

Received 22 March 2019 Accepted 25 April 2019

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic

Keywords: dipyrromethane-dicarboxylate; crystal structure; hydrogen bonding.

CCDC reference: 1912079

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of dibutyl 5,5'-(pentane-3,3-diyl)bis(1*H*-pyrrole-5-carboxylate)

Haijing Wang^{a,b} and Zhenming Yin^{a,b}*

^aCollege of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China, and ^bKey Laboratory of Inorganic–Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education, Tianjin 300387, People's Republic of China. *Correspondence e-mail: tjyinzm@aliyun.com

The molecular structure of the title compound, $C_{23}H_{34}N_2O_4$, has C2 symmetry. In the crystal, interlocked dimers are formed through quadruple $N-H\cdots O$ hydrogen bonds between pyrrole N-H groups and carbonyl O atoms.

1. Chemical context

Hydrogen-bonding interactions play an important role in the design of functional assemblies that exhibit a variety of properties and functions (Prins *et al.*, 2001; Steiner, 2002). Pyrrole-2-carboxylate possesses one hydrogen-bond donor $(N-H_{pyrrole})$ and one acceptor (C=O), which favour the formation of centrosymmetric dimers with pairs of $N-H\cdots$ O hydrogen bonds (Figueira *et al.*, 2015). The dimer motif is structurally similar to classic Watson–Crick nucleotide basepairs. Calculations have revealed the dimer motif to be a robust supramolecular synthon in crystal engineering (Dubis *et al.*, 2002). In previous work, we have shown a way to use the 2-carbonyl pyrrole dimer as a supramolecular connector to construct hexagonal and grid architectures (Yin *et al.*, 2006). Here, we report the self-assembly of the title compound, *via* quadruple $N-H\cdots$ N hydrogen bonds.

2. Structural commentary

The structure of the title compound is shown in Fig. 1. The asymmetric unit contains one half-molecule as it possesses C2 symmetry. In the molecule, the two pyrrole-2-carboxylate groups are both in a *syn* conformation, with the carbonyl group arranged *syn* to its adjacent pyrrole NH group. The O1-C8-C7-N1 torsion angle is -8.2 (5)°. The dihedral angle between the pyrrole rings is 72.8 (2)°.

OPEN $\widehat{\bigcirc}$ ACCESS

research communications

Table 1 Hydrogen-bond ge	eometry (Å, °).		
Cg1 is the centroid	of the N1/C4-C	7 ring.	
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$

0.96 Symmetry codes: (i) $-x + \frac{5}{4}, -y + \frac{1}{4}, z$; (ii) $x + \frac{1}{4}, y + \frac{1}{4}, -z$.

0.86

3. Supramolecular features

 $N1 - H1 \cdot \cdot \cdot O1^{i}$

 $C12-H12C\cdots Cg1^{ii}$

Pairs of molecules of the title compound form interlocked dimers through four N1-H1···O1 hydrogen bonds between the pyrrole carbonyl oxygen atoms and pyrrole NH protons (Table 1, Fig. 2). This type of dimer has also been observed in our previous work (Yin et al., 2007). The dimers are connected into a three-dimensional supramolecular structure through $C-H\cdots\pi$ contacts (Table 1).

2.12

3 21

2.962(3)

3.944 (3)

4. Hirshfeld surface

A Hirshfeld surface analysis with CrystalExplorer (Turner et al., 2017) was performed to give insights into the important intermolecular interactions. These are normalized by van der Waals radii through a red-white-blue color scheme, where the red spots denote close contacts of molecules. The threedimensional d_{norm} surface of the title compound is shown in Fig. 3. The red points represent closer contacts and negative d_{norm} values on the surface corresponding to the N-H···O and $C-H\cdots\pi$ interactions mentioned above. The twodimensional fingerprint plots in Fig. 4 shown the intermolecular contacts and their percentage distributions on the Hirshfeld surface. $H \cdot \cdot H$ interactions (74.8%) are present as a major contributor while $H \cdots O/O \cdots H$ (14.5%), $H \cdots C/C \cdots H$ (5.4%), $C \cdots C$ (2.7%) and $H \cdots N/N \cdots H$ (0.9%) contacts also give significant contributions to the Hirshfeld surface.

5. Database survey

A search in the Cambridge Structural Database (Groom et al., 2016) returned over 60 entries for dipyrromethane-1,9-

Figure 1

ORTEP diagram for the title compound, with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (A) $x, \frac{1}{4} - y, \frac{1}{4} - z$.]

 $D - H \cdot \cdot \cdot A$

165

135

Part of the crystal packing showing molecules linked by N-H···O hydrogen bonds (red dashed lines) and $C-H \cdot \cdot \pi$ contacts (green dashed lines). [Symmetry codes: (i) $-x + \frac{5}{4}, -y + \frac{1}{4}, z$; (ii) $x + \frac{1}{4}, y + \frac{1}{4} - z$.]

dicarbonyl derivatives, including seven entries whose supramolecular structures feature interlocked dimers (ILITAY, Love et al., 2003; ODUMOQ, Yin et al., 2007; PIRJAB, Xie et al., 1994; NIQBAR01, Mahanta et al., 2012; VACRID, Deliomeroglu et al., 2016; PUJMAJ, Kim, 2010 and SAVDUQ, Uppal et al., 2012). In the crystal of PUJMAJ (Kim, 2010), only one of the carbonyl groups is involved in hydrogen bonds with two pyrrole N-H groups.

6. Synthesis and crystallization

n-Butyl alcohol (370 mg, 5 mmol), 2,2'-ditrichlordipyrrolemethane (980 mg, 2 mmol) and triethylamine (0.5 mL) were added to acetonitrile (20 mL), and then the mixture was refluxed for 2h. The solution was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether = 1:2),

The Hirshfeld surface of the title compound mapped over d_{norm} in the range -0.486 to 1.895 a.u. The intermolecular contacts can be seen in the red regions.

Figure 4

The two-dimensional fingerprint plots of title compound: (*a*) all contacts; (*b*) $H \cdots H$, (*c*) $H \cdots O/O \cdots H$, (*d*) $H \cdots C/C \cdots H$, (*e*) $H \cdots N/N \cdots H$ and (*f*) $C \cdots C$.

affording the title compound (white powder, 672 mg, 71%), m.p. = 388 K. ¹H NMR (400 MHz, DMSO-*d*₆); δ 0.64 (*t*, 6H, *J* = 7.2 Hz, -CH₃), 0.90 (*t*, 6H, *J* = 7.2 Hz, -CH₃), 1.31–1.41 (*m*, 4H, -CH₂–), 1.58–1.65 (*m*, 4H, -CH₂–), 2.15 (*q*, 4H, *J* = 7.2 Hz, Å -CH₂–), 4.15 (*q*, 4H, *J* = 6.8 Hz, -CH₂–), 5.97 (*s*, 2H, PyCH), 6.66 (*s*, 2H, PyCH), 11.22 (*s*, 2H, NH); HRMS (ESI) *m/z* calculated for C₂₃H₃₄N₂O₄, (*M* + H)⁺ 403.25186; found 403.25224. Crystals suitable for X-ray diffraction analysis were obtained by the slow evaporation of a CH₃OH solution of the title compound.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. N–H hydrogen atoms were located from a difference-Fourier map and freely refined. Other H atoms were placed in difference calculated positions (C–H = 0.96 or 0.97 Å) and included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (award No. 21172174).

References

- Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Deliomeroglu, M. K., Lynch, V. M. & Sessler, J. L. (2016). Chem. Sci. 7, 3843–3850.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{23}H_{34}N_2O_4$
Mr	402.52
Crystal system, space group	Orthorhombic, Fddd
Temperature (K)	296
a, b, c (Å)	14.358 (6), 17.333 (7), 38.902 (19)
$V(Å^3)$	9681 (7)
Z	16
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.08
Crystal size (mm)	$0.32\times0.28\times0.26$
Data collection	
Diffractometer	Bruker SMART CCD area
A	detector
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2001)
T_{\min}, T_{\max}	0.822, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	11878, 2156, 1501
R _{int}	0.031
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.595
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.081, 0.278, 1.05
No. of reflections	2156
No. of parameters	134
No. of restraints	2
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.38, -0.34

Computer programs: SMART and SAINT (Bruker, 2001), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

- Dubis, A. T. & Grabowski, S. J. (2002). New J. Chem. 26, 165-169.
- Figueira, C. A., Lopes, P. S., Gomes, C. S. B., Veiros, L. F. & Gomes, P. T. (2015). *CrystEngComm*, **17**, 6406–6419.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Kim, H.-J. (2010). Acta Cryst. E66, 0566.
- Love, J. B., Blake, A. J., Wilson, C., Reid, S. D., Novak, A. & Hitchcock, P. B. (2003). *Chem. Commun.* pp. 1682–1683.
- Mahanta, S. P., Kumar, B. S., Baskaran, S., Sivasankar, C. & Panda, P. K. (2012). Org. Lett. 14, 548–551.
- Prins, L. J., Reinhoudt, D. N. & Timmerman, P. (2001). Angew. Chem. Int. Ed. 40, 2382–2426.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17*. University of Western Australia.
- Uppal, T., Hu, X., Fronczek, F. R., Maschek, S., Bobadova-Parvanova, P. & Vicente, M. G. H. (2012). *Chem. Eur. J.* **18**, 3893–3905.
- Xie, H., Lee, D. A., Senge, M. O. & Smith, K. M. (1994). J. Chem. Soc. Chem. Commun. pp. 791–792.
- Yin, Z. & Li, Z. (2006). Tetrahedron Lett. 47, 7875-7879.
- Yin, Z., Zhang, Y., He, J. & Cheng, J.-P. (2007). *Chem. Commun.* pp. 2599–2601.

supporting information

Acta Cryst. (2019). E75, 711-713 [https://doi.org/10.1107/S205698901900567X]

Crystal structure and Hirshfeld surface analysis of dibutyl 5,5'-(pentane-3,3diyl)bis(1*H*-pyrrole-5-carboxylate)

Haijing Wang and Zhenming Yin

Computing details

Data collection: *SMART* (Bruker, 2001); cell refinement: *SMART* (Bruker, 2001); data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXS* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

Dibutyl 5,5'-(pentane-3,3-diyl)bis(1H-pyrrole-5-carboxylate)

Crystal data	
$\begin{array}{l} C_{23}H_{34}N_{2}O_{4} \\ M_{r} = 402.52 \\ \text{Orthorhombic, } Fddd \\ a = 14.358 \ (6) \ \text{\AA} \\ b = 17.333 \ (7) \ \text{\AA} \\ c = 38.902 \ (19) \ \text{\AA} \\ V = 9681 \ (7) \ \text{\AA}^{3} \\ Z = 16 \\ F(000) = 3488 \end{array}$	$D_{\rm x} = 1.105 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3608 reflections $\theta = 2.4-23.4^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 296 K Block, colourless $0.32 \times 0.28 \times 0.26 \text{ mm}$
Data collection	
Bruker SMART CCD area detector diffractometer Graphite monochromator phi and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{min} = 0.822, T_{max} = 1.000$ 11878 measured reflections	2156 independent reflections 1501 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 1.9^{\circ}$ $h = -17 \rightarrow 16$ $k = -20 \rightarrow 18$ $l = -46 \rightarrow 44$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.081$ $wR(F^2) = 0.278$ S = 1.05 2156 reflections 134 parameters 2 restraints	Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1517P)^2 + 16.1858P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.34 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.68341 (16)	0.20703 (14)	0.05576 (7)	0.0943 (8)
O2	0.65735 (17)	0.33467 (14)	0.05760 (8)	0.1078 (10)
N1	0.51592 (15)	0.18458 (13)	0.09406 (6)	0.0673 (7)
H1	0.5364	0.1412	0.0865	0.081*
C1	0.2522 (3)	0.1657 (3)	0.08110 (13)	0.1320 (17)
H1A	0.2131	0.1822	0.0997	0.198*
H1B	0.2142	0.1459	0.0628	0.198*
H1C	0.2880	0.2087	0.0729	0.198*
C2	0.3186 (2)	0.1018 (2)	0.09382 (9)	0.0941 (11)
H2A	0.3591	0.0869	0.0750	0.113*
H2B	0.2819	0.0570	0.1001	0.113*
C3	0.3798 (3)	0.1250	0.1250	0.0756 (11)
C4	0.44025 (19)	0.19324 (17)	0.11502 (7)	0.0704 (8)
C5	0.4317 (2)	0.27091 (19)	0.12144 (10)	0.0906 (10)
Н5	0.3864	0.2937	0.1352	0.109*
C6	0.5026 (3)	0.31011 (19)	0.10378 (10)	0.0919 (10)
H6	0.5126	0.3631	0.1036	0.110*
C7	0.5546 (2)	0.25550 (17)	0.08689 (8)	0.0749 (8)
C8	0.6375 (2)	0.26101 (19)	0.06550 (9)	0.0810 (9)
C9	0.7383 (3)	0.3480 (3)	0.03496 (16)	0.141 (2)
H9A	0.7953	0.3356	0.0471	0.169*
H9B	0.7342	0.3149	0.0149	0.169*
C10	0.7401 (4)	0.4274 (4)	0.02437 (19)	0.164 (2)
H10A	0.7967	0.4359	0.0113	0.197*
H10B	0.7440	0.4592	0.0448	0.197*
C11	0.6604 (5)	0.4549 (4)	0.0035 (2)	0.193 (3)
H11A	0.6551	0.4210	-0.0162	0.232*
H11B	0.6045	0.4478	0.0172	0.232*
C12	0.6597 (7)	0.5314 (4)	-0.0088 (2)	0.211 (4)
H12A	0.6611	0.5666	0.0102	0.316*
H12B	0.6042	0.5399	-0.0221	0.316*
H12C	0.7133	0.5398	-0.0231	0.316*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
01	0.0756 (14)	0.0847 (16)	0.1227 (19)	0.0097 (12)	0.0142 (12)	0.0162 (13)
O2	0.0842 (17)	0.0826 (16)	0.157 (2)	0.0004 (12)	0.0174 (15)	0.0302 (14)
N1	0.0571 (13)	0.0653 (13)	0.0796 (15)	0.0047 (10)	-0.0016 (10)	0.0003 (11)

supporting information

C1	0.089 (3)	0.169 (4)	0.138 (4)	-0.001 (3)	-0.041 (3)	0.027 (3)
C2	0.072 (2)	0.116 (3)	0.095 (2)	-0.0173 (18)	-0.0137 (16)	0.0109 (19)
C3	0.053 (2)	0.090 (3)	0.083 (2)	0.000	0.000	0.006 (2)
C4	0.0570 (15)	0.0767 (18)	0.0775 (17)	0.0077 (13)	-0.0020 (12)	0.0027 (14)
C5	0.084 (2)	0.083 (2)	0.104 (2)	0.0180 (17)	0.0106 (18)	-0.0065 (18)
C6	0.088 (2)	0.0640 (18)	0.124 (3)	0.0049 (15)	0.005 (2)	0.0003 (18)
C7	0.0648 (17)	0.0672 (17)	0.093 (2)	0.0018 (13)	-0.0053 (15)	0.0099 (14)
C8	0.0659 (18)	0.0748 (19)	0.102 (2)	0.0011 (15)	-0.0014 (16)	0.0153 (16)
C9	0.075 (2)	0.129 (3)	0.219 (6)	-0.003 (2)	0.039 (3)	0.043 (4)
C10	0.136 (4)	0.149 (4)	0.206 (6)	-0.016 (4)	0.033 (4)	0.071 (4)
C11	0.156 (6)	0.205 (6)	0.219 (7)	0.028 (5)	0.033 (5)	0.085 (6)
C12	0.276 (11)	0.175 (5)	0.182 (6)	0.040 (7)	0.051 (6)	0.036 (5)

Geometric parameters (Å, °)

01	1.205 (4)	С5—Н5	0.9300	
O2—C8	1.344 (4)	C5—C6	1.404 (5)	
O2—C9	1.477 (5)	С6—Н6	0.9300	
N1—H1	0.8600	C6—C7	1.372 (5)	
N1-C4	1.367 (4)	C7—C8	1.456 (5)	
N1C7	1.377 (4)	С9—Н9А	0.9700	
C1—H1A	0.9600	С9—Н9В	0.9700	
C1—H1B	0.9600	C9—C10	1.436 (7)	
C1—H1C	0.9600	C10—H10A	0.9700	
C1—C2	1.542 (6)	C10—H10B	0.9700	
C2—H2A	0.9700	C10—C11	1.481 (9)	
C2—H2B	0.9700	C11—H11A	0.9700	
С2—С3	1.551 (4)	C11—H11B	0.9700	
$C3-C2^i$	1.551 (4)	C11—C12	1.412 (8)	
C3—C4	1.518 (4)	C12—H12A	0.9600	
C3—C4 ⁱ	1.518 (4)	C12—H12B	0.9600	
C4—C5	1.375 (4)	C12—H12C	0.9600	
C8—O2—C9	116.9 (3)	N1—C7—C8	120 3 (3)	
C4 - N1 - H1	125.0	C6-C7-N1	1074(3)	
C4 - N1 - C7	110.1 (2)	C6-C7-C8	132.3(3)	
C7—N1—H1	125.0	01 - C8 - 02	123.4(3)	
H1A—C1—H1B	109.5	01 - C8 - C7	125.1 (3)	
H1A—C1—H1C	109.5	O2—C8—C7	111.5 (3)	
H1B—C1—H1C	109.5	O2—C9—H9A	109.8	
C2—C1—H1A	109.5	O2—C9—H9B	109.8	
C2—C1—H1B	109.5	H9A—C9—H9B	108.2	
C2—C1—H1C	109.5	C10—C9—O2	109.6 (4)	
C1—C2—H2A	108.6	С10—С9—Н9А	109.8	
C1—C2—H2B	108.6	С10—С9—Н9В	109.8	
C1—C2—C3	114.5 (3)	C9—C10—H10A	108.1	
H2A—C2—H2B	107.6	C9—C10—H10B	108.1	
C3—C2—H2A	108.6	C9—C10—C11	116.8 (6)	

C3—C2—H2B	108.6	H10A—C10—H10B	107.3
$C2-C3-C2^{i}$	111.0 (4)	C11-C10-H10A	108.1
$C4^{i}$ — $C3$ — $C2^{i}$	109.02 (17)	C11-C10-H10B	108.1
C4 ⁱ —C3—C2	108.81 (18)	C10-C11-H11A	107.4
$C4-C3-C2^{i}$	108.81 (18)	C10-C11-H11B	107.4
C4—C3—C2	109.02 (17)	H11A—C11—H11B	106.9
C4 ⁱ —C3—C4	110.2 (3)	C12—C11—C10	119.7 (8)
N1—C4—C3	121.5 (2)	C12—C11—H11A	107.4
N1-C4-C5	106.7 (3)	C12—C11—H11B	107.4
C5—C4—C3	131.7 (3)	C11—C12—H12A	109.5
С4—С5—Н5	125.7	C11—C12—H12B	109.5
C4—C5—C6	108.7 (3)	C11—C12—H12C	109.5
С6—С5—Н5	125.7	H12A—C12—H12B	109.5
С5—С6—Н6	126.4	H12A—C12—H12C	109.5
C7—C6—C5	107.1 (3)	H12B-C12-H12C	109.5
С7—С6—Н6	126.4		
O2-C9-C10-C11	-62.9 (8)	C4 ⁱ —C3—C4—N1	44.80 (19)
N1—C4—C5—C6	0.7 (4)	C4 ⁱ —C3—C4—C5	-140.2 (4)
N1-C7-C8-O1	-8.2 (5)	C4—C5—C6—C7	-0.5 (4)
N1—C7—C8—O2	171.6 (3)	C5—C6—C7—N1	0.1 (4)
$C1-C2-C3-C2^{i}$	59.3 (3)	C5—C6—C7—C8	-178.0 (3)
C1—C2—C3—C4	-60.5 (4)	C6—C7—C8—O1	169.8 (4)
$C1-C2-C3-C4^{i}$	179.2 (3)	C6—C7—C8—O2	-10.4 (5)
C2-C3-C4-N1	-74.5 (3)	C7—N1—C4—C3	175.5 (2)
$C2^{i}$ — $C3$ — $C4$ — $N1$	164.3 (3)	C7—N1—C4—C5	-0.6 (3)
C2—C3—C4—C5	100.5 (4)	C8—O2—C9—C10	170.1 (5)
C2 ⁱ —C3—C4—C5	-20.7 (4)	C9—O2—C8—O1	1.8 (6)
C3—C4—C5—C6	-174.9 (3)	C9—O2—C8—C7	-178.0 (4)
C4—N1—C7—C6	0.3 (3)	C9—C10—C11—C12	-177.5 (6)
C4—N1—C7—C8	178.7 (3)		

Symmetry code: (i) x, -y+1/4, -z+1/4.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C4–C7 ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N1—H1…O1 ⁱⁱ	0.86	2.12	2.962 (3)	165
C12—H12 C ··· $Cg1$ ⁱⁱⁱ	0.96	3.21	3.944 (3)	135

Symmetry codes: (ii) -x+5/4, -y+1/4, z; (iii) x+1/4, y+1/4, -z.