9121 (13) Å V = 58.79 (6) Å³ Z = 1F(000) = 87

Data collection

Bruker SMART APEX	$T_{\rm min} = 0.31, T_{\rm min}$
diffractometer	722 measure
Radiation source: fine-focus sealed tube, sealed	77 independe
tube	76 reflection
Graphite monochromator	$R_{\rm int} = 0.022$
Detector resolution: 8.3330 pixels mm ⁻¹	$\theta_{\rm max} = 33.3^{\circ},$
ω and φ scans	$h = -6 \rightarrow 6$
Absorption correction: multi-scan	$k = -6 \rightarrow 6$
(SADABS; Bruker, 2014)	$l = -4 \rightarrow 4$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.018$ $wR(F^2) = 0.050$ S = 1.2077 reflections 10 parameters 0 restraints Primary atom site location: iterative $D_x = 5.307 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 538 reflections $\theta = 4.5-33.3^{\circ}$ $\mu = 17.23 \text{ mm}^{-1}$ T = 298 KTabular, clear colourless $0.08 \times 0.08 \times 0.07 \text{ mm}$

 $T_{\min} = 0.31, T_{\max} = 0.40$ 722 measured reflections
77 independent reflections
76 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{\max} = 33.3^\circ, \theta_{\min} = 6.4^\circ$ $h = -6 \rightarrow 6$ $k = -6 \rightarrow 6$ $I = -4 \rightarrow 4$

Secondary atom site location: notdet $w = 1/[\sigma^2(F_o^2) + (0.0347P)^2 + 0.0217P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.60 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.93 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL2014 (Sheldrick, 2015b) Extinction coefficient: 0.58 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and	' isotropic or equi	ivalent isotropic displ	acement parameters $(Å^2)$
-----------------------------------	---------------------	-------------------------	----------------------------

	x	y	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)	
Ge1	0	0	0	0.0049 (3)	0.57 (3)	
Ti1	0	0	0	0.0049 (3)	0.43 (3)	
01	0.3059 (3)	0.3059 (3)	0	0.0077 (6)		

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Ge1	0.0059 (4)	0.0059 (4)	0.0029 (4)	-0.00019 (9)	0	0
Ti1	0.0059 (4)	0.0059 (4)	0.0029 (4)	-0.00019 (9)	0	0
O1	0.0084 (7)	0.0084 (7)	0.0065 (8)	-0.0014 (5)	0	0

Geometric parameters (Å, °)

Ge1-O1 ⁱ	1.9080 (12)	Ge1—Ti1 ^{vii}	2.9121 (13)
Ge1-O1 ⁱⁱ	1.9080 (12)	Ge1—Ge1 ^{vi}	2.9121 (13)
Ge1-O1 ⁱⁱⁱ	1.9080 (12)	Ge1—Ge1 ^{vii}	2.9121 (13)
Ge1-O1 ^{iv}	1.9080 (12)	O1—Ti1 ^{viii}	1.9080 (12)
Ge1—O1 ^v	1.9440 (19)	O1—Ge1 ^{viii}	1.9080 (12)
Ge101	1.9441 (19)	O1—Ti1 ^{ix}	1.9080 (12)
Ge1—Ti1 ^{vi}	2.9121 (13)	O1—Ge1 ^{ix}	1.9080 (12)
$O1^{i}$ Ge1 $O1^{ii}$	00 /8 (8)	Ol ⁱ Gel Gel ^{vi}	40.26 (4)
01 - 001 - 01 01^{i} Ge1 01^{iii}	99.40 (8) 80.52 (8)	O1 - Ge1 - Ge1	139.74(4)
01 - 001 - 01 01^{ii} Ge1 01^{iii}	180.0	$O1 - Ge1 - Ge1^{vi}$	40.26 (4)
$O1^{i}$ Gel $O1^{iv}$	180.0	$O1^{iv}$ Ge1 Ge1 ^{vi}	139.74(4)
01 - 001 - 01 $01^{ii} - Ge1 - 01^{iv}$	80.52 (8)	$O1^{v}$ —Ge1—Ge1 ^{vi}	90.0
01 - 6c1 - 01 $01^{iii} - Ge1 - 01^{iv}$	99.48(8)	$O1 - Ge1 - Ge1^{vi}$	90.0
$01 - 601 - 01^{v}$	90.0	$Ti1^{vi}$ Ge1 Ge1 vi	0
01^{ii} Ge1 01^{v}	90.0	Til ^{vii} —Gel—Gel ^{vi}	180.0
$O1^{iii}$ Ge1 $O1^{v}$	90.0	$O1^{i}$ Ge1 Ge1 vii	139 74 (4)
$O1^{iv}$ Ge1 $O1^{v}$	90.0	$O1^{ii}$ Ge1 Ge1 V^{ii}	40.26 (4)
01^{i} Ge1 01	90.0	$O1^{iii}$ —Ge1—Ge1 ^{vii}	139 74 (4)
$O1^{ii}$ —Ge1—O1	90.0	Ol ^{iv} —Gel—Gel ^{vii}	40.26 (4)
$O1^{iii}$ —Ge1—O1	90.0	O1 ^v —Ge1—Ge1 ^{vii}	90.0
$O1^{iv}$ —Ge1—O1	90.0	O1—Ge1—Ge1 ^{vii}	90.0
01 ^v —Ge1—O1	180.0	Ti1 ^{vi} —Ge1—Ge1 ^{vii}	180.0
O1 ⁱ —Ge1—Ti1 ^{vi}	40.26 (4)	Ti1 ^{vii} —Ge1—Ge1 ^{vii}	0
O1 ⁱⁱ —Ge1—Ti1 ^{vi}	139.74 (4)	Ge1 ^{vi} —Ge1—Ge1 ^{vii}	180.0
O1 ⁱⁱⁱ —Ge1—Ti1 ^{vi}	40.26 (4)	Ti1 ^{viii} —O1—Ge1 ^{viii}	0

supporting information

O1 ^{iv} —Ge1—Ti1 ^{vi}	139.74 (4)	Ti1 ^{viii} —O1—Ti1 ^{ix}	99.48 (8)
O1 ^v —Ge1—Ti1 ^{vi}	90.0	Ge1 ^{viii} —O1—Ti1 ^{ix}	99.48 (8)
O1—Ge1—Ti1 ^{vi}	90.0	Ti1 ^{viii} —O1—Ge1 ^{ix}	99.5
Ol ⁱ —Gel—Til ^{vii}	139.74 (4)	Ge1 ^{viii} —O1—Ge1 ^{ix}	99.48 (8)
O1 ⁱⁱ —Ge1—Ti1 ^{vii}	40.26 (4)	Ti1 ^{ix} —O1—Ge1 ^{ix}	0
O1 ⁱⁱⁱ —Ge1—Ti1 ^{vii}	139.74 (4)	Ti1 ^{viii} —O1—Ge1	130.3
O1 ^{iv} —Ge1—Ti1 ^{vii}	40.26 (4)	Gel ^{viii} —O1—Gel	130.26 (4)
O1 ^v —Ge1—Ti1 ^{vii}	90.0	Ti1 ^{ix} —O1—Ge1	130.3
O1—Ge1—Ti1 ^{vii}	90.0	Gel ^{ix} —O1—Gel	130.26 (4)
Ti1 ^{vi} —Ge1—Ti1 ^{vii}	180.0		

Symmetry codes: (i) *y*-1/2, -*x*+1/2, -*z*+1/2; (ii) *y*-1/2, -*x*+1/2, -*z*-1/2; (iii) -*y*+1/2, *x*-1/2, *z*+1/2; (iv) -*y*+1/2, *x*-1/2, *z*-1/2; (v) -*x*, -*y*, -*z*; (vi) *x*, *y*, *z*+1; (vii) *x*, *y*, *z*-1; (viii) -*y*+1/2, *x*+1/2, *z*+1/2; (ix) -*y*+1/2, *x*+1/2, *z*-1/2; (v) -*x*, -*y*, -*z*; (vi) *x*, *y*, *z*+1;

Atomic coordinates and equivalent isotropic atomic displacement parameters (\hat{A}^2) for TiGeO₄. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	<i>y/b</i>	z/c	U(eq)
Ge(1)	0.0	0.0	0.0	0.0049 (3)
Ti(1)	0.0	0.0	0.0	0.0049 (3)
O(1)	0.3059 (3)	0.3059 (3)	0.0	0.0077 (6)

Anisotropic atomic displacement parameters $(Å^2)$ for TiGeO₄.

	U ₁₁	U_{22}	<i>U</i> ₃₃	U_{23}	U_{13}	U ₁₂
Ge(1)	0.0059 (4)	0.0059 (4)	0.0029 (4)	0	0	-0.00019 (9)
Ti(1)	0.0059 (4)	0.0059 (4)	0.0029 (4)	0	0	-0.00019 (9)
O(1)	0.0084 (7)	0.0084 (7)	0.0065 (8)	0	0	-0.0014 (5)

Selected interatomic distances (Å) and angles for TiGeO₄.

Ge(1)-O(1)	1.9080 (12)	Ge(1)-O(1)	1.9441 (19)	
Ge1-Ti1	2.9121 (13)	O1-Ti1	1.9080 (12)	
O1-Ge1	1.9080 (12)			
O(1)-Ge(1)-O(1)	99.48 (8)	O(1)-Ge(1)-O(1)	80.52 (8)	
O(1)-Ge(1)-O(1)	180.0	O(1)-Ge(1)-O(1)	90.0	
O(1)-Ge(1)-Ti(1)	139.74 (4)	O(1)-Ge(1)-Ti(1)	40.26 (4)	
O(1)-Ge(1)-Ti(1)	90.0	Ti(1)-Ge(1)-Ti(1)	180.0	
Ge1-O1-Ti1	99.48 (8)	Ti1-O1-Ge1	130.26 (4)	