

Received 14 February 2019 Accepted 18 April 2019

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia

Keywords: crystal structure; co-crystal; charge transfer; L-ascorbic acid; 4,4'-bipyridine.

CCDC reference: 1910963

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Partial charge transfer in the salt co-crystal of L-ascorbic acid and 4,4'-bipyridine

Eric Sylvester,^a Mitchell McGovern,^a An Young Lee,^a Phanxico Nguyen,^a Jungeun Park^a and Jason B. Benedict^b*

^a730 Natural Sciences Complex, Buffalo, 14260-3000, USA, and ^b771 Natural Sciences Complex, Buffalo, 14260-3000, ., USA. *Correspondence e-mail: jbb6@buffalo.edu

In the title 1:2 co-crystal, $C_{10}H_9N_2^{+}$ · $(C_6H_{7.75}O_6\cdot C_6H_{7.25}O_6)^{-}$, L-ascorbic acid (LAA) and 4,4'-bipyridine (BPy) co-crystallize in the chiral space group $P2_1$ with two molecules of LAA, and one molecule of bpy in the asymmetric unit. The structure was modeled in two parts due to possible proton transfer from LAA to the corresponding side of the bpy molecule having an occupancy of approximately 0.25 and part 2 with an occupancy of approximately 0.75. In this structure, LAA forms hydrogen bonds with neighboring LAA molecules, forming extended sheets of LAA molecules which are bridged by bpy molecules. A comparison to a related and previously published co-crystal of LAA and 3-bromo-4-pyridone is presented.

1. Chemical context

L-Ascorbic acid (LAA) is an antioxidant and integral vitamin, vitamin C, for many biological systems (Frei *et al.*, 1989; Yogeswaran *et al.*, 2007). Since humans cannot synthesize LAA naturally, vitamin C is often obtained from digesting fruits and vegetables, including citrus fruits, tomatoes and potatoes (Medicine, 2000; Yu *et al.*, 2016). Vitamin C is also produced through the ingestion of dietary supplements composed of LAA or many other ascorbate-containing derivatives including calcium ascorbate, dehydroascorbate, and calcium threonate (Johnston *et al.*, 1994).

Co-crystallization, a process in which two or more molecules form a crystalline single phase material generally in a stoichiometric ratio (Trask, 2007), can tailor pharmaceutically important physical properties including solubility, hygroscopicity, and, active lifetime without altering the active pharmaceutical ingredient (Rodriquez-Honedo *et al.*, 2007; Ross *et al.*, 2016; Shan & Zaworotko, 2008; Thipparaboina *et al.*, 2016). Co-crystal structures are key to identifying important structure-directing interactions in the solid-state (Childs *et al.*, 2007). In this paper, we report the synthesis and single crystal structure determination of a salt co-crystal containing LAA and a commonly used co-former, 4,4'-bipyridine (BPy) (Aakeröy *et al.*, 2015, Cherukuvada *et al.*, 2016), which is known to be a secondary building component often used as a pillaring ligand to give three-dimensionality in what would

research communications

Figure 1 Asymmetric unit of the title compound, showing the numbering scheme.

normally be stacking of two-dimensional sheets in crystalline systems (Dinesh *et al.*, 2015; López-Cabrelles *et al.*, 2015).

2. Structural commentary

LAA and BPy co-crystallize in the chiral space group $P2_1$ with two molecules of LAA, and one molecule of BPy in the asymmetric unit (Fig. 1). While the lattice is composed of molecules in a variety of charge states (*vide infra*), the neutral molecule abbreviations (LAA and BPy) provide a convenient method for describing the structure in terms of these fragments.

The overall three-dimensional structure is formed by interlocking sheets of LAA bridged by BPy molecules. Initial attempts to refine the structure as neutral molecules were not satisfactory and suggested the presence of disorder in the positions of the protons involved in intermolecular hydrogen bonding between LAA and Bpy (H4 and H10). Fourier difference maps produced following a refinement using all atoms except the suspected disorders protons (H4, H10) revealed the presence of two peaks of electron density between the two pairs of heavy atoms involved in the hydrogen bonding (N1 and O4; N2 and O10, Fig. 2). The positions of the two protons were initially modeled independently (model 1) in two parts to account for the disorder arising from proton transfer from LAA to Bpy. In this model, the occupancy of H10 and its disorder partner atom H2 refined to 0.22736 and 0.70972, respectively. The occupancy of H4 and its disorder partner atom H1 refined to 0.70972 and 0.23932, respectively. The similarity of the occupancies for the two pairs indicated that the disorder was likely correlated.

An additional refinement was performed in which the occupancies were constrained to be identical for the pairs of atoms (single part command for both pairs, model 2). The occupancies for model 2 were determined to be 0.73718 and 0.26282 for the pairs, similar to what was observed in model 1. The R_1 values for both model 1 and model 2 were found to be 3.94%. Given the same values for R_1 for both models, the model with the fewer parameters, model 2, will be reported. There has been an active debate in the community whether an organic salt due to proton transfer is considered a co-crystal (Aakeröy *et al.*, 2007; Cruz-Cabeza, 2012; Wang *et al.*, 2018).

Fourier difference map of the LAA–BPy salt co-crystal showing two peaks of electron density between $N1\cdots O4$ (upper) and $N2\cdots O10$ (lower).

However, as we cannot rule out the presence of a non-ionized species within the lattice, we will refer to the obtained product as a salt co-crystal (Cherukuvada *et al.*, 2016).

3. Supramolecular features

In the structure, LAA forms hydrogen bonds with neighboring LAA molecules, giving rise to extended sheets of LAA mol-

Figure 3

Diagram illustrating the hydrogen-bonding interactions (dashed lines, see Table 1) present in the two-dimensional sheets of LAA molecules, looking down [001]; BPy interactions were omitted for clarity.

research communications

Table 1	
Hydrogen-bond	geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N2-H2\cdots O10^{i}$	0.86 (3)	1.74 (3)	2.5862 (14)	169 (2)
$O3-H3\cdots O5^{ii}$	0.817 (19)	2.531 (19)	2.8832 (13)	107.5 (15)
O3−H3···O6 ⁱⁱ	0.817 (19)	1.903 (19)	2.7117 (14)	170.0 (19)
$O4-H4\cdots N1^{ii}$	0.93 (3)	1.64 (3)	2.5428 (14)	163 (3)
$O5-H5\cdots O1^{iii}$	0.85 (2)	2.00 (2)	2.8510 (13)	173 (2)
$O6-H6\cdots O2^{iv}$	0.83 (2)	1.84 (2)	2.6616 (14)	173 (2)
$O9-H9\cdots O12^{v}$	0.79 (2)	1.91 (2)	2.6902 (14)	175 (2)
$O11 - H11 \cdots O10^{iii}$	0.79(2)	1.91 (2)	2.6663 (13)	162 (2)
$O12-H12\cdots O8^{vi}$	0.87 (2)	1.81 (2)	2.6683 (14)	169 (2)
C5-H5A···O11	1.00(1)	2.44 (1)	3.2950 (14)	143 (1)
$C12-H12B\cdots O4$	0.99(1)	2.50(1)	3.3249 (16)	141 (1)
$C14-H14\cdots O8^{vii}$	0.95 (1)	2.40(1)	3.3311 (15)	166 (1)
$C16-H16\cdots O2$	0.95(1)	2.51 (1)	3.4513 (16)	170(1)
C17−H17···O5	0.95(1)	2.55(1)	3.4651 (14)	163 (1)
$C19-H19\cdots O7^{vii}$	0.95(1)	2.56(1)	3.2181 (14)	127 (1)
$C19-H19\cdots O8^{vii}$	0.95(1)	2.48(1)	3.4267 (15)	174 (1)
$C21 - H21 \cdot \cdot \cdot O2$	0.95 (1)	2.40(1)	3.3418 (17)	173 (1)
$C22-H22\cdots O6^{viii}$	0.95 (1)	2.44 (1)	3.1860 (16)	136 (1)

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + 1$; (ii) $-x + 2, y + \frac{1}{2}, -z + 1$; (iii) x + 1, y, z; (iv) $-x + 1, y - \frac{1}{2}, -z + 1$; (v) $-x + 1, y - \frac{1}{2}, -z$; (vi) $-x + 2, y + \frac{1}{2}, -z$; (vii) x - 1, y, z + 1; (viii) $-x + 1, y + \frac{1}{2}, -z + 1$.

ecules which are bridged by BPy molecules (Table 1, Fig. 3). The LAA-LAA interactions consist of $O-H\cdots O-H$ hydrogen bonds where each LAA forms a total of three hydrogen bonds with three different LAA molecules, $O-H\cdots O$ —hydrogen bond where each LAA forms a hydrogen bond with one different LAA, and $O-H\cdots O_{ether}$ where each LAA forms a hydrogen bond with one different LAA. The LAA-BPy interaction consists of $O-H\cdots N_{pyridyl}$ hydrogen

Figure 4 View down [100] showing the packing of the title compound.

bonds such that each BPy forms a hydrogen bond with two neighboring LAA molecules (Fig. 4). $C-H\cdots O$ interactions also occur.

4. Database survey

Recently the co-crystal structure of LAA and 3-bromo-4pyridone (BrPyd) was reported (Wang et al., 2016). While the LAA molecules in each structure contain similar interactions, LAA-BPy and LAA-BrPyd demonstrate important differences with regard to the three-dimensional structure because of the different binding synthons of BrPvd compared to BPv (Fig. 5). In the structure of LAA-BrPvd, the carbonyl on the BrPvd hydrogen bonds with both hydroxyl groups located on the five-membered ring of LAA, whereas the carbonyl located on the five-membered ring of LAA hydrogen bonds with the pyridinium group of BrPyd. The corresponding hydrogenbond network results in two-dimensional sheets. The threedimensional aspect of LAA-BrPyd arises from stacking of the sheets, which are held together by hydrogen bonding of the terminal hydroxyl group of the aliphatic carbon chain with the hydroxyl group on the five-membered ring on the LAA in the adjacent sheet.

5. Synthesis and crystallization

All chemicals were obtained commercially and used as received. Solid L-ascorbic acid (0.0450 g, 0.256 mmol) and 4,4'-bipyridine (0.0200 g, 0.128 mmol) were added to a 25 ml scintillation vial. To this were added approximately 12 ml of 200 proof ethanol followed by gentle heating. The loosely capped vial was then placed into a dark cabinet. Plate crystals of the title compound suitable for single crystal X-ray diffraction measurements were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were located in a difference-Fourier map and freely refined. As the Flack parameter is 0.4, the absolute configuration of LAA cannot be

Figure 5 Diagram illustrating the hydrogen-bonding network of the previously reported structure of LAA–BPyBr (Wang *et al.*, 2016).

determined by the crystal structure; however, the co-crystal was synthesized using an enantiomerically pure starting material.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. DMR-1455039).

References

- Aakeröy, C. B., Fasulo, M. E. & Desper, J. (2007). *Mol. Pharm.* **4**, 317–322.
- Aakeröy, C. B., Spartz, C. L., Dembowski, S., Dwyre, S. & Desper, J. (2015). *IUCrJ*, **2**, 498–510.
- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). *Acta Cryst.* A**71**, 59–75.
- Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cherukuvada, S., Kaur, R. & Guru Row, T. N. (2016). CrystEng-Comm, 18, 8528–8555.
- Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323-338.
- Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 6362-6365.
- Dinesh, D., Subhadip, N. & Carolina, S. E. K. B. P. (2015). *Chem. Eur. J.* **21**, 17422–17429.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Frei, B., England, L. & Ames, B. N. (1989). *Proc. Natl Acad. Sci. USA*, **86**, 6377–6381.
- Johnston, C. S. & Luo, B. (1994). J. Am. Diet. Assoc. 94, 779-781.
- López-Cabrelles, J., Giménez-Marqués, M., Mínguez Espallargas, G. & Coronado, E. (2015). *Inorg. Chem.* 54, 10490–10496.
- Medicine, I. O. (2000). *Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids*, p 529. Washington, DC: The National Academies Press.

Rodriquez-Honedo, N., Nehm, S. J. & Jayasanker, A. (2007). *Pharmaceutical Technology*, 3rd ed., pp 615–635. London: Taylor & Francis.

- Ross, S. A., Lamprou, D. A. & Douroumis, D. (2016). Chem. Commun. 52, 8772–8786.
- Shan, N. & Zaworotko, M. J. (2008). Drug Discovery Today, **13**, 440–446.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Thipparaboina, R., Kumar, D., Chavan, R. B. & Shastri, N. R. (2016). Drug Discovery Today, **21**, 481–490.

Table 2	
Experimental	details.

Crystal data	
Chemical formula	$C_{10}H_9N_2^+ \cdot (C_6H_{7.75}O_6 \cdot C_6H_{7.25}O_6)^-$
M _r	508.44
Crystal system, space group	Monoclinic, $P2_1$
Temperature (K)	90
a, b, c (Å)	4.7724 (6), 14.4069 (17),
	15.6857 (19)
3 (°)	98.393 (2)
$V(\dot{A}^3)$	1066.9 (2)
Z	2
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})^{31}$	0.13
Crystal size (mm)	$0.2 \times 0.1 \times 0.02$
Data collection	
Diffractometer	Bruker SMART APEXII area
	detector
Absorption correction	Multi-scan (SADABS; Bruker,
1	2013)
Tmin. Tmax	0.683, 0.747
No. of measured, independent and	31611, 9452, 8448
observed $[I > 2u(I)]$ reflections	, ,
R_{int}	0.039
$(\sin \theta / \lambda)_{max} (\dot{A}^{-1})$	0.809
Refinement	
$R[F^2 > 2\sigma(F^2)] wR(F^2) S$	0.040, 0.099, 1.06
No. of reflections	9452
No. of parameters	357
No. of restraints	1
H-atom treatment	All H-atom parameters refined
$\Lambda \rho = \Lambda \rho + (e \text{ Å}^{-3})$	0.47 - 0.29
Absolute structure	Flack (1983)
Absolute structure parameter	04(6)
resonate structure parameter	0.1 (0)

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS (Sheldrick, 2008), olex2.refine (Bourhis et al., 2015) and OLEX2 (Dolomanov et al., 2009).

Trask, A. V. (2007). MolPharma 301-309.

- Wang, J.-R., Fan, X., Ding, Q. & Mei, X. (2016). J. Mol. Struct. 1119, 269–275.
- Wang, T., Stevens, J. S., Vetter, T., Whitehead, G. F. S., Vitorica-Yrezabal, I. J., Hao, H. & Cruz-Cabeza, A. J. (2018). *Cryst. Growth Des.* 18, 6973–6983.
- Yogeswaran, U., Thiagarajan, S. & Chen, S. M. (2007). Anal. Biochem. 365, 122–131.
- Yu, A., Tang, L. & Czech, J. (2016). Food Sci. 34, 503-510.

Acta Cryst. (2019). E75, 728-731 [https://doi.org/10.1107/S2056989019005334]

Partial charge transfer in the salt co-crystal of L-ascorbic acid and 4,4'-bipyridine

Eric Sylvester, Mitchell McGovern, An Young Lee, Phanxico Nguyen, Jungeun Park and Jason B. Benedict

Computing details

Data collection: *APEX2* (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT* (Bruker, 2013); program(s) used to solve structure: *SHELXS* (Sheldrick, 2008); program(s) used to refine structure: *olex2.refine* (Bourhis *et al.*, 2015); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

L-Ascorbic acid–4,4'-bipyridine (1/1)

Crystal data

$C_{10}H_9N_2{}^+\cdot C_6H_{7.75}O_60.25{}^-\cdot C_6H_{7.25}O_60.75{}^$
$M_r = 508.44$
Monoclinic, <i>P</i> 2 ₁
a = 4.7724 (6) Å
b = 14.4069 (17) Å
c = 15.6857 (19) Å
$\beta = 98.393 \ (2)^{\circ}$
V = 1066.9 (2) Å ³
Z = 2

Data collection

Bruker SMART APEXII area detector diffractometer Radiation source: microfocus rotating anode, Incoatec I μ s Mirror optics monochromator Detector resolution: 7.9 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2013)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.099$ S = 1.069452 reflections 357 parameters F(000) = 532.3832 $D_x = 1.583 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8756 reflections $\theta = 2.6-36.2^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 90 KPlate, yellow $0.2 \times 0.1 \times 0.02 \text{ mm}$

 $T_{\min} = 0.683, T_{\max} = 0.747$ 31611 measured reflections
9452 independent reflections
8448 reflections with $I \ge 2u(I)$ $R_{\text{int}} = 0.039$ $\theta_{\text{max}} = 35.1^{\circ}, \theta_{\text{min}} = 1.9^{\circ}$ $h = -7 \rightarrow 7$ $k = -23 \rightarrow 23$ $l = -25 \rightarrow 25$

1 restraint 37 constraints All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0536P)^2 + 0.0945P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.47$ e Å⁻³

$\Delta \rho_{\min} = -0.29 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983)

Absolute structure parameter: 0.4 (6)

Special details

Refinement. X-ray diffraction data was collected on a Bruker SMART APEX2 CCD diffractometer installed at a rotating anode source (MoK α radiation, λ =0.71073 Å), and equipped with an Oxford Cryosystems (Cryostream700) nitrogen gas-flow apparatus. The data were collected by the rotation method with a 0.5° frame-width (ω scan) and a 15 second exposure per frame. Three sets of data (360 frames in each set) were collected, nominally covering complete reciprocal space. The structure was solved in the Olex2 (Dolomanov, O. V. B. *et al.*, 2009) crystallography program using the XS structure solution program (Sheldrick,G. M, 2008) using the Charge Flipping method and refined using the olex2.refine refinement package(Bourhis, L. J., *et al.*, 2015) using least-squares minimization.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.49355 (18)	0.45455 (6)	0.44984 (6)	0.01210 (15)	
O2	0.4742 (2)	0.55289 (7)	0.55860 (6)	0.01868 (18)	
O3	0.8313 (2)	0.67789 (6)	0.46065 (6)	0.01575 (17)	
H3	0.921 (4)	0.6856 (13)	0.5086 (12)	0.014 (4)*	
O4	0.9691 (2)	0.55149 (6)	0.31883 (6)	0.01423 (16)	
H4	1.069 (6)	0.607 (2)	0.3253 (17)	0.0213 (2)*	0.75 (2)
O5	0.98812 (19)	0.35794 (6)	0.47231 (5)	0.01216 (15)	
H5	1.142 (5)	0.3877 (16)	0.4705 (14)	0.031 (6)*	
06	0.8176 (2)	0.19330 (6)	0.38768 (6)	0.01444 (16)	
H6	0.716 (5)	0.1509 (15)	0.4013 (13)	0.026 (5)*	
C1	0.5661 (2)	0.53643 (8)	0.49141 (8)	0.01170 (19)	
C2	0.7521 (2)	0.58827 (7)	0.44491 (7)	0.01084 (18)	
C3	0.8080 (2)	0.53592 (7)	0.37784 (7)	0.00969 (18)	
C4	0.6454 (2)	0.44679 (7)	0.37658 (7)	0.00959 (17)	
H4a	0.5081 (2)	0.44220 (7)	0.32212 (7)	0.0115 (2)*	
C5	0.8294 (2)	0.35942 (8)	0.38832 (7)	0.00976 (17)	
H5a	0.9613 (2)	0.35849 (8)	0.34430 (7)	0.0117 (2)*	
C6	0.6423 (2)	0.27408 (8)	0.37799 (8)	0.01268 (19)	
H6a	0.5258 (2)	0.27417 (8)	0.32035 (8)	0.0152 (2)*	
H6b	0.5135 (2)	0.27418 (8)	0.42206 (8)	0.0152 (2)*	
O7	0.86622 (18)	0.29619 (5)	0.00750 (5)	0.00983 (14)	
08	1.02947 (19)	0.17939 (6)	-0.06529 (6)	0.01324 (16)	
09	0.6792 (2)	0.05632 (6)	0.03244 (6)	0.01390 (16)	
H9	0.558 (5)	0.0416 (17)	-0.0046 (16)	0.032 (6)*	
O10	0.39236 (18)	0.19546 (6)	0.13751 (6)	0.01330 (15)	
H10	0.353 (13)	0.1386 (9)	0.137 (4)	0.0199 (2)*	0.25 (2)
011	1.0111 (2)	0.30023 (6)	0.20099 (5)	0.01293 (15)	
H11	1.115 (4)	0.2763 (15)	0.1732 (13)	0.026 (5)*	
012	0.7556 (2)	0.51222 (7)	0.09005 (7)	0.01958 (19)	
H12	0.845 (5)	0.5638 (16)	0.0855 (14)	0.033 (6)*	
C7	0.8780 (2)	0.20343 (7)	-0.01219 (7)	0.00978 (18)	
C8	0.6981 (2)	0.15146 (7)	0.03486 (7)	0.00985 (18)	
C9	0.5682 (2)	0.21089 (7)	0.08490 (7)	0.00962 (18)	
C10	0.6682 (2)	0.30805 (7)	0.06851 (7)	0.00877 (17)	

H10a	0.5036 (2)	0.34608 (7)	0.04143 (7)	0.0105 (2)*	
C11	0.8137 (2)	0.35734 (8)	0.14937 (7)	0.00942 (17)	
H11a	0.6630 (2)	0.37406 (8)	0.18475 (7)	0.0113 (2)*	
C12	0.9591 (2)	0.44733 (8)	0.12926 (8)	0.01143 (18)	
H12a	1.0989 (2)	0.43428 (8)	0.08998 (8)	0.0137 (2)*	
H12b	1.0615 (2)	0.47396 (8)	0.18315 (8)	0.0137 (2)*	
N1	0.7273 (2)	0.19521 (7)	0.69016 (6)	0.01118 (16)	
H1	0.8437 (2)	0.15248 (7)	0.67582 (6)	0.0134 (2)* 0.25 (2)	
N2	-0.1522 (2)	0.54416 (7)	0.82171 (6)	0.01059 (16)	
H2	-0.249 (5)	0.5896 (18)	0.8370 (15)	0.01271 (19)* 0.75 (2)	
C13	0.5899 (2)	0.18296 (8)	0.75790 (8)	0.01196 (19)	
H13	0.6182 (2)	0.12658 (8)	0.78939 (8)	0.0144 (2)*	
C14	0.4091 (2)	0.24834 (8)	0.78414 (8)	0.01189 (19)	
H14	0.3166 (2)	0.23705 (8)	0.83281 (8)	0.0143 (2)*	
C15	0.3638 (2)	0.33182 (7)	0.73790 (7)	0.00892 (17)	
C16	0.5031 (2)	0.34329 (8)	0.66607 (7)	0.01098 (19)	
H16	0.4744 (2)	0.39804 (8)	0.63217 (7)	0.0132 (2)*	
C17	0.6837 (2)	0.27425 (8)	0.64452 (7)	0.01128 (18)	
H17	0.7792 (2)	0.28315 (8)	0.59609 (7)	0.0135 (2)*	
C18	-0.1299 (2)	0.46219 (8)	0.86276 (7)	0.01123 (19)	
H18	-0.2282 (2)	0.45253 (8)	0.91050 (7)	0.0135 (2)*	
C19	0.0339 (3)	0.39174 (8)	0.83650 (7)	0.01045 (18)	
H19	0.0474 (3)	0.33395 (8)	0.86598 (7)	0.0125 (2)*	
C20	0.1802 (2)	0.40554 (7)	0.76632 (7)	0.00874 (17)	
C21	0.1521 (3)	0.49220 (8)	0.72563 (8)	0.0149 (2)	
H21	0.2475 (3)	0.50417 (8)	0.67768 (8)	0.0179 (3)*	
C22	-0.0134 (3)	0.56029 (8)	0.75481 (8)	0.0146 (2)	
H22	-0.0293 (3)	0.61916 (8)	0.72725 (8)	0.0176 (3)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0126 (4)	0.0088 (3)	0.0165 (4)	-0.0019 (3)	0.0075 (3)	0.0001 (3)
O2	0.0275 (5)	0.0128 (4)	0.0190 (4)	0.0043 (3)	0.0144 (4)	0.0019 (3)
03	0.0253 (4)	0.0062 (3)	0.0153 (4)	-0.0035 (3)	0.0013 (3)	-0.0006 (3)
O4	0.0203 (4)	0.0101 (4)	0.0142 (4)	-0.0039 (3)	0.0089 (3)	0.0005 (3)
05	0.0126 (3)	0.0114 (3)	0.0122 (3)	-0.0020 (3)	0.0007 (3)	0.0016 (3)
O6	0.0203 (4)	0.0068 (3)	0.0170 (4)	-0.0012 (3)	0.0053 (3)	0.0003 (3)
C1	0.0138 (5)	0.0078 (4)	0.0143 (5)	0.0021 (4)	0.0050 (4)	0.0008 (4)
C2	0.0145 (5)	0.0064 (4)	0.0121 (5)	-0.0009 (3)	0.0036 (4)	0.0011 (3)
C3	0.0114 (4)	0.0073 (4)	0.0106 (4)	-0.0012 (3)	0.0022 (3)	0.0015 (3)
C4	0.0103 (4)	0.0079 (4)	0.0109 (4)	-0.0006 (3)	0.0028 (3)	0.0006 (3)
C5	0.0125 (4)	0.0073 (4)	0.0098 (4)	-0.0011 (3)	0.0027 (3)	-0.0002 (3)
C6	0.0152 (5)	0.0073 (4)	0.0155 (5)	-0.0021 (4)	0.0021 (4)	0.0004 (4)
07	0.0139 (3)	0.0068 (3)	0.0100 (3)	0.0000 (3)	0.0060 (3)	-0.0005 (3)
08	0.0184 (4)	0.0109 (4)	0.0118 (4)	0.0030 (3)	0.0067 (3)	-0.0004 (3)
09	0.0167 (4)	0.0056 (3)	0.0182 (4)	-0.0009 (3)	-0.0016 (3)	-0.0008 (3)
O10	0.0126 (3)	0.0093 (3)	0.0198 (4)	-0.0007 (3)	0.0086 (3)	0.0026 (3)

O11	0.0173 (4)	0.0122 (3)	0.0095 (3)	0.0056 (3)	0.0029 (3)	0.0017 (3)
O12	0.0169 (4)	0.0100 (4)	0.0295 (5)	-0.0025 (3)	-0.0044 (4)	0.0079 (4)
C7	0.0125 (4)	0.0077 (4)	0.0089 (4)	0.0009 (3)	0.0006 (3)	0.0000 (3)
C8	0.0115 (4)	0.0061 (4)	0.0120 (5)	-0.0003 (3)	0.0019 (4)	-0.0001 (3)
C9	0.0088 (4)	0.0078 (4)	0.0122 (4)	-0.0004 (3)	0.0015 (3)	0.0015 (3)
C10	0.0106 (4)	0.0063 (4)	0.0103 (4)	0.0008 (3)	0.0047 (3)	0.0010 (3)
C11	0.0123 (4)	0.0073 (4)	0.0093 (4)	0.0015 (3)	0.0037 (3)	0.0007 (3)
C12	0.0134 (5)	0.0081 (4)	0.0127 (4)	-0.0013 (4)	0.0016 (4)	0.0000 (4)
N1	0.0116 (4)	0.0101 (4)	0.0121 (4)	0.0017 (3)	0.0027 (3)	-0.0020 (3)
N2	0.0117 (4)	0.0083 (4)	0.0125 (4)	0.0025 (3)	0.0039 (3)	-0.0013 (3)
C13	0.0147 (5)	0.0086 (4)	0.0132 (5)	0.0026 (4)	0.0039 (4)	0.0005 (4)
C14	0.0144 (5)	0.0094 (4)	0.0130 (5)	0.0022 (4)	0.0059 (4)	0.0013 (4)
C15	0.0095 (4)	0.0073 (4)	0.0104 (4)	0.0006 (3)	0.0027 (3)	-0.0012 (3)
C16	0.0135 (5)	0.0097 (4)	0.0104 (4)	0.0014 (3)	0.0038 (4)	-0.0006 (3)
C17	0.0135 (4)	0.0106 (4)	0.0104 (4)	0.0015 (4)	0.0040 (3)	-0.0014 (4)
C18	0.0135 (5)	0.0102 (4)	0.0110 (5)	0.0003 (3)	0.0052 (4)	-0.0009 (3)
C19	0.0144 (5)	0.0083 (4)	0.0096 (4)	0.0008 (3)	0.0046 (4)	0.0000 (3)
C20	0.0100 (4)	0.0069 (4)	0.0098 (4)	0.0006 (3)	0.0034 (3)	-0.0014 (3)
C21	0.0204 (5)	0.0099 (5)	0.0171 (5)	0.0055 (4)	0.0118 (4)	0.0041 (4)
C22	0.0204 (5)	0.0093 (5)	0.0162 (5)	0.0051 (4)	0.0092 (4)	0.0038 (4)

Geometric parameters (Å, °)

01—C1	1.3677 (14)	C8—C9	1.3694 (16)
O1—C4	1.4494 (13)	C9—C10	1.5130 (15)
O2—C1	1.2223 (15)	C10—H10a	1.0000
O3—H3	0.816 (19)	C10—C11	1.5290 (16)
O3—C2	1.3579 (14)	C11—H11a	1.0000
O4—H4	0.93 (3)	C11—C12	1.5251 (16)
O4—C3	1.3062 (14)	C12—H12a	0.9900
O5—H5	0.86 (2)	C12—H12b	0.9900
O5—C5	1.4207 (14)	N1—H1	0.8800
Об—Нб	0.83 (2)	N1—C13	1.3394 (15)
O6—C6	1.4283 (15)	N1—C17	1.3449 (15)
C1—C2	1.4376 (16)	N2—H2	0.85 (3)
C2—C3	1.3523 (16)	N2—C18	1.3419 (15)
C3—C4	1.4991 (15)	N2—C22	1.3403 (15)
C4—H4a	1.0000	C13—H13	0.9500
C4—C5	1.5306 (16)	C13—C14	1.3802 (16)
С5—Н5а	1.0000	C14—H14	0.9500
C5—C6	1.5142 (16)	C14—C15	1.4049 (16)
С6—Н6а	0.9900	C15—C16	1.3992 (15)
С6—Н6b	0.9900	C15—C20	1.4858 (14)
O7—C7	1.3746 (13)	C16—H16	0.9500
O7—C10	1.4499 (13)	C16—C17	1.3897 (15)
O8—C7	1.2296 (14)	C17—H17	0.9500
О9—Н9	0.79 (3)	C18—H18	0.9500
O9—C8	1.3739 (13)	C18—C19	1.3803 (16)

O10—H10	0.8400	С19—Н19	0.9500
010-09	1.2794 (14)	C19—C20	1.4012 (15)
011—H11	0.79 (2)	C20—C21	1.3998 (15)
011-011	14134(14)	C21—H21	0.9500
012—H12	0.86(2)	$C_{21} - C_{22}$	1 3789 (16)
012 - 012	14217(15)	C^{22} H ²²	0.9500
C7-C8	1.4240(16)		0.9500
07 00	1.4240 (10)		
C4-01-C1	108 88 (8)	C11—C10—O7	109 96 (9)
C2	1130(13)	$C_{11} - C_{10} - C_{9}$	113 89 (9)
C5	107.8 (15)	$C_{11} - C_{10} - H_{10}$	109.35 (6)
C6	105.8 (15)	C10-C11-O11	112 89 (9)
02-C1-01	11874(10)	H112-C11-O11	107.21(5)
$C_2 - C_1 - O_1$	109.77(10)	H112 $-C11-C10$	107.21 (5)
$C_2 - C_1 - O_2$	131.48(11)	C_{12} C_{11} C_{11} C_{11} C_{11} C_{11} C_{12} C_{11} C_{11} C_{11} C_{12} C_{11} C_{11} C_{11} C_{12} C_{11} C_{12} C_{11} C_{12} C_{11} C_{12} C_{12} C_{12} C_{11} C_{12} C	107.21(0) 109.14(0)
$C_{1} - C_{2} - O_{3}$	131.40(11) 125.30(11)	$C_{12} = C_{11} = C_{10}$	109.14(9) 112.86(9)
$C_1 = C_2 = C_3$	125.50 (11)	$C_{12} = C_{11} = C_{10}$	112.00(9)
$C_{3} = C_{2} = C_{3}$	120.19(10) 108.15(10)	$C_{12} = C_{11} = I_{111a}$	107.21(0) 110.23(0)
$C_{3} = C_{2} = C_{1}$	106.13(10) 121.22(10)	$H_{12} = C_{12} = O_{12}$	110.23(9) 100.61(7)
$C_2 = C_3 = O_4$	131.22(10) 110.67(10)	H12a - C12 - O12	109.01(7)
C4 - C3 - C4	119.07(10) 100.11(10)	$\frac{112a}{112b} C12 C12$	109.01(0)
$C_4 - C_2 - C_2$	109.11(10) 102.06(0)	H120 - C12 - O12	109.01(0)
C_{3} C_{4} C_{1}	103.96 (9)		109.61 (6)
H4a - C4 - O1	109.96 (6)	H12b—C12—H12a	108.1
H4a—C4—C3	109.96 (6)	C17—N1—C13	118.57 (10)
C5-C4-O1	108.21 (9)	C22—N2—C18	120.98 (10)
C5—C4—C3	114.57 (9)	H13—C13—N1	118.44 (6)
C5—C4—H4a	109.96 (6)	C14—C13—N1	123.12 (11)
C4—C5—O5	110.05 (9)	C14—C13—H13	118.44 (7)
H5a—C5—O5	109.63 (6)	H14—C14—C13	120.45 (7)
H5a—C5—C4	109.63 (6)	C15—C14—C13	119.10 (10)
C6—C5—O5	108.26 (9)	C15—C14—H14	120.45 (6)
C6—C5—C4	109.62 (9)	C16—C15—C14	117.47 (10)
С6—С5—Н5а	109.63 (6)	C20—C15—C14	120.67 (9)
C5—C6—O6	108.86 (9)	C20—C15—C16	121.84 (9)
H6a—C6—O6	109.91 (6)	H16—C16—C15	120.14 (6)
H6a—C6—C5	109.91 (6)	C17—C16—C15	119.73 (10)
H6b—C6—O6	109.91 (6)	C17—C16—H16	120.14 (7)
H6b—C6—C5	109.91 (6)	C16—C17—N1	122.00 (10)
Н6b—С6—Н6а	108.3	H17—C17—N1	119.00 (6)
С10—О7—С7	108.36 (8)	H17—C17—C16	119.00 (7)
С8—О9—Н9	109.1 (18)	H18—C18—N2	119.58 (6)
C11—O11—H11	111.1 (15)	C19—C18—N2	120.83 (10)
C12—O12—H12	106.7 (15)	C19—C18—H18	119.58 (7)
O8—C7—O7	118.26 (10)	H19—C19—C18	120.03 (7)
C8—C7—O7	110.31 (9)	C20-C19-C18	119.94 (10)
C8—C7—O8	131.42 (10)	С20—С19—Н19	120.03 (6)
C7—C8—O9	123.53 (10)	C19—C20—C15	121.17 (9)
C9—C8—O9	127.32 (10)	C21—C20—C15	121.48 (9)

C9—C8—C7	109.03 (10)	C21—C20—C19	117.33 (10)
C8—C9—O10	130.96 (10)	H21—C21—C20	119.85 (6)
C10-C9-O10	121.55 (10)	C22—C21—C20	120.30 (11)
С10—С9—С8	107.50 (9)	C22—C21—H21	119.85 (7)
C9—C10—O7	104.79 (8)	C21—C22—N2	120.61 (11)
H10a—C10—O7	109.35 (5)	H22—C22—N2	119.70 (6)
H10a—C10—C9	109.35 (6)	H22—C22—C21	119.70 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
N2—H2…O10 ⁱ	0.86 (3)	1.74 (3)	2.5862 (14)	169 (2)
O3—H3…O5 ⁱⁱ	0.817 (19)	2.531 (19)	2.8832 (13)	107.5 (15)
O3—H3…O6 ⁱⁱ	0.817 (19)	1.903 (19)	2.7117 (14)	170.0 (19)
O4—H4…N1 ⁱⁱ	0.93 (3)	1.64 (3)	2.5428 (14)	163 (3)
O5—H5…O1 ⁱⁱⁱ	0.85 (2)	2.00 (2)	2.8510 (13)	173 (2)
O6—H6…O2 ^{iv}	0.83 (2)	1.84 (2)	2.6616 (14)	173 (2)
O9—H9…O12 ^v	0.79 (2)	1.91 (2)	2.6902 (14)	175 (2)
O11—H11…O10 ⁱⁱⁱ	0.79 (2)	1.91 (2)	2.6663 (13)	162 (2)
O12—H12…O8 ^{vi}	0.87 (2)	1.81 (2)	2.6683 (14)	169 (2)
С5—Н5А…О11	1.00(1)	2.44 (1)	3.2950 (14)	143 (1)
C12—H12B…O4	0.99(1)	2.50(1)	3.3249 (16)	141 (1)
C14—H14····O8 ^{vii}	0.95 (1)	2.40(1)	3.3311 (15)	166 (1)
C16—H16…O2	0.95 (1)	2.51 (1)	3.4513 (16)	170 (1)
C17—H17···O5	0.95 (1)	2.55 (1)	3.4651 (14)	163 (1)
C19—H19…O7 ^{vii}	0.95 (1)	2.56(1)	3.2181 (14)	127 (1)
C19—H19…O8 ^{vii}	0.95 (1)	2.48 (1)	3.4267 (15)	174 (1)
C21—H21···O2	0.95 (1)	2.40 (1)	3.3418 (17)	173 (1)
C22—H22···O6 ^{viii}	0.95 (1)	2.44 (1)	3.1860 (16)	136 (1)

Symmetry codes: (i) -*x*, *y*+1/2, -*z*+1; (ii) -*x*+2, *y*+1/2, -*z*+1; (iii) *x*+1, *y*, *z*; (iv) -*x*+1, *y*-1/2, -*z*+1; (v) -*x*+1, *y*-1/2, -*z*; (vi) -*x*+2, *y*+1/2, -*z*; (vii) *x*-1, *y*, *z*+1; (viii) -*x*+1, *y*+1/2, -*z*+1.