

Received 18 April 2019 Accepted 23 April 2019

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; 4,4'-bi-1,2,4-triazole; metal–organic frameworks; copper(II) complexes.

CCDC reference: 1911618

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN 3 ACCESS

Crystal structure of poly[tetra- μ -chlorido-tetrachloridobis(μ_3 -4,4'-bi-1,2,4-triazole- $\kappa^3 N^1:N^2:N^{1'}$)-(μ -4,4'-bi-1,2,4-triazole- $\kappa^3 N^1:N^{1'}$)tetracopper(II)]

Kostiantyn V. Domasevitch and Andrey B. Lysenko*

Inorganic Chemistry Department, Taras Shevchenko National University of Kyiv, Volodimirska Street 64, Kyiv 01033, Ukraine. *Correspondence e-mail: ab_lysenko@univ.kiev.ua

The title Cu^{2+} -chloride coordination polymer with the 4,4'-bi-1,2,4-triazole ligand (btr), $[Cu_4Cl_8(C_4H_6N_6)_3]_n$, crystallizes in the non-centrosymmetric orthorhombic space group Fdd2. The two independent Cu^{2+} cations adopt distorted square-pyramidal geometries with $\{Cl_2N_2+Cl\}$ coordination polyhedra. The metal atoms are bridged by μ -Cl anions forming left- and right-handed helical chains of sequence $[-(\mu-Cl)CuCl-]_n$ along the *c*-axis direction. In the perpendicular directions, the btr ligands act in μ - and μ_3 - coordination modes in a 2:3 ratio. The μ -btr bridges connect neighboring helices of the same handedness, whereas the μ_3 -btr ligands link the helices of opposite handedness, leading to a racemic three-dimensional framework. The structure is consolidated by weak C-H···Cl and C-H···N interactions.

1. Chemical context

4,4'-Bi-1,2,4-triazole, C₄H₄N₆, btr, represents a unique example of a bitopic ligand used for the design of coordination solids. Four nitrogen donor sites in the btr molecule provide the possibility of different bridging modes [e.g. bi-N1,N1' (Liu et al., 2007), bi-N1,N2 (Zhang et al., 2008) tri-N1,N2,N1' (Huang, Zhao et al., 2008) and tetradentate N1,N2,N1',N2' (Lysenko et al., 2006)], generating extended coordination networks. In this context, small nucleophilic anions play a very important role in the formation of the $[M-X-M]_n$ coordination units $(X = OH, Cl^{-} and Br^{-})$ that often function as secondary building blocks. In this case, the tri- and tetradentate behavior of btr can be preferably realized (Lysenko et al., 2006, 2007). Indeed, the CuCl₂-btr system is very sensitive to the reaction conditions. For example, a one-dimensional coordination polymer of $[Cu_3(\mu_2-Cl)_2Cl_2(btr)_4]Cl_2$ was isolated from an aqueous solution (Lysenko et al., 2006). Another one-dimensional coordination polymer of $[Cu(\mu_2 -$ Cl)₂(btr)]·H₂O was isolated in the presence of aqueous HCl (Zhang et al., 2008). In this paper, we report the crystal structure of the title three-dimensional coordination polymer, (I), which was also prepared from aqueous solution by mixing CuCl₂, btr and NH₄Cl.

2. Structural commentary

The title compound crystallizes from aqueous solution in the orthorhombic system, non-centrosymmetric space group Fdd2. The asymmetric unit consists of two copper(II) atoms, four chloride anions and one and a half crystallographically

independent btr molecules. One btr ligand occupies a general position, while a half of btr sits on a special position (2-twofold axis running along the c axis, perpendicular to the N-N single bond).

The first copper ion, Cu1, adopts a distorted square-pyramidal {Cl₂N₂+Cl} coordination with two triazole N atoms and two chloride anions in the plane [Cu1-N1 = 1.985 (3) Å, Cu1-N4ⁱ = 1.957 (3) Å, N4ⁱ-Cu1-N1 = 168.82 (15)° symmetry code: (i) $x - \frac{1}{4}$, $-y + \frac{1}{4}$, $z + \frac{3}{4}$, and Cu1-Cl2 = 2.2780 (12) Å, Cu1-Cl1 = 2.5146 (11) Å] and one chloride coligand at the apical position [Cu1-Cl3 = 2.4155 (10) Å, Fig. 1, Table 1]. Addison *et al.* (1984) introduced the geometric parameter τ to distinguish whether the geometry of fivecoordinate systems is square-pyramidal or trigonal-bipyramidal. According to this scheme, trigonal-bipyramidal

Figure 1

A portion of the structure of (I), showing the atom-labeling scheme and the copper coordination environments. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $x - \frac{1}{4}, -y + \frac{1}{4}, z + \frac{3}{4}$; (ii) x, y, z - 1].

Table 1	_
Selected	bond lengths (Å).

Cu1-N4 ⁱ	1.957 (3)	Cu2-N7	2.031 (3)
Cu1-N1	1.985 (3)	Cu2-N2	2.032 (3)
Cu1-Cl2	2.2780 (12)	Cu2-Cl4	2.2769 (9)
Cu1-Cl3	2.4155 (10)	Cu2-Cl1	2.3185 (10)
Cu1-Cl1	2.5146 (11)	Cu2-Cl3 ⁱⁱ	2.6238 (13)

Symmetry codes: (i) $x - \frac{1}{4}, -y + \frac{1}{4}, z + \frac{3}{4}$; (ii) x, y, z - 1.

geometries are associated with a τ value close to 1.00, whereas for square-pyramidal geometries this value is around 0. Here, the value of τ for Cu1 is 0.35, suggesting the coordination is closer to square-pyramidal. The second independent copper cation, Cu2, has a similar square-pyramidal coordination geometry {Cl₂N₂+Cl} with $\tau = 0.32$. Two triazole nitrogen atoms (N2, N7) and two chloride anions (Cl1, Cl4) comprise the basal plane whereas the fifth chloride donor [Cl3ⁱⁱ, symmetry code: (ii) x, y, z - 1] occupies an apical site. The copper polyhedra are linked together through the μ_2 -bridging Cl1 and Cl3 anions to form left- and right-handed [Cu1-Cl1- $Cu2-Cl3]_n$ helices running along the *c*-axis direction (Fig. 2). The helices have a straight line helical axis (2_1 axis) , with the pitch being equal to the lattice parameter c. The btr ligands adopt μ - and μ_3 - coordination modes in a 2:3 ratio. It is interesting to note that the μ -bridge btr molecules connect two neighboring helices of the same handedness ($\Delta \Delta$ or $\Lambda \Lambda$). Then, each helix is connected to the other two of opposite handedness through μ_3 -bridging btr molecules, thus forming a three-dimensional framework structure (Fig. 3). The btr ligand conformation is characterized by a torsion angle between its triazole planes. The μ - and μ_3 -btr ligands are twisted around the N-N single bond adopting a non-coplanar orientation of

A portion of the helical structure of (I) (view in the *ac* plane). The μ -btr molecules link two neighboring helices of the same handedness, whereas the μ_3 -btr molecules link two neighboring helices of the opposite handedness. Hydrogen atoms are omitted for clarity.

research communications

Table 2 Hydrogen-bond geometry (Å, $^{\circ}$).						
$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	D-		
$C1-H1\cdots Cl1^{iii}$	0.94	2.74	3.528 (4)	142		
$C1 - H1 \dots Cl2$	0.94	2 53	3 052 (1)	115		

$C6-H6\cdots Cl2^{vi}$	0.94	2.70	3.315 (5)	124	
$C5-H5\cdots N5^{v}$	0.94	2.47	3.365 (6)	160	
$C4-H4\cdots Cl3^{iv}$	0.94	2.61	3.390 (4)	141	
$C1 - H1 \cdots C12$	0.94	2.53	3.052 (4)	115	

Symmetry codes: (iii) $x + \frac{1}{4}, -y + \frac{1}{4}, z + \frac{1}{4}$; (iv) $-x + \frac{1}{2}, -y, z - \frac{1}{2}$; (v) $-x + \frac{1}{2}, -y, z + \frac{1}{2}$; (vi) $x - \frac{1}{4}, -y + \frac{1}{4}, z - \frac{5}{4}$.

the triazolyl groups. The dihedral angles between two triazolyl rings are 74.4 (2) and 78.1 (2)° for μ -and μ_3 -btr, respectively.

3. Supramolecular features

In the crystal, compound (I) exhibits non-classical $C-H\cdots Cl$ and $C-H\cdots N$ hydrogen bonds (Fig. 4, Table 2). The C5 carbon atom of the triazole ring, as a weak hydrogen-bond donor (Desiraju & Steiner, 1999), is involved in a hydrogen bond with the acceptor N5^v atom of the neighboring triazole fragment. There is a bifurcated contact between one C1–H1 fragment and Cl2 (major component) and Cl1ⁱⁱⁱ (minor component). Two other hydrogen-bonding interactions are found between the C4–H4 and C6–H6 fragments and atoms Cl3^{iv} and Cl2^{vi}, respectively.

In conclusion, the study demonstrates that a combination of a neutral btr molecule and a chloride anion, as complementary donor units, has promising potential in the development and design of metal–organic frameworks.

4. Database survey

According to our CSD search (version 5.39, update May 2018; Groom *et al.*, 2016), the ligand geometries in (I) are in

Figure 3 The three-dimensional helical framework structure of (I) (top view).

 $-H \cdot \cdot \cdot A$

The packing of (I) (view along the [151] direction), showing the nonclassical C-H···Cl and C-H···N hydrogen-bonded interactions that support the three-dimensional coordination framework. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (iii) $\frac{1}{4} + x$, $\frac{1}{4} - y$, $\frac{1}{4} + z$, (iv) $\frac{1}{2} - x$, -y, $-\frac{1}{2} + z$, (v), $\frac{1}{2} - x$, -y, $\frac{1}{2} + z$, (vi) $-\frac{1}{4} + x$, $\frac{1}{4} - y$, $-\frac{5}{4} + z$].

agreement with a general tendency for the coordinating btr ligand to adopt a twisted conformation. The only exception was observed for the Mn^{II} -oxalate complex $[Mn_2(btr)(C_2O_4)_2(H_2O)_2]$ ·2H₂O (Huang & Cheng, 2008), in which the torsion angle is close to 0°. In the pure ligand, the dihedral angle is equal to *ca* 88° (Domiano, 1977).

5. Synthesis and crystallization

4,4'-Bi-1,2,4-triazole (btr) was prepared in a yield of 60% by the literature transamination reaction between 4-amino-1,2,4-triazole and *N*,*N*-dimethylformamide azine (Bartlett & Humphrey, 1967).

A solution of CuCl₂·2H₂O (34.0 mg, 0.20 mmol) and NH₄Cl (10.6 mg, 0.20 mmol) in 2 ml of water was added to a solution of btr (27.2 mg, 0.20 mmol) in water (0.5 ml). A drop of 0.10 *M* HCl aqueous solution was then added. The resulting green solution was left standing for several days to form green prismatic crystals. The product was filtered, washed with water and dried in air (yield 47%). Analysis calculated for C₁₂H₁₂Cl₈Cu₄N₁₈ (I): C, 15.23; H, 1.28; N, 26.65%. Found: C, 15.20; H, 1.32; N, 26.55. IR (KBr disks, selected bands, cm⁻¹): 608s, 668w, 856m, 896w, 950w, 1022s, 1044s, 1076m, 1102m, 1212w, 1308m, 1338w, 1354w, 1400w, 1498m, 1536m, 3088s, 3112s, 3120s.

The thermal stability of (I) was investigated by measurements of temperature-dependent PXRD (Fig. 5). In the temperature-dependent X-ray diffractograms, the initial positions of the main diffraction peaks remain unchanged upon heating to 523 K. Above this temperature, the compound undergoes irreversible thermal decomposition, resulting in an amorphous solid.

(a) PXRD data [calculated (red line) and experimental (dark line)] and (b) two-dimensional thermo-PXRD patterns for (I) (Cu $K_{\alpha 1}$ radiation).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All C-bound H atoms were placed at calculated positions [C-H = 0.94 Å (aromatic)] and refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(CH)$.

Funding information

This work was supported by the Ministry of Education and Science of Ukraine (project No. 19BF037-05).

References

- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Bartlett, R. K. & Humphrey, I. R. (1967). J. Chem. Soc. C, pp. 1664– 1666.
- Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Desiraju, R. G. & Steiner, T. (1999). *The Weak Hydrogen Bond in Structural Chemistry and Biology*. New York: Oxford University Press Inc.

Table 3Experimental details.

Crystal data	
Chemical formula	$[Cu_4Cl_8(C_4H_4N_6)_3]$
M _r	946.16
Crystal system, space group	Orthorhombic, Fdd2
Temperature (K)	213
a, b, c (Å)	28.869 (2), 31.584 (2), 6.2953 (4)
$V(\text{\AA}^3)$	5740.1 (7)
Ζ	8
Radiation type	Μο Κα
$\mu \ (\mathrm{mm}^{-1})$	3.71
Crystal size (mm)	$0.18 \times 0.15 \times 0.14$
Data collection	
Diffractometer	Stoe Image plate diffraction system
Absorption correction	Numerical [X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie 1999)]
T + T	0.548 0.608
No of measured independent and	10421 3323 3116
observed $[I > 2\sigma(I)]$ reflections	10.21, 0020, 0110
R _{int}	0.027
$(\sin \theta/\lambda)_{\rm max} ({\rm \AA}^{-1})$	0.661
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.023, 0.055, 1.02
No. of reflections	3323
No. of parameters	190
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.88, -0.50
Absolute structure	Flack x determined using 1309 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-0.010 (9)

Computer programs: *IPDS Software* (Stoe & Cie, 2000), *SHELXS97* (Sheldrick, 2008), *SHELXL2018/1* (Sheldrick, 2015), *DIAMOND* (Brandenburg, 1999), *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

Domiano, P. (1977). Cryst. Struct. Commun. 6, 503-506.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Huang, Y.-Q. & Cheng, P. (2008). Inorg. Chem. Commun. 11, 66–68.
- Huang, Y.-Q., Zhao, X.-Q., Shi, W., Liu, W.-Y., Chen, Z.-L., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2008). Cryst. Growth Des. 8, 3652–3660.
- Liu, Y.-Y., Huang, Y.-Q., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Cryst. Growth Des. 7, 1483–1489.
- Lysenko, A. B., Govor, E. V. & Domasevitch, K. V. (2007). *Inorg. Chim. Acta*, **360**, 55–60.
- Lysenko, A. B., Govor, E. V., Krautscheid, H. & Domasevitch, K. V. (2006). *Dalton Trans.* pp. 3772–3776.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (2000). IPDS Software. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (2001). X-RED. Stoe & Cie, Darmstadt, Germany.
- Zhang, X.-C., Chen, Y.-H. & Liu, B. (2008). Inorg. Chem. Commun. 11, 446–449.

supporting information

Acta Cryst. (2019). E75, 800-803 [https://doi.org/10.1107/S2056989019005516]

Crystal structure of poly[tetra- μ -chlorido-tetrachloridobis(μ_3 -4,4'-bi-1,2,4-triazole- $\kappa^3 N^1$: N^2 : N^1)(μ -4,4'-bi-1,2,4-triazole- $\kappa^3 N^1$: N^1)tetracopper(II)]

Kostiantyn V. Domasevitch and Andrey B. Lysenko

Computing details

Data collection: *IPDS Software* (Stoe & Cie, 2000); cell refinement: *IPDS Software* (Stoe & Cie, 2000); data reduction: *IPDS Software* (Stoe & Cie, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2018/1* (Sheldrick, 2015); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

Poly[tetra- μ -chlorido-tetrachloridobis(μ_3 -4,4'-bi-1,2,4-triazole-\ $\kappa^3 N^1$: N^2 : $N^{1'}(\mu$ -4,4'-bi-1,2,4-triazole-\ $\kappa^3 N^1$: N^2 : $N^{1'}(\mu$ -4,4'-bi-1,2,4-triazole-\ $\kappa^3 N^1$: N^2 : N^1)/tetracopper(II)]

Crystal data

 $\begin{bmatrix} Cu_4Cl_8(C_4H_4N_6)_3 \end{bmatrix} \\ M_r = 946.16 \\ Orthorhombic, Fdd2 \\ a = 28.869 (2) Å \\ b = 31.584 (2) Å \\ c = 6.2953 (4) Å \\ V = 5740.1 (7) Å^3 \\ Z = 8 \\ F(000) = 3696 \\ \end{bmatrix}$

Data collection

Stoe Image plate diffraction system diffractometer Radiation source: fine-focus sealed tube φ oscillation scans Absorption correction: numerical [X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)] $T_{\min} = 0.548, T_{\max} = 0.608$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.055$ S = 1.023323 reflections 190 parameters 1 restraint $D_x = 2.190 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8000 reflections $\theta = 1.9-28.0^{\circ}$ $\mu = 3.71 \text{ mm}^{-1}$ T = 213 KPrism, green $0.18 \times 0.15 \times 0.14 \text{ mm}$

10421 measured reflections 3323 independent reflections 3116 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 28.0^{\circ}, \theta_{min} = 1.9^{\circ}$ $h = -38 \rightarrow 35$ $k = -41 \rightarrow 41$ $l = -7 \rightarrow 7$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0381P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

$(\Delta/\sigma)_{\rm max} = 0.001$	Absolute structure: Flack x determined using
$\Delta \rho_{\rm max} = 0.88 \text{ e } \text{\AA}^{-3}$	1309 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et</i>
$\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$	<i>al.</i> , 2013)
	Absolute structure parameter: -0.010 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	<i>x</i>	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Cu1	0.19850 (2)	0.11917 (2)	0.94479 (8)	0.01706 (11)
Cu2	0.15568 (2)	0.05097 (2)	0.52000 (9)	0.01686 (11)
Cl1	0.14339 (3)	0.11976 (3)	0.63547 (17)	0.0209 (2)
Cl2	0.26125 (4)	0.14870 (5)	1.1066 (3)	0.0475 (4)
C13	0.17082 (4)	0.05490 (3)	1.10950 (19)	0.0239 (2)
Cl4	0.16908 (3)	-0.01996 (3)	0.54022 (18)	0.0218 (2)
N1	0.23912 (10)	0.08783 (9)	0.7448 (6)	0.0167 (7)
N2	0.22374 (10)	0.06244 (9)	0.5786 (6)	0.0179 (7)
N3	0.29808 (10)	0.06871 (9)	0.5595 (6)	0.0170 (7)
N4	0.40573 (10)	0.09304 (9)	0.3439 (6)	0.0177 (7)
N5	0.41628 (11)	0.05456 (10)	0.4425 (7)	0.0226 (8)
N6	0.34333 (10)	0.06931 (9)	0.4869 (6)	0.0155 (7)
N7	0.08703 (10)	0.04075 (10)	0.4717 (6)	0.0204 (7)
N8	0.06179 (12)	0.06766 (11)	0.3404 (7)	0.0279 (8)
N9	0.01831 (10)	0.01434 (9)	0.4350 (6)	0.0200 (7)
C1	0.28398 (12)	0.09087 (11)	0.7326 (7)	0.0158 (8)
H1	0.303232	0.105780	0.826934	0.019*
C2	0.25984 (13)	0.05162 (11)	0.4654 (8)	0.0207 (8)
H2	0.259496	0.035051	0.341342	0.025*
C3	0.36206 (12)	0.10152 (11)	0.3721 (7)	0.0171 (7)
H3	0.346291	0.125570	0.322048	0.021*
C4	0.37822 (13)	0.04129 (11)	0.5283 (8)	0.0219 (8)
H4	0.375067	0.016178	0.607163	0.026*
C5	0.06065 (13)	0.00912 (12)	0.5272 (8)	0.0226 (8)
Н5	0.069354	-0.013471	0.615824	0.027*
C6	0.02098 (15)	0.05083 (13)	0.3162 (9)	0.0289 (10)
H6	-0.002904	0.061861	0.231151	0.035*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0133 (2)	0.01689 (19)	0.0210 (3)	0.00071 (16)	0.00427 (17)	-0.00465 (18)
Cu2	0.01083 (18)	0.01540 (19)	0.0244 (3)	-0.00198 (15)	-0.00067 (18)	-0.00141 (17)
Cl1	0.0206 (4)	0.0200 (4)	0.0222 (6)	0.0052 (3)	-0.0041 (3)	-0.0035 (3)
Cl2	0.0170 (5)	0.0704 (8)	0.0550 (9)	0.0052 (5)	-0.0044 (5)	-0.0457 (7)

C13	0.0316 (5)	0.0194 (4)	0.0206 (6)	-0.0048 (3)	0.0037 (4)	0.0015 (3)
Cl4	0.0232 (4)	0.0163 (4)	0.0258 (6)	-0.0001 (3)	-0.0024 (4)	0.0027 (4)
N1	0.0151 (14)	0.0192 (13)	0.016 (2)	-0.0012 (11)	0.0024 (12)	-0.0045 (12)
N2	0.0117 (13)	0.0181 (14)	0.024 (2)	-0.0031 (11)	0.0009 (12)	-0.0045 (12)
N3	0.0120 (14)	0.0175 (14)	0.021 (2)	-0.0010 (10)	0.0038 (12)	-0.0031 (12)
N4	0.0160 (15)	0.0163 (13)	0.021 (2)	-0.0008 (11)	0.0028 (13)	0.0034 (12)
N5	0.0180 (15)	0.0172 (14)	0.033 (2)	0.0018 (11)	0.0052 (14)	0.0047 (14)
N6	0.0107 (12)	0.0178 (13)	0.018 (2)	-0.0019 (10)	0.0038 (11)	-0.0024 (12)
N7	0.0153 (14)	0.0188 (14)	0.027 (2)	-0.0019 (11)	-0.0017 (13)	0.0014 (13)
N8	0.0225 (17)	0.0229 (16)	0.038 (3)	-0.0033 (13)	-0.0041 (15)	0.0103 (15)
N9	0.0127 (14)	0.0174 (14)	0.030 (2)	-0.0037 (11)	-0.0007 (13)	0.0017 (13)
C1	0.0134 (15)	0.0155 (14)	0.018 (2)	-0.0008 (12)	0.0018 (14)	-0.0032 (13)
C2	0.0158 (16)	0.0222 (17)	0.024 (3)	-0.0045 (13)	0.0026 (15)	-0.0087 (16)
C3	0.0139 (16)	0.0178 (15)	0.020 (2)	-0.0007 (12)	0.0026 (14)	-0.0009 (14)
C4	0.0186 (17)	0.0174 (16)	0.030 (2)	0.0007 (13)	0.0035 (16)	0.0010 (16)
C5	0.0184 (17)	0.0202 (16)	0.029 (3)	-0.0025 (13)	-0.0035 (17)	0.0044 (16)
C6	0.022 (2)	0.0262 (19)	0.039 (3)	-0.0040 (15)	-0.0051 (18)	0.0107 (18)

Geometric parameters (Å, °)

Cu1—N4 ⁱ	1.957 (3)	N4—N5	1.398 (4)	
Cu1—N1	1.985 (3)	N5—C4	1.294 (5)	
Cu1—Cl2	2.2780 (12)	N6—C3	1.360 (5)	
Cu1—Cl3	2.4155 (10)	N6—C4	1.366 (5)	
Cu1—Cl1	2.5146 (11)	N7—C5	1.304 (5)	
Cu2—N7	2.031 (3)	N7—N8	1.392 (5)	
Cu2—N2	2.032 (3)	N8—C6	1.302 (5)	
Cu2—Cl4	2.2769 (9)	N9—C5	1.363 (5)	
Cu2—Cl1	2.3185 (10)	N9—C6	1.376 (5)	
Cu2—Cl3 ⁱⁱ	2.6238 (13)	N9—N9 ⁱⁱⁱ	1.392 (6)	
N1-C1	1.301 (5)	C1—H1	0.9400	
N1—N2	1.391 (5)	С2—Н2	0.9400	
N2-C2	1.308 (5)	С3—Н3	0.9400	
N3—C1	1.357 (5)	C4—H4	0.9400	
N3—C2	1.364 (5)	С5—Н5	0.9400	
N3—N6	1.384 (4)	С6—Н6	0.9400	
N4—C3	1.301 (5)			
N4 ⁱ —Cu1—N1	168.82 (15)	C3—N4—Cu1 ^v	123.5 (3)	
N4 ⁱ —Cu1—Cl2	92.14 (10)	N5—N4—Cu1 ^v	127.3 (2)	
N1—Cu1—Cl2	91.04 (9)	C4—N5—N4	106.4 (3)	
N4 ⁱ —Cu1—Cl3	95.62 (10)	C3—N6—C4	107.0 (3)	
N1—Cu1—Cl3	92.79 (10)	C3—N6—N3	124.1 (3)	
Cl2—Cu1—Cl3	114.53 (6)	C4—N6—N3	128.6 (3)	
N4 ⁱ —Cu1—Cl1	88.14 (11)	C5—N7—N8	108.7 (3)	
N1—Cu1—Cl1	83.47 (10)	C5—N7—Cu2	130.7 (3)	
Cl2—Cu1—Cl1	147.82 (6)	N8—N7—Cu2	120.2 (2)	
Cl3—Cu1—Cl1	97.43 (4)	C6—N8—N7	107.1 (3)	

N7—Cu2—N2	177.81 (15)	C5—N9—C6	106.4 (3)
N7—Cu2—Cl4	91.02 (9)	C5—N9—N9 ⁱⁱⁱ	127.0 (3)
N2—Cu2—Cl4	90.06 (9)	C6—N9—N9 ⁱⁱⁱ	126.0 (3)
N7—Cu2—Cl1	92.67 (10)	N1—C1—N3	107.9 (3)
N2—Cu2—Cl1	85.63 (9)	N1—C1—H1	126.0
Cl4—Cu2—Cl1	158.52 (5)	N3—C1—H1	126.0
N7—Cu2—Cl3 ⁱⁱ	91.29 (12)	N2—C2—N3	107.7 (4)
N2—Cu2—Cl3 ⁱⁱ	90.54 (11)	N2—C2—H2	126.1
Cl4—Cu2—Cl3 ⁱⁱ	94.20 (4)	N3—C2—H2	126.1
Cl1—Cu2—Cl3 ⁱⁱ	106.86 (4)	N4—C3—N6	107.7 (3)
Cu2—Cl1—Cu1	97.99 (4)	N4—C3—H3	126.2
$Cu1$ — $Cl3$ — $Cu2^{iv}$	121.17 (4)	N6—C3—H3	126.2
C1—N1—N2	108.4 (3)	N5—C4—N6	109.7 (3)
C1—N1—Cu1	126.1 (3)	N5—C4—H4	125.2
N2—N1—Cu1	125.2 (2)	N6—C4—H4	125.2
C2—N2—N1	107.8 (3)	N7—C5—N9	108.5 (4)
C2—N2—Cu2	128.7 (3)	N7—C5—H5	125.8
N1—N2—Cu2	123.2 (2)	N9—C5—H5	125.8
C1—N3—C2	108.1 (3)	N8—C6—N9	109.2 (4)
C1—N3—N6	122.8 (3)	N8—C6—H6	125.4
C2—N3—N6	128.7 (3)	N9—C6—H6	125.4
C3—N4—N5	109.2 (3)		
C1—N1—N2—C2	-1.8 (4)	Cu2—N2—C2—N3	175.9 (3)
Cu1—N1—N2—C2	171.8 (3)	C1—N3—C2—N2	-0.9 (5)
C1—N1—N2—Cu2	-176.4 (3)	N6—N3—C2—N2	-173.2 (3)
Cu1—N1—N2—Cu2	-2.8 (4)	N5—N4—C3—N6	-0.2 (5)
C3—N4—N5—C4	-0.4 (5)	Cu1 ^v —N4—C3—N6	-178.0 (3)
Cu1 ^v —N4—N5—C4	177.3 (3)	C4—N6—C3—N4	0.7 (5)
C1—N3—N6—C3	-78.1 (5)	N3—N6—C3—N4	175.6 (4)
C2—N3—N6—C3	93.2 (5)	N4—N5—C4—N6	0.8 (5)
C1—N3—N6—C4	95.6 (5)	C3—N6—C4—N5	-1.0(5)
C2—N3—N6—C4	-93.1 (6)	N3—N6—C4—N5	-175.5 (4)
C5—N7—N8—C6	-1.5 (5)	N8—N7—C5—N9	0.2 (5)
Cu2—N7—N8—C6	172.0 (3)	Cu2—N7—C5—N9	-172.4 (3)
N2—N1—C1—N3	1.2 (4)	C6—N9—C5—N7	1.2 (5)
Cu1—N1—C1—N3	-172.3 (3)	N9 ⁱⁱⁱ —N9—C5—N7	172.8 (3)
C2—N3—C1—N1	-0.2 (4)	N7—N8—C6—N9	2.2 (6)
N6—N3—C1—N1	172.6 (3)	C5—N9—C6—N8	-2.1 (6)
N1—N2—C2—N3	1.6 (4)	N9 ⁱⁱⁱ —N9—C6—N8	-173.9 (4)

Symmetry codes: (i) x-1/4, -y+1/4, z+3/4; (ii) x, y, z-1; (iii) -x, -y, z; (iv) x, y, z+1; (v) x+1/4, -y+1/4, z-3/4.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H···A
C1—H1···Cl1 ^{vi}	0.94	2.74	3.528 (4)	142
C1—H1···Cl2	0.94	2.53	3.052 (4)	115

supporting information

C2—H2···Cl4 ^{vii}	0.94	2.84	3.518 (4)	130
C3—H3···Cl2 ⁱⁱ	0.94	2.90	3.672 (4)	140
C3—H3····N8 ^{vi}	0.94	2.66	3.242 (5)	121
C4—H4···Cl3 ^{vii}	0.94	2.61	3.390 (4)	141
C5—H5····N5 ^{viii}	0.94	2.47	3.365 (6)	160
C6—H6····Cl2 ^{ix}	0.94	2.70	3.315 (5)	124

Symmetry codes: (ii) x, y, z-1; (vi) x+1/4, -y+1/4, z+1/4; (vii) -x+1/2, -y, z-1/2; (viii) -x+1/2, -y, z+1/2; (ix) x-1/4, -y+1/4, z-5/4.