

Received 5 May 2019 Accepted 14 May 2019

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; fulvene; methylation patterns; C—H $\cdots \pi$ ring interactions.

CCDC references: 1916092; 1916091; 1916090; 1916089

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of a series of 6-aryl-1,3diphenylfulvenes

Andrew J. Peloquin, Sonya K. Adas, Scott T. Iacono and Gary J. Balaich*

Department of Chemistry & Chemistry Research Center, United States Air Force Academy, Colorado Springs, CO 80840, USA. *Correspondence e-mail: gary.balaich@usafa.edu

The synthesis and crystal structures of a series of 6-arylfuvlenes (fulvene is 5methylidenecyclopenta-1,3-diene) with varying methylation patterns on the 6-phenyl substituent are reported, namely 6-(3-methylphenyl)-1,3-diphenylfulvene ($C_{25}H_{20}$), 6-(4-methylphenyl)-1,3-diphenylfulvene ($C_{25}H_{20}$), 6-mesityl-3diphenylfulvene ($C_{27}H_{24}$) and 6-(2,3,4,5,6-pentamethylphenyl)-1,3-diphenylfulvene ($C_{29}H_{28}$). The bond lengths are typical of those observed in related fulvenes. A network of $C-H\cdots\pi$ ring interactions consolidates the packing in each structure.

1. Chemical context

Pentafulvenes have garnered interested because of their unique cross-conjugated electronic system. Fulvenes have been explored for applications as chromophores (Jayamurugan et al., 2013), frustrated Lewis pair scaffolds (Mömming et al., 2011), and ligands for metal-fulvene complexes (Erker, 2011). To facilitate the inclusion in transition-metal complexes, reduction to a cyclopentadiene ligand (Gómez-Ruiz et al., 2005) or reductive coupling to ansa bis-cyclopentadiene ligand (Adas & Balaich, 2018) are the most common reactions. As part of our work in this area, we now report the syntheses and crystal structures of a series of 1,3-diphenylfulvenes bearing 6phenyl substituent with diverse methylation patterns, viz. 1,3diphenyl-6-(3-methylphenyl)fulvene ($C_{25}H_{20}$) I, 1,3-diphenyl-6-(4-methylphenyl)fulvene (C₂₅H₂₀) II, 3-diphenyl-6-mesitylfulvene $(C_{27}H_{24})$ III and 1,3-diphenyl-6-(2,3,4,5,6-pentamethylphenyl)fulvene ($C_{29}H_{28}$) IV (Figs. 1–4).

2. Structural commentary

Compounds I and IV crystallize in the monoclinic space group C2/c (Fig. 1), compound II in the monoclinic space group $P2_1/c$, and compound III the orthorhombic space group $Pca2_1$. With the exception of III, in which the asymmetric unit contains two complete fulvene molecules, each compound crystallizes with one molecule per asymmetric unit. In each compound, the expected alternating long-short intra-ring bond lengths are observed. The phenyl substituents are

 Table 1

 Fulvene-phenyl torsion angles (°).

Fulvene ^a -(1-phenyl ^b) $32.08 (7)$ $31.83 (5)$ $21.33 (13)$ $41.65 (7)$ Fulvene ^a -(3-phenyl ^b) $19.50 (6)$ $20.92 (5)$ $38.02 (13)$ $25.17 (7)$ Fulvene ^a -(6-phenyl ^b) $31.99 (6)$ $35.13 (5)$ $57.22 (14)$ $64.15 (7)$		I	II	Ш	IV
	Fulvene ^{<i>a</i>} -(1-phenyl ^{<i>b</i>})	32.08 (7)	31.83 (5)	21.33 (13)	41.65 (7)
	Fulvene ^{<i>a</i>} -(3-phenyl ^{<i>b</i>})	19.50 (6)	20.92 (5)	38.02 (13)	25.17 (7)
	Fulvene ^{<i>a</i>} -(6-phenyl ^{<i>b</i>})	31.99 (6)	35.13 (5)	57.22 (14)	64.15 (7)

Notes: (a) plane defined by atoms C1–C5; (a) plane defined by the atoms of the specific phenyl ring substituent.

rotated from 19.50 (6) to 64.15 (7)° from the cyclopentadiene core of the fulvene (Table 1). The rotation is larger for each substituent in **IV**, likely because of the additional steric interactions provided by the pentamethyl substituent.

For fulvene **I**, the phenyl substituents are rotated 32.08 (7), 19.50 (6) and 31.99 (6)° from the cyclopentadiene core for the 1-phenyl, 3-phenyl, and 6-phenyl substituents, respectively. In compound **II**, the phenyl substituents are rotated 31.83 (5), 20.92 (5) and 35.13 (5)° from the cyclopentadiene core for the 1-phenyl, 3-phenyl, and 6-phenyl substituents, respectively. For compound **III**, the phenyl substituents are rotated an average of 21.33 (13), 38.02 (13) and 57.22 (14)° from the cyclopentadiene core for the 1-phenyl, and 6-phenyl substituents.

The molecular structure of **I**. Displacement ellipsoids are shown at the 50% probability level.

Figure 2

The molecular structure of \mathbf{II} . Displacement ellipsoids are shown at the 50% probability level.

substituents, respectively. In fulvene **IV**, each phenyl ring is rotated further from the core of the fulvene molecule, likely because of the additional steric interactions provided by the pentamethylphenyl substituent. The phenyl substituents are rotated by 41.65 (7), 25.17 (7) and 64.15 (7)° from the cyclopentadiene core for the 1-phenyl, 3-phenyl, and 6-phenyl substituents, respectively.

3. Supramolecular features

The packing for each compound **I–IV** is consolidated through a series of $C-H\cdots\pi$ ring interactions. In **I**, each molecule participates in $C-H\cdots\pi$ ring interactions with six other fulvene molecules. Each molecule acts as a C-H donor through the hydrogen atoms in the *para* position of each phenyl substituent, H10 and H16, as well as a *meta* hydrogen atom, H23, from the 6-(3-methylphenyl) substituent. Additionally, the π ring of the 3-phenyl and 6-(3-methylphenyl) substituents accept C-H interactions, with the latter accepting donations from both sides of the ring (Table 2 and Fig. 5). In the crystal structure of **II**, each molecule interacts with five other fulvene molecules. Phenyl hydrogen atoms H12

The molecular structure of **III**. Displacement ellipsoids are shown at the 50% probability level.

The molecular structure of **IV**. Displacement ellipsoids are shown at the 50% probability level.

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$) for (I).

Cg1 and Cg2 are the centroids of the C13–C18 and C19–C24 rings, respectively.

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} \hline C10-H10\cdots Cg1^{i} \\ C16-H16\cdots Cg2^{ii} \\ C23-H23\cdots Cg2^{iii} \end{array}$	0.93	2.83	3.539 (2)	134
	0.93	2.86	3.589 (2)	136
	0.93	2.90	3.547 (2)	128

Symmetry codes: (i) $-x, y - 1, -z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, y + \frac{3}{2}, -z + \frac{1}{2}$; (iii) $x, -y, z - \frac{1}{2}$.

Table 3

Hydrogen-bond geometry (Å, $^{\circ}$) for (II).

Cg3 and Cg4 are the centroids of the C7–C12 and C19–C24 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C12-H12\cdots Cg3^{i}$	0.95	2.95	3.6560 (4)	132
$C17 - H17 \cdots Cg3^{ii}$	0.95	2.83	3.4837 (4)	127
$C25-H25A\cdots Cg4^{iii}$	0.98	2.98	3.8277 (4)	145

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $x, -y - \frac{3}{2}, z - \frac{3}{2}$; (iii) -x + 1, -y + 1, -z + 1.

and H17 as well as methyl hydrogen atom H25A act as donors. The 3-phenyl and 6-(4-methylphenyl) substituents act as C-H

Figure 5

The crystal packing of I. Displacement ellipsoids are shown at the 50% probability level. $C-H\cdots\pi$ ring interactions (Table 2) are shown as dashed lines.

Figure 6

The crystal packing of **II**. Displacement ellipsoids are shown at the 50% probability level. $C-H\cdots\pi$ ring interactions (Table 3) are shown as dashed lines.

Table 4

Hydrogen-bond geometry (Å, °) for (III).

*Cg*5, *Cg*6, *Cg*7, *Cg*8, and *Cg*9 are the centroids of the C40–C45, C7–C12, C13–C18, C28–C32, and C34–C39 rings, respectively.

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C10−H10···Cg5 ⁱ	0.93	2.81	3.5059 (7)	132
$C25 - H25C \cdot \cdot \cdot Cg6^{ii}$	0.96	2.81	3.7115 (8)	158
$C37 - H37 \cdots Cg7^{iii}$	0.93	2.71	3.5129 (8)	145
$C39-H39\cdots Cg8^{ii}$	0.93	2.97	3.5817 (8)	125
$C53 - H53A \cdots Cg7^{iv}$	0.96	2.94	3.6503 (8)	132
$C54 - H54C \cdots Cg9^{v}$	0.96	2.88	3.7983 (8)	160

Symmetry codes: (i) -x, -y, $z - \frac{1}{2}$; (ii) x, y + 1, z; (iii) -x, -y + 2, $z + \frac{1}{2}$; (iv) $x + \frac{1}{2}$, -y, z; (v) x, y - 1, z.

Table 5

Hydrogen-bond geometry (Å, $^{\circ}$) for (IV).

Cg10 is the centroid of the C13-C18 ring.					
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$	
$C10-H10\cdots Cg10^{i}$	0.95	2.70	3.4521 (9)	136	

Symmetry code: (i) $-x, y + 1, -z + \frac{1}{2}$.

acceptors, with the former accepting donations from both sides of the ring (Table 3 and Fig. 6). The interactions differ between the two molecules within the asymmetric unit of **III**. One of the molecules contributes four C-H donor sites, H37, H39, H53A, and H54C, with the π ring of each phenyl substituent as well as the fulvene core acting as acceptors. In the other molecule, H10 and H25C act as C-H donors with the π system of the 1-phenyl and 3-phenyl substituents accepting, the latter accepting C-H interactions from both sides of the ring (Table 4 and Fig. 7). Fulvene **IV** interacts with four other molecules *via* C-H··· π ring interactions. The *para* hydrogen atom of the 1-phenyl group of the 6-(2,3,4,5,6-pentametyhlphenyl) substituent, H27C, serve as C-H donors

Figure 8

The crystal packing of **IV**, viewed along the *b* axis. Displacement ellipsoids are shown at the 50% probability level. $C-H\cdots\pi$ ring interactions (Table 5) are shown as dashed lines.

research communications

Table 6Experimental details.

	(I)	(II)	(III)	(IV)
Crystal data				
Chemical formula	$C_{25}H_{20}$	$C_{25}H_{20}$	$C_{27}H_{24}$	$C_{29}H_{28}$
M_r	320.41	320.41	348.46	376.51
Crystal system, space group	Monoclinic, C2/c	Monoclinic, $P2_1/c$	Orthorhombic, $Pca2_1$	Monoclinic, C2/c
Temperature (K)	100	100	100	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	29.230 (17), 5.800 (3), 22.071 (12)	19.208 (2), 5.8774 (7), 16.1884 (18)	30.031 (6), 5.6147 (12), 23.494 (5)	30.987 (7), 5.8273 (14), 23.557 (6)
α, β, γ (°)	90, 107.248 (17), 90	90, 107.710 (1), 90	90, 90, 90	90, 96.192 (3), 90
$V(\dot{A}^3)$	3573 (3)	1740.9 (3)	3961.4 (14)	4228.9 (17)
Z	8	4	8	8
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο <i>Κα</i>
$\mu \text{ (mm}^{-1})$	0.07	0.07	0.07	0.07
Crystal size (mm)	$0.25 \times 0.21 \times 0.18$	$0.43 \times 0.27 \times 0.06$	$0.26\times0.11\times0.10$	$0.44 \times 0.11 \times 0.1$
Data collection				
Diffractometer	Bruker APEXII CCD	Bruker APEXII CCD	Bruker APEXII CCD	Bruker APEXII CCD
Absorption correction	Multi-scan SADABS	Multi-scan SADABS	Multi-scan SADABS	Multi-scan SADABS
T_{\min}, T_{\max}	0.832, 0.901	0.691, 0.745	0.678, 0.745	0.587, 0.745
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	31841, 3817, 3013	30237, 3473, 2972	38475, 6776, 5709	37965, 4394, 3213
R _{int}	0.052	0.038	0.070	0.082
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.635	0.620	0.590	0.629
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.048, 0.122, 1.05	0.040, 0.100, 1.04	0.043, 0.108, 1.04	0.050, 0.137, 1.03
No. of reflections	3817	3473	6776	4394
No. of parameters	227	227	494	267
No. of restraints	0	0	1	0
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.33, -0.20	0.22, -0.19	0.17, -0.17	0.24, -0.22
Absolute structure	_	_	Refined as an inversion twin.	_
Absolute structure parameter	_	_	-6(10)	_

Computer programs: APEX3 and SAINT (Bruker, 2017), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae, et al., 2008) and publcIF (Westrip, 2010).

Figure 7

The crystal packing of III. Displacement ellipsoids are shown at the 50% probability level. $C-H\cdots\pi$ ring interactions (Table 4) are shown as dashed lines.

for two separate fulvene molecules. The 6-(2,3,4,5,6-pentametyhlphenyl) π ring accepts C–H donation from two additional molecules (Table 5 and Fig. 8).

4. Database survey

A survey of the November 2019 release of the Cambridge Structure Database (Groom *et al.*, 2016), with updates through February 2019, was made using the program *Mogul* (Bruno *et al.*, 2004). A search for 1,3-diphenyl fulvenes and 6-aryl-1,3-diphenyl fulvenes yielded 78 and 35 results, respectively. In both cases, the phenyl-fulvene torsion angles produce a bimodal distribution with broad peaks at 50 and 130°. The torsion angles in **I–IV** are therefore not unusual.

5. Synthesis and crystallization

Each compound was prepared by a modified literature procedure (Peloquin *et al.*, 2012).

1,3-diphenyl-6-(3-methylphenyl)fulvene (I). To a vigorously stirred solution of 1,3-diphenylcyclopentadiene (0.230 g, 1.05 mmol) in absolute EtOH (25 ml), 3-methylbenzaldehyde (0.189 g, 1.58 mmol) and pyrrolidine (0.12 g, 1.68 mmol) were added. The reaction mixture was allowed to stir at room

research communications

temperature for 22 h. The precipitate from the reaction mixture was vacuum filtered, washed with cold absolute EtOH $(3 \times 30 \text{ ml})$, and vacuum dried to give **I** as a dark-red solid (0.211 g, 63%). Red prisms suitable for single-crystal X-ray diffraction were obtained from diethyl ether solution by slow evaporation.

1,3-diphenyl-6-(4-methylphenyl)fulvene (II). To a vigorously stirred solution of 1,3-diphenylcyclopentadiene (0.336 g, 1.42 mmol) in absolute EtOH (8 ml), 4-methylbenzaldehyde (0.25 ml, 2.13 mmol) and pyrrolidine (0.14 ml, 1.70 mmol) were added. The reaction mixture was allowed to stir at room temperature for 24 h. The precipitate from the reaction mixture was vacuum filtered, washed with cold absolute EtOH (3 × 30 ml), and vacuum dried to give **II** as a dark-red solid (0.251 g, 75%). Red prisms suitable for single-crystal X-ray diffraction were obtained from diethyl ether solution by slow evaporation.

3-diphenyl-6-mesitylfulvene (III). To a vigorously stirred solution of 1,3-diphenylcyclopentadiene (1.434 g, 6.57 mmol) in absolute EtOH (50 ml), mesitylaldehyde (1.173 g, 7.91 mmol) and pyrrolidine (0.789 g, 11.09 mmol) were added. The reaction mixture was allowed to stir at reflux for 24 h. The reaction mixture was cooled to 278 K and the resulting precipitate was vacuum filtered, washed with cold absolute EtOH (3×30 ml), and vacuum dried to give **III** as a redorange solid (1.85 g, 81%). Irregular red crystals suitable for single-crystal X-ray diffraction were obtained from pentane solution by slow evaporation.

1,3-diphenyl-6-(2,3,4,5,6-pentamethylphenyl)fulvene (IV). To a vigorously stirred solution of 1,3-diphenylcyclopentadiene (2.1 g, 9.62 mmol) in absolute EtOH (50 ml), 2,3,4,5,6pentamethylbenzaldehyde (2.04 g, 11.55 mmol) and pyrrolidine (1.09 g, 15.40 mmol) were added. The reaction mixture was allowed to stir at room temperature for 24 h. The precipitate from the reaction mixture was vacuum filtered, washed with cold absolute EtOH (3×30 ml), and vacuum dried to give **IV** as an orange solid (2.93 g, 82%). Orange needles suitable for single-crystal X-ray diffraction were obtained from ethyl acetate solution by slow evaporation.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6. H atoms were positioned geometrically and refined as riding with C-H = 0.93-0.96 Å and $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. The absolute structure of **III** was indeterminate in the present refinement. Compound **III** was refined as an inversion twin.

Funding information

Funding for this research was provided by: Air Force Office of Scientific Research.

References

- Adas, S. K. & Balaich, G. J. (2018). J. Organomet. Chem. 857, 200–206.
- Bruker (2017). APEX3 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.
- Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133– 2144.
- Erker, G. (2011). Organometallics, 30, 358-368.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gómez-Ruiz, S., Höcher, T., Prashar, S. & Hey-Hawkins, E. (2005). Organometallics, 24, 2061–2064.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Jayamurugan, G., Dumele, O., Gisselbrecht, J. P., Boudon, C., Schweizer, W. B., Bernet, B. & Diederich, F. (2013). J. Am. Chem. Soc. 135, 3599–3606.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mömming, C. M., Kehr, G., Fröhlich, R. & Erker, G. (2011). Chem. Commun. 47, 2006–2007.
- Peloquin, A. J., Stone, R. L., Avila, S. E., Rudico, E. R., Horn, C. B., Gardner, K. A., Ball, D. W., Johnson, J. E. B., Iacono, S. T. & Balaich, G. J. (2012). *J. Org. Chem.* **77**, 6371–6376.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2019). E75, 838-842 [https://doi.org/10.1107/S205698901900700X]

Crystal structures of a series of 6-aryl-1,3-diphenylfulvenes

Andrew J. Peloquin, Sonya K. Adas, Scott T. Iacono and Gary J. Balaich

Computing details

For all structures, data collection: *APEX3* (Bruker, 2017); cell refinement: *SAINT* (Bruker, 2017); data reduction: *SAINT* (Bruker, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015*b*); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae, *et al.*, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

{3-[(3-Methylphenyl)methylidene]-4-phenylcyclopenta-1,4-dien-1-yl}benzene (I)

Crystal data

C₂₅H₂₀ $M_r = 320.41$ Monoclinic, C2/c a = 29.230 (17) Å b = 5.800 (3) Å c = 22.071 (12) Å $\beta = 107.248 (17)^{\circ}$ $V = 3573 (3) \text{ Å}^3$ Z = 8

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
SADABS
$T_{\min} = 0.832, \ T_{\max} = 0.901$
31841 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.122$ S = 1.053817 reflections 227 parameters 0 restraints F(000) = 1360 $D_x = 1.191 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4339 reflections $\theta = 2.9-24.4^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 100 KPrism, red $0.25 \times 0.21 \times 0.18 \text{ mm}$

3817 independent reflections 3013 reflections with $I > 2\sigma(I)$ $R_{int} = 0.052$ $\theta_{max} = 26.8^\circ, \ \theta_{min} = 1.9^\circ$ $h = -36 \rightarrow 36$ $k = -7 \rightarrow 7$ $l = -28 \rightarrow 27$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0482P)^2 + 3.8961P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.33$ e Å⁻³ $\Delta\rho_{min} = -0.19$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.57871 (5)	0.4490 (3)	0.23560 (7)	0.0219 (3)	
C2	0.57462 (5)	0.4576 (3)	0.29513 (7)	0.0229 (3)	
H2	0.554463	0.364773	0.310252	0.027*	
C3	0.60677 (5)	0.6356 (3)	0.33229 (7)	0.0222 (3)	
C4	0.62991 (5)	0.7360 (3)	0.29436 (7)	0.0235 (3)	
H4	0.651702	0.856706	0.305993	0.028*	
C5	0.61519 (5)	0.6246 (3)	0.23236(7)	0.0221 (3)	
C6	0.63418 (5)	0.6503 (3)	0.18410 (7)	0.0238 (3)	
H6	0.623184	0.548206	0.150415	0.029*	
C7	0.55041 (5)	0.2988 (3)	0.18388 (7)	0.0218 (3)	
C8	0.53551 (5)	0.3688 (3)	0.12045 (7)	0.0255 (3)	
H8	0.544591	0.512625	0.109349	0.031*	
C9	0.50730 (6)	0.2255 (3)	0.07390 (8)	0.0303 (4)	
H9	0.498411	0.272695	0.031741	0.036*	
C10	0.49212 (6)	0.0122 (3)	0.08943 (8)	0.0306 (4)	
H10	0.472725	-0.081758	0.058066	0.037*	
C11	0.50628 (6)	-0.0585 (3)	0.15223 (8)	0.0275 (4)	
H11	0.496034	-0.199944	0.163231	0.033*	
C12	0.53569 (5)	0.0812 (3)	0.19877 (7)	0.0235 (3)	
H12	0.545815	0.029678	0.240537	0.028*	
C13	0.61345 (5)	0.6870 (3)	0.39949 (7)	0.0235 (3)	
C14	0.59996 (6)	0.5279 (3)	0.43855 (7)	0.0269 (4)	
H14	0.586124	0.388692	0.421668	0.032*	
C15	0.60698 (6)	0.5755 (3)	0.50228 (8)	0.0320 (4)	
H15	0.597703	0.468403	0.527717	0.038*	
C16	0.62776 (6)	0.7819 (3)	0.52829 (8)	0.0331 (4)	
H16	0.632614	0.813134	0.571065	0.040*	
C17	0.64122 (6)	0.9410 (3)	0.49002 (8)	0.0334 (4)	
H17	0.655280	1.079353	0.507240	0.040*	
C18	0.63390 (6)	0.8956 (3)	0.42650 (8)	0.0293 (4)	
H18	0.642674	1.004989	0.401210	0.035*	
C19	0.67002 (5)	0.8189 (3)	0.17789 (7)	0.0233 (3)	
C20	0.69945 (5)	0.7614 (3)	0.14047 (7)	0.0255 (3)	
H20	0.694917	0.620567	0.119385	0.031*	
C21	0.73507 (6)	0.9072 (3)	0.13377 (7)	0.0279 (4)	
C22	0.74101 (6)	1.1205 (3)	0.16461 (8)	0.0302 (4)	
H22	0.764784	1.220841	0.160703	0.036*	
C23	0.71154 (6)	1.1835 (3)	0.20115 (7)	0.0272 (4)	
H23	0.715732	1.325711	0.221509	0.033*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

0.67616 (6)	1.0360 (3)	0.20731 (7)	0.0248 (3)
0.656224	1.080714	0.231134	0.030*
0.76705 (7)	0.8402 (4)	0.09398 (10)	0.0443 (5)
0.759165	0.687097	0.077736	0.066*
0.799917	0.844814	0.119636	0.066*
0.762396	0.946296	0.059275	0.066*
	0.67616 (6) 0.656224 0.76705 (7) 0.759165 0.799917 0.762396	0.67616 (6)1.0360 (3)0.6562241.0807140.76705 (7)0.8402 (4)0.7591650.6870970.7999170.8448140.7623960.946296	0.67616 (6)1.0360 (3)0.20731 (7)0.6562241.0807140.2311340.76705 (7)0.8402 (4)0.09398 (10)0.7591650.6870970.0777360.7999170.8448140.1196360.7623960.9462960.059275

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
C1	0.0181 (7)	0.0214 (8)	0.0268 (8)	0.0013 (6)	0.0074 (6)	0.0003 (6)
C2	0.0207 (7)	0.0242 (8)	0.0245 (8)	-0.0022 (6)	0.0080 (6)	-0.0003 (6)
C3	0.0182 (7)	0.0229 (8)	0.0250 (8)	0.0014 (6)	0.0055 (6)	0.0006 (6)
C4	0.0201 (7)	0.0236 (8)	0.0252 (8)	0.0000 (6)	0.0045 (6)	0.0001 (6)
C5	0.0197 (7)	0.0213 (8)	0.0255 (8)	0.0025 (6)	0.0072 (6)	0.0026 (6)
C6	0.0235 (8)	0.0237 (8)	0.0233 (7)	0.0017 (6)	0.0055 (6)	-0.0023 (6)
C7	0.0185 (7)	0.0231 (8)	0.0255 (8)	0.0025 (6)	0.0092 (6)	-0.0032 (6)
C8	0.0252 (8)	0.0258 (8)	0.0275 (8)	-0.0001 (7)	0.0108 (7)	-0.0005 (6)
C9	0.0294 (9)	0.0375 (10)	0.0241 (8)	0.0027 (7)	0.0083 (7)	-0.0033 (7)
C10	0.0263 (8)	0.0326 (9)	0.0322 (9)	-0.0029 (7)	0.0074 (7)	-0.0127 (7)
C11	0.0256 (8)	0.0225 (8)	0.0362 (9)	-0.0012 (7)	0.0120 (7)	-0.0056 (7)
C12	0.0215 (7)	0.0244 (8)	0.0261 (8)	0.0025 (6)	0.0093 (6)	-0.0013 (6)
C13	0.0199 (7)	0.0267 (8)	0.0227 (7)	0.0013 (6)	0.0046 (6)	-0.0009 (6)
C14	0.0304 (8)	0.0246 (8)	0.0251 (8)	-0.0017 (7)	0.0074 (7)	-0.0015 (6)
C15	0.0404 (10)	0.0328 (9)	0.0231 (8)	0.0005 (8)	0.0102 (7)	0.0035 (7)
C16	0.0404 (10)	0.0361 (10)	0.0200 (8)	0.0021 (8)	0.0045 (7)	-0.0016 (7)
C17	0.0369 (9)	0.0322 (9)	0.0271 (8)	-0.0048 (8)	0.0035 (7)	-0.0067 (7)
C18	0.0315 (9)	0.0278 (9)	0.0278 (8)	-0.0035 (7)	0.0076 (7)	0.0012 (7)
C19	0.0246 (8)	0.0245 (8)	0.0194 (7)	0.0008 (6)	0.0045 (6)	0.0022 (6)
C20	0.0264 (8)	0.0255 (8)	0.0242 (8)	0.0020 (7)	0.0068 (6)	0.0004 (6)
C21	0.0254 (8)	0.0344 (9)	0.0246 (8)	0.0021 (7)	0.0087 (6)	0.0037 (7)
C22	0.0242 (8)	0.0316 (9)	0.0324 (9)	-0.0064 (7)	0.0047 (7)	0.0068 (7)
C23	0.0274 (8)	0.0239 (8)	0.0271 (8)	0.0006 (7)	0.0029 (6)	0.0000 (6)
C24	0.0279 (8)	0.0267 (8)	0.0210 (7)	0.0012 (7)	0.0090 (6)	0.0016 (6)
C25	0.0418 (11)	0.0486 (12)	0.0519 (12)	-0.0053 (9)	0.0283 (9)	-0.0048 (10)

C1—C2	1.355 (2)	C13—C18	1.402 (2)
C1—C5	1.492 (2)	C14—H14	0.9300
C1—C7	1.478 (2)	C14—C15	1.388 (2)
С2—Н2	0.9300	C15—H15	0.9300
C2—C3	1.471 (2)	C15—C16	1.387 (3)
C3—C4	1.354 (2)	C16—H16	0.9300
C3—C13	1.468 (2)	C16—C17	1.384 (3)
C4—H4	0.9300	C17—H17	0.9300
C4—C5	1.458 (2)	C17—C18	1.379 (2)
C5—C6	1.347 (2)	C18—H18	0.9300

С6—Н6	0.9300	C19—C20	1.398 (2)
C6—C19	1.469 (2)	C19—C24	1.403 (2)
С7—С8	1.397 (2)	C20—H20	0.9300
C7—C12	1.404 (2)	C20—C21	1.383 (2)
С8—Н8	0.9300	C21—C22	1.398 (2)
С8—С9	1.387 (2)	C21—C25	1.511 (2)
С9—Н9	0.9300	C22—H22	0.9300
C9-C10	1 391 (3)	C^{22} C^{23}	1 392 (2)
C10—H10	0.9300	C23—H23	0.9300
C10-C11	1.386(2)	C_{23} C_{23} C_{24}	1.380(2)
	0.0300	$C_{23} = C_{24}$	0.0300
C_{11} C_{12}	1.388(2)	$C_{24} = 1124$	0.9500
	1.300 (2)	C25—H25A	0.9000
C12—H12	0.9300	C25—H25B	0.9600
013-014	1.397 (2)	C25—H25C	0.9600
C2—C1—C5	106.92 (13)	C13—C14—H14	119.7
C2C1C7	125.48 (14)	C15—C14—C13	120.67 (16)
C7—C1—C5	127.55 (13)	C15—C14—H14	119.7
С1—С2—Н2	125.0	C14—C15—H15	119.8
C1 - C2 - C3	109 94 (14)	C16-C15-C14	120 40 (16)
$C_{3} - C_{2} - H_{2}$	125.0	C16—C15—H15	119.8
$C_4 - C_3 - C_2$	108 10 (14)	C15-C16-H16	120.3
C4 - C3 - C13	126.58(14)	C17 - C16 - C15	119.43 (16)
$C_1^1 = C_2^1 = C_1^2$	120.38(14) 125.28(14)	C17 C16 H16	119.45 (10)
C13 - C3 - C2	125.20 (14)	C1/-C10-H10	120.5
$C_3 = C_4 = H_4$	123.4	C10-C17-H17	119.8
C_{3} C_{4} C_{5} C_{4} C_{5}	109.10 (14)	C18 - C17 - C10	120.43 (10)
C5—C4—H4	125.4	C18 - C17 - H17	119.8
	105.89 (13)	C13-C18-H18	119.5
C6C5C1	125.53 (14)	C17— $C18$ — $C13$	121.01 (16)
C6—C5—C4	128.10 (15)	C17—C18—H18	119.5
С5—С6—Н6	115.9	C20—C19—C6	118.51 (14)
C5—C6—C19	128.29 (15)	C20—C19—C24	118.07 (14)
С19—С6—Н6	115.9	C24—C19—C6	123.42 (14)
C8—C7—C1	122.65 (14)	C19—C20—H20	118.9
C8—C7—C12	118.00 (14)	C21—C20—C19	122.15 (15)
C12—C7—C1	119.28 (14)	C21—C20—H20	118.9
С7—С8—Н8	119.7	C20—C21—C22	118.53 (15)
C9—C8—C7	120.56 (15)	C20—C21—C25	121.35 (16)
С9—С8—Н8	119.7	C22—C21—C25	120.11 (16)
С8—С9—Н9	119.6	C21—C22—H22	119.8
C8—C9—C10	120.89 (16)	C23—C22—C21	120.38 (15)
С10—С9—Н9	119.6	C23—C22—H22	119.8
C9—C10—H10	120.4	C22—C23—H23	119.8
C11—C10—C9	119.15 (15)	C24—C23—C22	120.34 (16)
C11—C10—H10	120.4	C24—C23—H23	119.8
C10-C11-H11	119.9	C19—C24—H24	119.8
C10-C11-C12	120.22 (16)	C23—C24—C19	120.48 (15)
C12—C11—H11	119.9	C23—C24—H24	119.8

C7—C12—H12 C11—C12—C7	119.4 121.14 (15)	C21—C25—H25A C21—C25—H25B	109.5 109.5
C11—C12—H12	119.4	C21—C25—H25C	109.5
C14—C13—C3	120.79 (14)	H25A—C25—H25B	109.5
C14—C13—C18	118.05 (15)	H25A—C25—H25C	109.5
C18—C13—C3	121.16 (14)	H25B—C25—H25C	109.5

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C13-C18 and C19-C24 rings, respectively.

D—H···A	D—H	H···A	D···A	D—H···A	
C10—H10···· <i>Cg</i> 1 ⁱ	0.93	2.83	3.539 (2)	134	
C16—H16…Cg2 ⁱⁱ	0.93	2.86	3.589 (2)	136	
C23—H23…Cg2 ⁱⁱⁱ	0.93	2.90	3.547 (2)	128	

F(000) = 680

 $\theta = 2.2 - 26.1^{\circ}$

 $\mu = 0.07 \text{ mm}^{-1}$

Rect. Prism, red

 $0.43 \times 0.27 \times 0.06 \text{ mm}$

T = 100 K

 $D_{\rm x} = 1.222 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 6861 reflections

Symmetry codes: (i) -x, y-1, -z+1/2; (ii) -x+1/2, y+3/2, -z+1/2; (iii) x, -y, z-1/2.

{3-[(4-Methylphenyl)methylidene]-4-phenylcyclopenta-1,4-dien-1-yl}benzene (II)

Crystal data

C₂₅H₂₀ $M_r = 320.41$ Monoclinic, $P2_1/c$ a = 19.208 (2) Å b = 5.8774 (7) Å c = 16.1884 (18) Å $\beta = 107.710$ (1)° V = 1740.9 (3) Å³ Z = 4

Data collection

Bruker APEXII CCD	3473 independent reflections
diffractometer	2972 reflections with $I > 2\sigma(I)$
Radiation source: fine focus sealed tube	$R_{\rm int} = 0.038$
φ and ω scans	$\theta_{\rm max} = 26.2^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -23 \rightarrow 23$
SADABS	$k = -7 \rightarrow 7$
$T_{\min} = 0.691, \ T_{\max} = 0.745$	$l = -20 \rightarrow 20$
30237 measured reflections	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.100$ S = 1.043473 reflections 227 parameters 0 restraints Primary atom site location: dual Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0394P)^2 + 0.8955P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.22$ e Å⁻³ $\Delta\rho_{min} = -0.19$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.21805 (7)	0.4854 (2)	0.67244 (8)	0.0199 (3)	
C19	0.39564 (7)	0.1392 (2)	0.78528 (8)	0.0196 (3)	
C3	0.16408 (7)	0.3062 (2)	0.76451 (8)	0.0199 (3)	
C13	0.23043 (6)	0.6328 (2)	0.60483 (8)	0.0199 (3)	
C24	0.46911 (7)	0.2083 (2)	0.81558 (8)	0.0205 (3)	
H24	0.482874	0.351246	0.797988	0.025*	
C6	0.34162 (7)	0.2980 (2)	0.73220 (8)	0.0199 (3)	
H6	0.358882	0.400502	0.697460	0.024*	
C21	0.43165 (7)	-0.2155 (2)	0.86275 (8)	0.0217 (3)	
H21	0.418584	-0.361899	0.878004	0.026*	
C22	0.50403 (7)	-0.1435 (2)	0.89566 (8)	0.0209 (3)	
C23	0.52175 (7)	0.0712 (2)	0.87068 (8)	0.0212 (3)	
H23	0.570728	0.123926	0.891873	0.025*	
C4	0.23106 (7)	0.2078 (2)	0.78063 (8)	0.0205 (3)	
H4	0.249483	0.087659	0.820575	0.025*	
C14	0.27283 (7)	0.5647 (2)	0.55254 (8)	0.0218 (3)	
H14	0.294824	0.418298	0.560510	0.026*	
C7	0.11136 (7)	0.2699 (2)	0.81300 (8)	0.0205 (3)	
C5	0.26996 (7)	0.3166 (2)	0.72660 (8)	0.0195 (3)	
C20	0.37819 (7)	-0.0787(2)	0.80827 (8)	0.0206 (3)	
H20	0.329440	-0.133081	0.786414	0.025*	
C2	0.15635 (7)	0.4766 (2)	0.69629 (8)	0.0217 (3)	
H2	0.114171	0.567633	0.672247	0.026*	
C18	0.19736 (7)	0.8485 (2)	0.58962 (8)	0.0229 (3)	
H18	0.168610	0.899257	0.624501	0.027*	
C8	0.11440 (7)	0.0724 (2)	0.86246 (8)	0.0240 (3)	
H8	0.146980	-0.046782	0.859555	0.029*	
C12	0.06039 (7)	0.4379 (2)	0.81513 (8)	0.0235 (3)	
H12	0.055986	0.569546	0.779883	0.028*	
C17	0.20606 (7)	0.9880 (2)	0.52453 (9)	0.0277 (3)	
H17	0.181975	1.131132	0.513845	0.033*	
C15	0.28318 (7)	0.7086 (2)	0.48909 (8)	0.0256 (3)	
H15	0.313325	0.661580	0.455334	0.031*	
C9	0.07027 (7)	0.0496 (3)	0.91556 (9)	0.0284 (3)	
H9	0.073164	-0.084411	0.949270	0.034*	
C11	0.01606 (7)	0.4138 (3)	0.86843 (9)	0.0272 (3)	
H11	-0.018208	0.529317	0.869678	0.033*	
C16	0.24982 (7)	0.9197 (2)	0.47484 (9)	0.0285 (3)	
H16	0.256832	1.017343	0.431291	0.034*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C10	0.02185 (7)	0.2213 (3)	0.91982 (9)	0.0289 (3)
H10	-0.007197	0.207094	0.957700	0.035*
C25	0.56192 (7)	-0.2930 (2)	0.95447 (9)	0.0277 (3)
H25A	0.582960	-0.216495	1.010312	0.042*
H25B	0.600443	-0.322080	0.927669	0.042*
H25C	0.539995	-0.437632	0.963685	0.042*
11250	0.559995	0.437032	0.905085	0.042

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	<i>U</i> ³³	U^{12}	U^{13}	U^{23}
C1	0.0197 (6)	0.0202 (6)	0.0184 (6)	0.0004 (5)	0.0035 (5)	-0.0010 (5)
C19	0.0201 (6)	0.0221 (6)	0.0176 (6)	0.0027 (5)	0.0074 (5)	-0.0014 (5)
C3	0.0196 (6)	0.0205 (6)	0.0185 (6)	-0.0006 (5)	0.0043 (5)	-0.0015 (5)
C13	0.0158 (6)	0.0224 (6)	0.0188 (6)	-0.0023 (5)	0.0013 (5)	0.0012 (5)
C24	0.0224 (6)	0.0192 (6)	0.0219 (6)	0.0011 (5)	0.0096 (5)	0.0003 (5)
C6	0.0219 (6)	0.0201 (6)	0.0182 (6)	0.0004 (5)	0.0067 (5)	-0.0004(5)
C21	0.0240 (6)	0.0196 (6)	0.0241 (6)	0.0017 (5)	0.0113 (5)	0.0014 (5)
C22	0.0220 (6)	0.0231 (6)	0.0190 (6)	0.0053 (5)	0.0084 (5)	0.0009 (5)
C23	0.0177 (6)	0.0242 (7)	0.0221 (6)	0.0007 (5)	0.0065 (5)	-0.0024 (5)
C4	0.0223 (6)	0.0200 (6)	0.0191 (6)	0.0009 (5)	0.0060 (5)	0.0006 (5)
C14	0.0190 (6)	0.0238 (7)	0.0207 (6)	-0.0010 (5)	0.0033 (5)	0.0011 (5)
C7	0.0174 (6)	0.0245 (7)	0.0180 (6)	-0.0034 (5)	0.0030 (5)	-0.0011 (5)
C5	0.0211 (6)	0.0193 (6)	0.0176 (6)	0.0006 (5)	0.0051 (5)	-0.0011 (5)
C20	0.0185 (6)	0.0215 (6)	0.0225 (6)	0.0005 (5)	0.0073 (5)	-0.0015 (5)
C2	0.0191 (6)	0.0228 (7)	0.0220 (6)	0.0023 (5)	0.0046 (5)	0.0022 (5)
C18	0.0195 (6)	0.0230 (7)	0.0242 (6)	-0.0005 (5)	0.0038 (5)	-0.0008 (5)
C8	0.0194 (6)	0.0262 (7)	0.0240 (6)	-0.0027 (5)	0.0028 (5)	0.0017 (5)
C12	0.0210 (6)	0.0252 (7)	0.0238 (6)	-0.0014 (5)	0.0058 (5)	0.0008 (5)
C17	0.0253 (7)	0.0224 (7)	0.0294 (7)	-0.0016 (6)	-0.0007 (6)	0.0049 (6)
C15	0.0214 (6)	0.0348 (8)	0.0196 (6)	-0.0048 (6)	0.0046 (5)	0.0012 (6)
С9	0.0243 (7)	0.0337 (8)	0.0253 (7)	-0.0066 (6)	0.0049 (5)	0.0066 (6)
C11	0.0201 (6)	0.0338 (8)	0.0281 (7)	-0.0009 (6)	0.0080 (5)	-0.0042 (6)
C16	0.0278 (7)	0.0305 (8)	0.0232 (7)	-0.0074 (6)	0.0021 (5)	0.0088 (6)
C10	0.0211 (7)	0.0419 (8)	0.0249 (7)	-0.0083 (6)	0.0091 (5)	0.0000 (6)
C25	0.0228 (7)	0.0290 (7)	0.0305 (7)	0.0040 (6)	0.0067 (6)	0.0063 (6)

C1—C13	1.4707 (17)	C14—C15	1.3906 (18)	
C1—C5	1.4883 (17)	С7—С8	1.4012 (18)	
C1—C2	1.3547 (18)	C7—C12	1.3981 (19)	
C19—C24	1.4057 (17)	C20—H20	0.9500	
С19—С6	1.4642 (17)	C2—H2	0.9500	
C19—C20	1.4023 (18)	C18—H18	0.9500	
C3—C4	1.3616 (17)	C18—C17	1.3850 (19)	
С3—С7	1.4733 (17)	C8—H8	0.9500	
C3—C2	1.4641 (17)	C8—C9	1.3850 (19)	
C13—C14	1.3997 (18)	C12—H12	0.9500	

C13—C18	1.4056 (18)	C12—C11	1.3916 (18)
C24—H24	0.9500	С17—Н17	0.9500
C24—C23	1.3852 (18)	C17—C16	1.388 (2)
С6—Н6	0.9500	С15—Н15	0.9500
C6—C5	1.3561 (17)	C15—C16	1.383 (2)
C21—H21	0.9500	С9—Н9	0.9500
C21—C22	1.3946 (18)	C9—C10	1.388 (2)
C21—C20	1.3883 (18)	C11—H11	0.9500
C22—C23	1.3983 (19)	C11—C10	1.389 (2)
C22—C25	1.5068 (17)	C16—H16	0.9500
С23—Н23	0.9500	C10—H10	0.9500
C4—H4	0.9500	C25—H25A	0.9800
C4—C5	1,4596 (17)	C25—H25B	0.9800
C14—H14	0.9500	C25—H25C	0.9800
			0.0000
C13—C1—C5	126.87 (11)	C19—C20—H20	119.8
C2—C1—C13	126.04 (12)	C21—C20—C19	120.46 (12)
C2—C1—C5	107.08 (11)	С21—С20—Н20	119.8
C24—C19—C6	118.52 (12)	C1—C2—C3	110.16 (11)
C20—C19—C24	117.84 (11)	C1—C2—H2	124.9
C20—C19—C6	123.64 (11)	С3—С2—Н2	124.9
C4—C3—C7	126.77 (12)	C13—C18—H18	119.5
C4—C3—C2	107.96 (11)	C17—C18—C13	120.97 (13)
C2—C3—C7	124.93 (11)	C17—C18—H18	119.5
C14—C13—C1	122.49 (12)	С7—С8—Н8	119.7
C14—C13—C18	117.84 (12)	C9—C8—C7	120.53 (13)
C18—C13—C1	119.65 (12)	C9—C8—H8	119.7
C19—C24—H24	119.5	C7—C12—H12	119.7
C23—C24—C19	121.01 (12)	$C_{11} - C_{12} - C_{7}$	120.58 (13)
C23—C24—H24	119.5	C11—C12—H12	119.7
С19—С6—Н6	116.0	С18—С17—Н17	119.9
C5—C6—C19	127.90 (12)	C18—C17—C16	120.26 (13)
С5—С6—Н6	116.0	С16—С17—Н17	119.9
C22—C21—H21	119.1	C14—C15—H15	119.8
C20—C21—H21	119.1	C16—C15—C14	120.36 (13)
C20—C21—C22	121.73 (12)	С16—С15—Н15	119.8
C_{21} — C_{22} — C_{23}	117.72 (12)	С8—С9—Н9	119.8
$C_{21} - C_{22} - C_{25}$	121.52(12)	C8—C9—C10	120.40 (13)
C23—C22—C25	120.74 (12)	C10—C9—H9	119.8
C24—C23—C22	121.14 (12)	C12—C11—H11	120.0
C24—C23—H23	119.4	C10-C11-C12	120.09 (13)
C22—C23—H23	119.4	C10—C11—H11	120.0
C3—C4—H4	125.5	С17—С16—Н16	120.2
C3—C4—C5	108.96 (11)	C15—C16—C17	119.64 (13)
C5—C4—H4	125.5	C15—C16—H16	120.2
C13—C14—H14	119.6	C9—C10—C11	119.70 (13)
C15—C14—C13	120.87 (13)	С9—С10—Н10	120.2
C15—C14—H14	119.6	C11—C10—H10	120.2

C8—C7—C3	120.58 (12)	С22—С25—Н25А	109.5
С12—С7—С3	120.70 (12)	С22—С25—Н25В	109.5
С12—С7—С8	118.59 (12)	С22—С25—Н25С	109.5
C6—C5—C1	125.28 (12)	H25A—C25—H25B	109.5
C6—C5—C4	128.23 (12)	H25A—C25—H25C	109.5
C4—C5—C1	105.78 (10)	H25B—C25—H25C	109.5

Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C7-C12 and C19-C24 rings, respectively.

D—H···A	<i>D</i> —H	$H \cdots A$	D··· A	D—H···A
C12—H12····Cg3 ⁱ	0.95	2.95	3.6560 (4)	132
С17—Н17…Сg3 ^{іі}	0.95	2.83	3.4837 (4)	127
C25—H25A····Cg4 ⁱⁱⁱ	0.98	2.98	3.8277 (4)	145

Symmetry codes: (i) -*x*, *y*-1/2, -*z*+1/2; (ii) *x*, -*y*-3/2, *z*-3/2; (iii) -*x*+1, -*y*+1, -*z*+1.

{3-[(2,4,6-Trimethylphenyl)methylidene]-4-phenylcyclopenta-1,4-dien-1-yl}benzene (III)

Crystal data

 $C_{27}H_{24}$ $M_r = 348.46$ Orthorhombic, $Pca2_1$ a = 30.031 (6) Å b = 5.6147 (12) Å c = 23.494 (5) Å V = 3961.4 (14) Å³ Z = 8F(000) = 1488

Data collection

Bruker APEXII CCD	6776
diffractometer	5709
φ and ω scans	$R_{\rm int} =$
Absorption correction: multi-scan	$\theta_{\rm max} =$
SADABS	h = -1
$T_{\min} = 0.678, \ T_{\max} = 0.745$	k = -6
38475 measured reflections	l = -2

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.108$ S = 1.036776 reflections 494 parameters 1 restraint Primary atom site location: dual $D_{\rm x} = 1.169 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3728 reflections $\theta = 2.2-22.3^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 100 KIrregular, red $0.26 \times 0.11 \times 0.10 \text{ mm}$

6776 independent reflections 5709 reflections with $I > 2\sigma(I)$ $R_{int} = 0.070$ $\theta_{max} = 24.8^\circ, \ \theta_{min} = 2.2^\circ$ $h = -35 \rightarrow 35$ $k = -6 \rightarrow 6$ $l = -27 \rightarrow 27$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.054P)^2 + 0.3457P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.17$ e Å⁻³ $\Delta\rho_{min} = -0.17$ e Å⁻³ Absolute structure: Refined as an inversion twin. Absolute structure parameter: -6 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.35712 (11)	0.1134 (6)	0.54077 (15)	0.0224 (8)	
C2	0.36382 (11)	0.1309 (6)	0.48394 (15)	0.0238 (8)	
H2	0.384904	0.045102	0.463428	0.029*	
C3	0.33274 (11)	0.3060 (6)	0.45947 (15)	0.0219 (8)	
C4	0.30771 (12)	0.3951 (6)	0.50228 (15)	0.0230 (8)	
H4	0.286286	0.513761	0.498702	0.028*	
C5	0.31988 (11)	0.2742 (6)	0.55511 (15)	0.0227 (8)	
C6	0.29829 (11)	0.2883 (6)	0.60543 (15)	0.0239 (8)	
H6	0.308796	0.193941	0.635065	0.029*	
C7	0.38365 (11)	-0.0333 (6)	0.58024 (14)	0.0225 (8)	
C8	0.39541 (11)	0.0453 (6)	0.63499 (15)	0.0245 (8)	
H8	0.385132	0.191708	0.648020	0.029*	
C9	0.42211 (12)	-0.0930 (6)	0.66963 (16)	0.0274 (8)	
H9	0.429090	-0.040616	0.706110	0.033*	
C10	0.43847 (12)	-0.3077 (7)	0.65055 (17)	0.0283 (9)	
H10	0.456900	-0.398471	0.673806	0.034*	
C11	0.42743 (12)	-0.3879 (6)	0.59677 (16)	0.0265 (9)	
H11	0.438662	-0.532334	0.583768	0.032*	
C12	0.39980 (11)	-0.2547 (6)	0.56223 (15)	0.0227 (8)	
H12	0.391827	-0.312675	0.526587	0.027*	
C13	0.33002 (11)	0.3610 (6)	0.39856 (15)	0.0216 (8)	
C14	0.34639 (11)	0.1972 (6)	0.35861 (14)	0.0243 (8)	
H14	0.359649	0.057076	0.371174	0.029*	
C15	0.34310 (12)	0.2409 (6)	0.30085 (16)	0.0284 (8)	
H15	0.354276	0.130280	0.275078	0.034*	
C16	0.32342 (12)	0.4469 (7)	0.28105 (16)	0.0282 (8)	
H16	0.321116	0.475127	0.242154	0.034*	
C17	0.30710 (12)	0.6115 (7)	0.31990 (16)	0.0291 (9)	
H17	0.293684	0.750470	0.306878	0.035*	
C18	0.31060 (11)	0.5705 (6)	0.37800 (15)	0.0249 (8)	
H18	0.299935	0.683511	0.403522	0.030*	
C19	0.25933 (11)	0.4412 (6)	0.61723 (14)	0.0226 (8)	
C20	0.26414 (11)	0.6213 (6)	0.65876 (14)	0.0240 (8)	
C21	0.22874 (12)	0.7743 (6)	0.66946 (15)	0.0252 (8)	
H21	0.232343	0.897102	0.695611	0.030*	
C22	0.18814 (12)	0.7477 (6)	0.64199 (15)	0.0249 (8)	
C23	0.18351 (11)	0.5641 (6)	0.60303 (15)	0.0248 (8)	
H23	0.156118	0.542375	0.585313	0.030*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

C24	0.21846 (12)	0.4107 (6)	0.58945 (14)	0.0232 (8)
C25	0.30762 (12)	0.6478 (7)	0.69049 (16)	0.0324 (9)
H25A	0.312022	0.512148	0.714713	0.049*
H25B	0.306771	0.789870	0.713210	0.049*
H25C	0.331689	0.658303	0.663719	0.049*
C26	0.14909 (12)	0.9077 (7)	0.65542 (17)	0.0334 (9)
H26A	0.132792	0.843321	0.687025	0.050*
H26B	0.129912	0.917565	0.622806	0.050*
H26C	0.159736	1.063905	0.664950	0.050*
C27	0.21031 (12)	0.2158 (7)	0.54676 (16)	0.0297 (9)
H27A	0.217207	0.272939	0.509273	0.044*
H27B	0.179610	0.168474	0.548256	0.044*
H27C	0.228897	0.081633	0.555521	0.044*
C28	0.51786 (11)	0.0968 (6)	0.46548 (15)	0.0224 (8)
C29	0.51122 (12)	0.1276 (6)	0.52183 (15)	0.0239 (8)
H29	0.490034	0.047263	0.543401	0.029*
C30	0.54251 (11)	0.3073 (6)	0.54415 (15)	0.0218 (8)
C31	0.56796 (12)	0.3832 (6)	0.50028 (16)	0.0225 (7)
H31	0.589866	0.499884	0.502582	0.027*
C32	0.55572 (11)	0.2536 (6)	0.44875 (15)	0.0229 (8)
C33	0.57550 (11)	0.2587 (6)	0.39746 (15)	0.0243 (8)
H33	0.564527	0.155088	0.369957	0.029*
C34	0.49026 (11)	-0.0516 (6)	0.42789 (15)	0.0223 (8)
C35	0.47587 (11)	0.0308 (6)	0.37476 (15)	0.0246 (8)
H35	0.486290	0.175537	0.360834	0.030*
C36	0.44609 (12)	-0.1027 (6)	0.34279 (16)	0.0278 (9)
H36	0.436917	-0.047288	0.307383	0.033*
C37	0.42992 (12)	-0.3171 (7)	0.36296 (16)	0.0297 (9)
H37	0.409495	-0.403887	0.341633	0.036*
C38	0.44434 (12)	-0.4018 (7)	0.41514 (17)	0.0286 (9)
H38	0.433815	-0.546723	0.428766	0.034*
C39	0.47439 (11)	-0.2711 (6)	0.44707 (16)	0.0245 (8)
H39	0.484165	-0.330463	0.481852	0.029*
C40	0.54362 (11)	0.3803 (6)	0.60410 (15)	0.0217 (8)
C41	0.56288 (11)	0.5974 (7)	0.62138 (15)	0.0248 (8)
H41	0.574388	0.700735	0.594173	0.030*
C42	0.56484 (12)	0.6580 (7)	0.67802 (16)	0.0267 (9)
H42	0.578045	0.800994	0.688734	0.032*
C43	0.54749 (12)	0.5096 (6)	0.71904 (16)	0.0278 (9)
H43	0.548967	0.551985	0.757264	0.033*
C44	0.52781 (11)	0.2968 (6)	0.70301 (15)	0.0253 (8)
H44	0.516058	0.195981	0.730586	0.030*
C45	0.52556 (11)	0.2335 (6)	0.64608 (15)	0.0234 (8)
H45	0.511850	0.091446	0.635730	0.028*
C46	0.61314 (11)	0.4139 (6)	0.38060 (14)	0.0223 (8)
C47	0.65574 (11)	0.3931 (6)	0.40497 (14)	0.0241 (8)
C48	0.68915 (12)	0.5477 (6)	0.38677 (16)	0.0278 (9)
H48	0.717337	0.534982	0.402891	0.033*

C49	0.68188 (12)	0.7189 (7)	0.34564 (16)	0.0280 (9)
C50	0.63963 (12)	0.7337 (7)	0.32137 (16)	0.0293 (9)
H50	0.634253	0.847371	0.293421	0.035*
C51	0.60570 (12)	0.5842 (7)	0.33773 (15)	0.0269 (8)
C52	0.66681 (12)	0.2043 (7)	0.44841 (16)	0.0309 (9)
H52A	0.657021	0.255505	0.485335	0.046*
H52B	0.698413	0.178763	0.449049	0.046*
H52C	0.652035	0.058469	0.438490	0.046*
C53	0.71847 (13)	0.8856 (7)	0.32675 (19)	0.0387 (10)
H53A	0.743758	0.867604	0.351372	0.058*
H53B	0.707971	1.046960	0.328511	0.058*
H53C	0.726934	0.848305	0.288375	0.058*
C54	0.56037 (13)	0.6030 (8)	0.31041 (18)	0.0379 (11)
H54A	0.553643	0.457151	0.290898	0.057*
H54B	0.560283	0.732458	0.283720	0.057*
H54C	0.538341	0.631357	0.339236	0.057*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0209 (18)	0.0218 (18)	0.024 (2)	0.0005 (15)	0.0000 (15)	0.0015 (15)
C2	0.0235 (19)	0.0217 (19)	0.026 (2)	0.0025 (15)	0.0021 (16)	-0.0005 (15)
C3	0.0194 (18)	0.0227 (18)	0.024 (2)	0.0005 (15)	0.0014 (15)	0.0014 (15)
C4	0.0218 (18)	0.0215 (17)	0.026 (2)	0.0006 (15)	0.0007 (15)	0.0027 (15)
C5	0.0232 (18)	0.0238 (18)	0.021 (2)	-0.0012 (15)	0.0015 (15)	-0.0014 (15)
C6	0.025 (2)	0.0218 (18)	0.024 (2)	0.0012 (15)	0.0000 (15)	0.0042 (15)
C7	0.0178 (18)	0.0255 (18)	0.024 (2)	-0.0006 (14)	0.0032 (15)	0.0024 (16)
C8	0.0217 (19)	0.0255 (19)	0.026 (2)	-0.0013 (16)	0.0035 (15)	-0.0010 (15)
C9	0.0249 (19)	0.033 (2)	0.024 (2)	-0.0015 (17)	-0.0045 (16)	0.0000 (16)
C10	0.023 (2)	0.028 (2)	0.034 (2)	-0.0005 (16)	-0.0048 (16)	0.0067 (18)
C11	0.0246 (19)	0.0224 (19)	0.033 (2)	0.0018 (15)	0.0059 (17)	0.0008 (16)
C12	0.0218 (18)	0.0229 (18)	0.0233 (19)	-0.0002 (15)	0.0012 (15)	0.0013 (14)
C13	0.0159 (18)	0.0250 (18)	0.024 (2)	-0.0023 (14)	0.0020 (14)	0.0008 (14)
C14	0.022 (2)	0.0250 (18)	0.026 (2)	0.0012 (16)	0.0016 (15)	0.0008 (15)
C15	0.0273 (19)	0.030 (2)	0.028 (2)	0.0013 (16)	0.0027 (16)	-0.0023 (16)
C16	0.030(2)	0.033 (2)	0.022 (2)	-0.0028 (17)	0.0019 (16)	0.0058 (16)
C17	0.027 (2)	0.031 (2)	0.029 (2)	0.0029 (17)	-0.0010 (16)	0.0074 (17)
C18	0.0204 (18)	0.0273 (19)	0.027 (2)	0.0004 (16)	0.0011 (15)	0.0026 (16)
C19	0.0205 (18)	0.0255 (19)	0.0218 (19)	0.0006 (15)	0.0038 (14)	0.0049 (15)
C20	0.0234 (19)	0.0287 (19)	0.020(2)	-0.0038 (15)	0.0025 (15)	0.0024 (15)
C21	0.029 (2)	0.0262 (19)	0.0208 (19)	-0.0031 (16)	0.0045 (16)	-0.0011 (15)
C22	0.0245 (19)	0.0249 (19)	0.025 (2)	0.0004 (16)	0.0049 (16)	0.0018 (15)
C23	0.0200 (18)	0.0301 (19)	0.024 (2)	-0.0034 (15)	-0.0018 (15)	0.0033 (16)
C24	0.0276 (19)	0.0245 (18)	0.0176 (19)	-0.0023 (15)	0.0012 (15)	0.0029 (15)
C25	0.028 (2)	0.038 (2)	0.031 (2)	-0.0038 (18)	0.0002 (17)	-0.0023 (18)
C26	0.028 (2)	0.034 (2)	0.038 (2)	0.0049 (18)	0.0055 (18)	-0.0015 (18)
C27	0.027 (2)	0.035 (2)	0.027 (2)	-0.0030 (17)	-0.0005 (17)	-0.0029 (17)
C28	0.0218 (18)	0.0222 (18)	0.023 (2)	-0.0003 (15)	-0.0001 (15)	-0.0016 (15)

C29	0.0216 (19)	0.0259 (19)	0.024 (2)	-0.0019 (15)	0.0032 (15)	0.0028 (15)
C30	0.0209 (19)	0.0213 (18)	0.023 (2)	-0.0001 (15)	-0.0021 (15)	-0.0006 (15)
C31	0.0212 (18)	0.0220 (16)	0.0242 (19)	-0.0022 (16)	-0.0033 (14)	-0.0014 (17)
C32	0.0203 (18)	0.0241 (19)	0.024 (2)	0.0014 (15)	-0.0003 (15)	0.0011 (14)
C33	0.0201 (19)	0.031 (2)	0.022 (2)	0.0037 (16)	-0.0020 (15)	-0.0030 (16)
C34	0.0201 (18)	0.0234 (18)	0.0235 (19)	0.0018 (15)	0.0029 (15)	-0.0035 (15)
C35	0.0213 (19)	0.0252 (18)	0.027 (2)	0.0003 (15)	0.0023 (15)	-0.0038 (16)
C36	0.0229 (19)	0.035 (2)	0.025 (2)	0.0047 (17)	0.0005 (16)	-0.0074 (16)
C37	0.0205 (19)	0.035 (2)	0.034 (2)	-0.0042 (17)	0.0019 (16)	-0.0136 (18)
C38	0.0235 (19)	0.025 (2)	0.038 (2)	-0.0033 (16)	0.0050 (17)	-0.0067 (17)
C39	0.0211 (18)	0.028 (2)	0.024 (2)	-0.0001 (15)	0.0024 (15)	-0.0016 (15)
C40	0.0195 (18)	0.0255 (19)	0.0200 (19)	0.0028 (15)	-0.0020 (15)	-0.0003 (15)
C41	0.0234 (19)	0.0266 (19)	0.024 (2)	-0.0042 (15)	0.0003 (15)	0.0033 (15)
C42	0.025 (2)	0.027 (2)	0.028 (2)	-0.0017 (16)	-0.0009 (16)	-0.0023 (16)
C43	0.025 (2)	0.037 (2)	0.022 (2)	0.0038 (17)	-0.0031 (15)	-0.0020 (17)
C44	0.0213 (18)	0.034 (2)	0.020 (2)	0.0024 (16)	0.0010 (15)	0.0040 (16)
C45	0.0186 (19)	0.0277 (19)	0.024 (2)	-0.0007 (15)	-0.0008 (15)	0.0010 (16)
C46	0.0243 (19)	0.0253 (19)	0.0172 (19)	-0.0003 (15)	0.0020 (15)	-0.0018 (15)
C47	0.0215 (19)	0.028 (2)	0.023 (2)	0.0029 (16)	0.0035 (15)	0.0007 (15)
C48	0.0195 (19)	0.031 (2)	0.033 (2)	0.0033 (16)	0.0000 (16)	-0.0014 (17)
C49	0.023 (2)	0.028 (2)	0.032 (2)	0.0012 (16)	0.0062 (16)	0.0000 (17)
C50	0.028 (2)	0.031 (2)	0.028 (2)	0.0054 (17)	0.0064 (16)	0.0085 (16)
C51	0.0230 (19)	0.034 (2)	0.024 (2)	0.0043 (16)	0.0009 (15)	0.0014 (16)
C52	0.025 (2)	0.035 (2)	0.032 (2)	0.0035 (17)	-0.0031 (17)	0.0060 (17)
C53	0.033 (2)	0.035 (2)	0.047 (3)	-0.0041 (18)	0.0066 (19)	0.009 (2)
C54	0.028 (2)	0.049 (3)	0.037 (3)	-0.0001 (19)	-0.0065 (18)	0.014 (2)

C1—C2	1.354 (5)	C28—C29	1.350 (5)
C1—C5	1.476 (5)	C28—C32	1.491 (5)
C1—C7	1.474 (5)	C28—C34	1.470 (5)
С2—Н2	0.9300	C29—H29	0.9300
C2—C3	1.473 (5)	C29—C30	1.475 (5)
C3—C4	1.352 (5)	C30—C31	1.352 (5)
C3—C13	1.466 (5)	C30—C40	1.467 (5)
C4—H4	0.9300	C31—H31	0.9300
C4—C5	1.461 (5)	C31—C32	1.460 (5)
C5—C6	1.351 (5)	C32—C33	1.344 (5)
С6—Н6	0.9300	С33—Н33	0.9300
C6—C19	1.478 (5)	C33—C46	1.481 (5)
С7—С8	1.405 (5)	C34—C35	1.400 (5)
C7—C12	1.400 (5)	C34—C39	1.396 (5)
С8—Н8	0.9300	С35—Н35	0.9300
С8—С9	1.381 (5)	C35—C36	1.388 (5)
С9—Н9	0.9300	C36—H36	0.9300
C9—C10	1.377 (5)	C36—C37	1.382 (5)
C10—H10	0.9300	С37—Н37	0.9300

C10-C11	1.382 (6)	C37—C38	1.384 (5)
C11—H11	0.9300	C38—H38	0.9300
C11—C12	1.381 (5)	C38—C39	1.384 (5)
C12—H12	0.9300	С39—Н39	0.9300
C13—C14	1.403 (5)	C40—C41	1.409 (5)
C13—C18	1.399 (5)	C40—C45	1.395 (5)
C14—H14	0.9300	C41—H41	0.9300
C14—C15	1.382 (5)	C41—C42	1.375 (5)
C15—H15	0.9300	C42 - H42	0.9300
C15-C16	1 380 (5)	C42— $C43$	1 376 (5)
C16—H16	0.9300	C43—H43	0.9300
C16-C17	1 388 (5)	C43 - C44	1 385 (5)
C17H17	0.9300	C44—H44	0.9300
C17 - C18	1 388 (5)	C44-C45	1 386 (5)
C18 H18	0.0300	C_{45} H45	0.0300
C_{10} C_{20}	0.9300	C45 - C45	0.9300
$C_{19} - C_{20}$	1.412(5)	$C_{46} = C_{47}$	1.407(5)
C19 - C24	1.401(5)	C40-C31	1.407(3)
C20—C21	1.390 (3)	C47 - C48	1.394 (3)
C20-C25	1.511 (5)	C4/-C32	1.509 (5)
C21—H21	0.9300	C48—H48	0.9300
C21—C22	1.388 (5)	C48—C49	1.381 (5)
C22—C23	1.386 (5)	C49—C50	1.393 (5)
C22—C26	1.510 (5)	C49—C53	1.510 (5)
С23—Н23	0.9300	C50—H50	0.9300
C23—C24	1.395 (5)	C50—C51	1.375 (5)
C24—C27	1.505 (5)	C51—C54	1.509 (5)
C25—H25A	0.9600	C52—H52A	0.9600
C25—H25B	0.9600	C52—H52B	0.9600
C25—H25C	0.9600	C52—H52C	0.9600
C26—H26A	0.9600	C53—H53A	0.9600
C26—H26B	0.9600	C53—H53B	0.9600
C26—H26C	0.9600	С53—Н53С	0.9600
C27—H27A	0.9600	C54—H54A	0.9600
С27—Н27В	0.9600	C54—H54B	0.9600
С27—Н27С	0.9600	C54—H54C	0.9600
C2—C1—C5	107.1 (3)	C29—C28—C32	107.2 (3)
C2—C1—C7	125.5 (3)	C29—C28—C34	125.3 (3)
C7—C1—C5	127.4 (3)	C34—C28—C32	127.3 (3)
C1—C2—H2	125.1	C28—C29—H29	125.0
C1—C2—C3	109.8 (3)	C28—C29—C30	110.0 (3)
С3—С2—Н2	125.1	С30—С29—Н29	125.0
C4—C3—C2	108.0 (3)	C31—C30—C29	107.7 (3)
C4—C3—C13	128.1 (3)	C31—C30—C40	129.1 (3)
C13—C3—C2	123.9 (3)	C40—C30—C29	123.1 (3)
C3—C4—H4	125.6	C30—C31—H31	125.3
C3-C4-C5	1087(3)	C_{30} C_{31} C_{32}	1094(3)
С5—С4—Н4	125.6	C32—C31—H31	125.3

G4 G5 G1	10(0)	G21 G22 G20	1055(0)
C4—C5—C1	106.2 (3)	C31—C32—C28	105.5 (3)
C6—C5—C1	126.8 (3)	C33—C32—C28	125.9 (3)
C6—C5—C4	126.6 (3)	C33—C32—C31	128.4 (3)
С5—С6—Н6	117.3	С32—С33—Н33	116.9
C5—C6—C19	125.3 (3)	C32—C33—C46	126.2 (3)
С19—С6—Н6	117.3	С46—С33—Н33	116.9
C8—C7—C1	122.4 (3)	C35—C34—C28	121.5 (3)
C12—C7—C1	119.6 (3)	C39—C34—C28	119.9 (3)
C12—C7—C8	117.9 (3)	C39—C34—C35	118.3 (3)
С7—С8—Н8	1197	C34—C35—H35	119.9
C9 - C8 - C7	120.6 (3)	$C_{36} - C_{35} - C_{34}$	120.2(3)
C9 C8 H8	110 7	C_{36} C_{35} C_{34}	110.0
C° C° H°	110.9	$C_{30} = C_{30} = H_{30}$	110.6
C_{0}	119.0	$C_{33} = C_{30} = H_{30}$	119.0
C10 - C9 - C8	120.3 (4)	$C_{37} = C_{30} = C_{33}$	120.8 (4)
C10—C9—H9	119.8	$C_3/-C_{36}-H_{36}$	119.6
С9—С10—Н10	120.1	С36—С37—Н37	120.2
C9—C10—C11	119.8 (4)	C36—C37—C38	119.5 (3)
C11—C10—H10	120.1	С38—С37—Н37	120.2
C10—C11—H11	119.8	С37—С38—Н38	119.9
C12-C11-C10	120.3 (3)	C39—C38—C37	120.1 (4)
С12—С11—Н11	119.8	С39—С38—Н38	119.9
C7—C12—H12	119.6	С34—С39—Н39	119.5
C11—C12—C7	120.8 (3)	C38—C39—C34	121.0 (3)
C11—C12—H12	119.6	С38—С39—Н39	119.5
C14—C13—C3	119.7 (3)	C41—C40—C30	121.8 (3)
C18—C13—C3	122.5 (3)	C45—C40—C30	120.3 (3)
C18 - C13 - C14	117.8(3)	C45-C40-C41	117.8(3)
C_{13} C_{14} H_{14}	119.5	C40-C41-H41	119.6
C_{15} C_{14} C_{13}	121.0 (3)	C42-C41-C40	120.7(3)
C15 $C14$ $H14$	110 5	C_{42} C_{41} H_{41}	110.6
C_{14} C_{15} H_{15}	110.7	$C_{42} = C_{41} = \Pi_{41}$	119.6
C16 C15 C14	119.7 120.7(4)	$C_{41} = C_{42} = C_{42}$	119.0 120.8(2)
C16 - C15 - C14	120.7 (4)	C41 - C42 - C43	120.8 (3)
	119.7	C43 - C42 - H42	119.6
C15—C16—H16	120.4	C42—C43—H43	120.2
C15—C16—C17	119.2 (4)	C42—C43—C44	119.6 (3)
C17—C16—H16	120.4	C44—C43—H43	120.2
C16—C17—H17	119.7	C43—C44—H44	119.8
C16—C17—C18	120.6 (3)	C43—C44—C45	120.3 (3)
C18—C17—H17	119.7	C45—C44—H44	119.8
C13—C18—H18	119.6	C40—C45—H45	119.6
C17—C18—C13	120.7 (3)	C44—C45—C40	120.8 (3)
C17—C18—H18	119.6	C44—C45—H45	119.6
C20—C19—C6	117.7 (3)	C47—C46—C33	122.4 (3)
C24—C19—C6	122.4 (3)	C47—C46—C51	119.5 (3)
C24—C19—C20	119.9 (3)	C51—C46—C33	118.1 (3)
C19—C20—C25	120.0 (3)	C46—C47—C52	122.3 (3)
$C_{21} - C_{20} - C_{19}$	1193(3)	C48-C47-C46	1186(3)
$C_{21} = C_{20} = C_{25}$	120.7(3)	C_{48} C_{47} C_{52}	110.0(3)
021 - 020 - 023	120.7 (3)	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	117.1 (3)

C20—C21—H21	119.3	C47—C48—H48	118.8
C22—C21—C20	121.5 (3)	C49—C48—C47	122.3 (3)
C22—C21—H21	119.3	C49—C48—H48	118.8
C21—C22—C26	121.4 (3)	C48—C49—C50	118.2 (3)
C23—C22—C21	118.4 (3)	C48—C49—C53	121.5 (3)
C23—C22—C26	120.2 (3)	C50—C49—C53	120.4 (3)
С22—С23—Н23	118.8	С49—С50—Н50	119.2
C22—C23—C24	122.4 (3)	C51—C50—C49	121.6 (3)
С24—С23—Н23	118.8	С51—С50—Н50	119.2
C19—C24—C27	122.8 (3)	C46—C51—C54	119.7 (3)
C23—C24—C19	118.5 (3)	C50—C51—C46	119.8 (3)
C23—C24—C27	118.6 (3)	C50—C51—C54	120.5 (3)
C20—C25—H25A	109.5	C47—C52—H52A	109.5
С20—С25—Н25В	109.5	С47—С52—Н52В	109.5
C20—C25—H25C	109.5	С47—С52—Н52С	109.5
H25A—C25—H25B	109.5	H52A—C52—H52B	109.5
H25A—C25—H25C	109.5	H52A—C52—H52C	109.5
H25B—C25—H25C	109.5	H52B—C52—H52C	109.5
C22—C26—H26A	109.5	С49—С53—Н53А	109.5
C22—C26—H26B	109.5	С49—С53—Н53В	109.5
С22—С26—Н26С	109.5	С49—С53—Н53С	109.5
H26A—C26—H26B	109.5	H53A—C53—H53B	109.5
H26A—C26—H26C	109.5	H53A—C53—H53C	109.5
H26B—C26—H26C	109.5	H53B—C53—H53C	109.5
C24—C27—H27A	109.5	C51—C54—H54A	109.5
С24—С27—Н27В	109.5	C51—C54—H54B	109.5
С24—С27—Н27С	109.5	C51—C54—H54C	109.5
H27A—C27—H27B	109.5	H54A—C54—H54B	109.5
H27A—C27—H27C	109.5	H54A—C54—H54C	109.5
H27B—C27—H27C	109.5	H54B—C54—H54C	109.5

Hydrogen-bond geometry (Å, °)

Cg5, Cg6, Cg7, Cg8, and Cg9 are the centroids of the C40–C45, C7–C12, C13–C18, C28–C32, and C34–C39 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C10—H10···· <i>Cg</i> 5 ⁱ	0.93	2.81	3.5059 (7)	132
C25—H25 <i>C</i> ··· <i>Cg</i> 6 ⁱⁱ	0.96	2.81	3.7115 (8)	158
C37—H37…Cg7 ⁱⁱⁱ	0.93	2.71	3.5129 (8)	145
С39—Н39…Сд8іі	0.93	2.97	3.5817 (8)	125
C53—H53 A ···C g 7 ^{iv}	0.96	2.94	3.6503 (8)	132
C54—H54 C ··· $Cg9^{v}$	0.96	2.88	3.7983 (8)	160

Symmetry codes: (i) -*x*, -*y*, *z*-1/2; (ii) *x*, *y*+1, *z*; (iii) -*x*, -*y*+2, *z*+1/2; (iv) *x*+1/2, -*y*, *z*; (v) *x*, *y*-1, *z*.

{3-[(2,3,4,5,6-Pentamethylphenyl)methylidene]-4-phenylcyclopenta-1,4-dien-1-yl}benzene (IV)

F(000) = 1616

 $\theta = 2.3 - 26.2^{\circ}$

 $\mu = 0.07 \text{ mm}^{-1}$ T = 100 K

Needle, orange

 $0.44 \times 0.11 \times 0.1 \text{ mm}$

 $D_{\rm x} = 1.183 \text{ Mg m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 3475 reflections

Crystal data

 $C_{29}H_{28}$ $M_r = 376.51$ Monoclinic, C2/c a = 30.987 (7) Å b = 5.8273 (14) Å c = 23.557 (6) Å $\beta = 96.192$ (3)° V = 4228.9 (17) Å³ Z = 8

Data collection

Bruker APEXII CCD	4394 independent reflections
diffractometer	3213 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.082$
Absorption correction: multi-scan	$\theta_{\text{max}} = 26.5^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
SADABS	$h = -38 \rightarrow 38$
$T_{\min} = 0.587, \ T_{\max} = 0.745$	$k = -7 \rightarrow 7$
37965 measured reflections	$l = -29 \rightarrow 29$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.050$	H-atom parameters constrained
$wR(F^2) = 0.137$	$w = 1/[\sigma^2(F_o^2) + (0.0562P)^2 + 4.4117P]$
S = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
4394 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
267 parameters	$\Delta ho_{ m max} = 0.24 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$
Primary atom site location: dual	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)	

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C13	0.59242 (5)	0.5116 (3)	0.64414 (7)	0.0214 (4)	
C7	0.55646 (5)	0.0887 (3)	0.82183 (7)	0.0213 (4)	
C19	0.67937 (5)	0.5436 (3)	0.86724 (7)	0.0214 (4)	
C5	0.61684 (5)	0.3893 (3)	0.79995 (7)	0.0221 (4)	
C20	0.67537 (6)	0.7194 (3)	0.90741 (7)	0.0221 (4)	
C4	0.62469 (6)	0.5125 (3)	0.74821 (7)	0.0228 (4)	
H4	0.646359	0.626148	0.745542	0.027*	
C14	0.57411 (6)	0.3657 (3)	0.60104 (7)	0.0242 (4)	
H14	0.563145	0.220269	0.610728	0.029*	
C12	0.54703 (5)	0.1649 (3)	0.87570 (7)	0.0229 (4)	

H12	0.556500	0.312444	0.888929	0.027*
C8	0.54204 (5)	-0.1290 (3)	0.80385 (7)	0.0233 (4)
H8	0.548662	-0.185405	0.767949	0.028*
C3	0.59587 (5)	0.4381 (3)	0.70428 (7)	0.0216 (4)
C1	0.57895 (5)	0.2366 (3)	0.78360 (7)	0.0222 (4)
C2	0.56767 (5)	0.2650 (3)	0.72698 (7)	0.0221 (4)
H2	0.544904	0.185041	0.705081	0.026*
C18	0 60730 (6)	0.7271(3)	0 62895 (7)	0.0241 (4)
H18	0.618881	0.830511	0.657840	0.029*
C6	0 64079 (6)	0 3964 (3)	0.85109(7)	0.0230(4)
H6	0.632173	0.297150	0.879814	0.028*
C24	0.71917 (6)	0.297130 0.5018 (3)	0.84579 (7)	0.020
C24	0.71517(0) 0.75536(6)	0.5010(3)	0.86477(7)	0.0247(4)
C23	0.75550(0)	-0.1886(3)	0.80477(7)	0.0239(4)
	0.30940 (0)	0.1000 (3)	0.03000 (0)	0.0273(4)
	0.495552	-0.282810	0.914192	0.033°
	0.52397 (6)	0.0204 (3)	0.90983 (7)	0.0257 (4)
HII	0.518138	0.079165	0.94638/	0.031*
C16	0.58769 (6)	0.6439 (3)	0.52940 (7)	0.0279 (4)
HI6	0.586508	0.687795	0.490425	0.033*
C21	0.71147 (6)	0.8557 (3)	0.92605 (7)	0.0241 (4)
C9	0.51823 (6)	-0.2643 (3)	0.83749 (8)	0.0263 (4)
H9	0.507883	-0.409838	0.823913	0.032*
C22	0.75145 (6)	0.8155 (3)	0.90470 (7)	0.0258 (4)
C15	0.57181 (6)	0.4318 (3)	0.54404 (7)	0.0273 (4)
H15	0.559312	0.331309	0.515037	0.033*
C25	0.63232 (6)	0.7587 (3)	0.93028 (8)	0.0274 (4)
H25A	0.634909	0.720712	0.971033	0.041*
H25B	0.610176	0.660797	0.909650	0.041*
H25C	0.623921	0.920034	0.925004	0.041*
C17	0.60526 (6)	0.7913 (3)	0.57185 (7)	0.0262 (4)
H17	0.615984	0.936980	0.561929	0.031*
C29	0.72431 (6)	0.3065 (4)	0.80483 (8)	0.0315 (5)
H29A	0.697383	0.217050	0.799632	0.047*
H29B	0.748259	0.207275	0.820370	0.047*
H29C	0.730603	0.368437	0.767938	0.047*
C26	0.70788 (6)	1.0445 (3)	0.96918 (8)	0.0323 (5)
H26A	0.728286	1.014941	1.003141	0.048*
H26B	0.678224	1.049016	0.979974	0.048*
H26C	0 714808	1 192160	0.952417	0.048*
C28	0.79882 (6)	0 5958 (4)	0.84287(8)	0.0361(5)
H28A	0.810760	0.5956 (4)	0.830322	0.0501 (5)
H28R	0.70/0/3	0.488770	0.810634	0.054*
H28D	0.794945	0.400770	0.810034	0.054*
C27	0.0100/4	0.027104	0.075492	0.034
	0.79000 (0)	0.9023 (4)	0.92079 (8)	0.0533 (3)
П2/А Ц27Р	0./900/9	0.942774	0.908193	0.053*
H2/B	0./83513	1.124120	0.918115	0.053*
H27C	0.815519	0.915727	0.908311	0.053*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C13	0.0167 (8)	0.0278 (10)	0.0198 (8)	0.0020 (7)	0.0020 (7)	0.0000 (7)
C7	0.0150 (8)	0.0271 (9)	0.0210 (8)	-0.0010 (7)	-0.0020(7)	0.0029 (7)
C19	0.0204 (9)	0.0265 (9)	0.0164 (8)	-0.0024 (7)	-0.0016 (7)	0.0039 (7)
C5	0.0197 (9)	0.0242 (9)	0.0222 (9)	-0.0013 (7)	0.0009 (7)	-0.0007 (7)
C20	0.0216 (9)	0.0257 (9)	0.0182 (8)	-0.0012 (7)	-0.0015 (7)	0.0046 (7)
C4	0.0203 (9)	0.0263 (9)	0.0215 (9)	-0.0013 (7)	0.0019 (7)	0.0020 (7)
C14	0.0212 (9)	0.0273 (10)	0.0242 (9)	0.0018 (7)	0.0027 (7)	-0.0006 (7)
C12	0.0196 (9)	0.0258 (9)	0.0224 (9)	-0.0016 (7)	-0.0022 (7)	0.0006 (7)
C8	0.0198 (9)	0.0264 (10)	0.0232 (9)	0.0009 (7)	-0.0003 (7)	0.0012 (7)
C3	0.0205 (9)	0.0229 (9)	0.0216 (9)	0.0015 (7)	0.0033 (7)	0.0004 (7)
C1	0.0205 (9)	0.0250 (9)	0.0208 (9)	-0.0005 (7)	0.0009 (7)	0.0000 (7)
C2	0.0190 (9)	0.0258 (9)	0.0210 (8)	-0.0018 (7)	0.0000 (7)	-0.0019 (7)
C18	0.0225 (9)	0.0275 (10)	0.0219 (9)	0.0007 (8)	0.0011 (7)	-0.0005 (7)
C6	0.0228 (9)	0.0257 (9)	0.0204 (8)	-0.0028 (7)	0.0018 (7)	0.0021 (7)
C24	0.0240 (9)	0.0301 (10)	0.0191 (8)	0.0002 (8)	-0.0016 (7)	0.0044 (7)
C23	0.0197 (9)	0.0344 (11)	0.0231 (9)	-0.0015 (8)	-0.0004 (7)	0.0067 (8)
C10	0.0195 (9)	0.0336 (11)	0.0283 (10)	-0.0031 (8)	0.0002 (7)	0.0079 (8)
C11	0.0204 (9)	0.0350 (11)	0.0217 (9)	0.0010 (8)	0.0015 (7)	0.0013 (8)
C16	0.0276 (10)	0.0373 (11)	0.0190 (9)	0.0081 (8)	0.0035 (7)	0.0040 (8)
C21	0.0245 (9)	0.0261 (10)	0.0206 (8)	-0.0023 (8)	-0.0025 (7)	0.0043 (7)
C9	0.0227 (9)	0.0238 (10)	0.0312 (10)	-0.0034 (7)	-0.0033 (8)	0.0028 (8)
C22	0.0207 (9)	0.0316 (10)	0.0238 (9)	-0.0042 (8)	-0.0037 (7)	0.0069 (8)
C15	0.0245 (9)	0.0362 (11)	0.0208 (9)	0.0040 (8)	0.0001 (7)	-0.0049 (8)
C25	0.0211 (9)	0.0343 (11)	0.0265 (9)	-0.0006 (8)	0.0012 (7)	0.0012 (8)
C17	0.0234 (9)	0.0300 (10)	0.0255 (9)	0.0028 (8)	0.0047 (7)	0.0049 (8)
C29	0.0275 (10)	0.0393 (12)	0.0274 (10)	0.0010 (9)	0.0016 (8)	-0.0027 (8)
C26	0.0303 (10)	0.0333 (11)	0.0321 (10)	-0.0053 (9)	-0.0025 (8)	-0.0029 (8)
C28	0.0234 (10)	0.0534 (14)	0.0315 (10)	0.0003 (9)	0.0026 (8)	0.0057 (10)
C27	0.0271 (10)	0.0425 (12)	0.0350 (11)	-0.0111 (9)	-0.0025 (8)	0.0037 (9)

Atomic displacement parameters $(Å^2)$

C13—C14	1.397 (2)	C23—C22	1.402 (3)
С13—С3	1.473 (2)	C23—C28	1.516 (3)
C13—C18	1.397 (3)	C10—H10	0.9500
C7—C12	1.405 (2)	C10—C11	1.389 (3)
С7—С8	1.396 (3)	C10—C9	1.387 (3)
C7—C1	1.475 (2)	C11—H11	0.9500
C19—C20	1.409 (2)	C16—H16	0.9500
С19—С6	1.487 (2)	C16—C15	1.388 (3)
C19—C24	1.404 (2)	C16—C17	1.384 (3)
C5—C4	1.457 (2)	C21—C22	1.406 (3)
C5—C1	1.490 (2)	C21—C26	1.510 (3)
C5—C6	1.346 (2)	С9—Н9	0.9500
C20—C21	1.403 (2)	C22—C27	1.517 (3)

C20—C25	1.509 (2)	C15—H15	0.9500
C4—H4	0.9500	С25—Н25А	0.9800
C4—C3	1.363 (2)	С25—Н25В	0.9800
C14—H14	0.9500	С25—Н25С	0.9800
C14—C15	1.391 (2)	С17—Н17	0.9500
С12—Н12	0.9500	С29—Н29А	0.9800
C12—C11	1.390 (2)	С29—Н29В	0.9800
С8—Н8	0.9500	С29—Н29С	0.9800
C8—C9	1.386 (2)	С26—Н26А	0.9800
C3—C2	1.472 (2)	C26—H26B	0.9800
C1—C2	1.352 (2)	C26—H26C	0.9800
C2—H2	0.9500	C28—H28A	0.9800
C18—H18	0.9500	C28—H28B	0.9800
C18—C17	1.391 (2)	C28—H28C	0.9800
С6—Н6	0.9500	C27—H27A	0.9800
C24—C23	1,415 (3)	C27—H27B	0.9800
C_{24} C_{29}	1 511 (3)	C_{27} H27C	0.9800
021 025	1.511 (5)	027 11270	0.9000
C14—C13—C3	120.24 (16)	C12—C11—H11	119.8
C14—C13—C18	118.70 (16)	C10—C11—C12	120.48 (17)
C18—C13—C3	121.06 (16)	C10—C11—H11	119.8
C12—C7—C1	121.66 (16)	C15—C16—H16	120.1
C8—C7—C12	118.08 (16)	C17—C16—H16	120.1
C8—C7—C1	120.18 (16)	C17—C16—C15	119.70 (17)
C20—C19—C6	117.68 (15)	C20—C21—C22	119.81 (17)
C24—C19—C20	120.83 (16)	C20—C21—C26	120.60 (16)
C24—C19—C6	121.39 (16)	C22—C21—C26	119.59 (16)
C4—C5—C1	106.01 (14)	C8—C9—C10	120.46 (17)
C6—C5—C4	127.44 (16)	С8—С9—Н9	119.8
C6—C5—C1	126.35 (16)	С10—С9—Н9	119.8
C19—C20—C25	119.69 (16)	C23—C22—C21	120.30 (16)
C21—C20—C19	119.79 (16)	C23—C22—C27	121.28 (17)
C21—C20—C25	120.52 (16)	C21—C22—C27	118.42 (17)
C5—C4—H4	125.6	C14—C15—H15	119.9
C3—C4—C5	108.87 (16)	C16—C15—C14	120.25 (17)
C3—C4—H4	125.6	C16—C15—H15	119.9
C13—C14—H14	119.8	C20—C25—H25A	109.5
C15—C14—C13	120.50 (18)	C20—C25—H25B	109.5
C15—C14—H14	119.8	С20—С25—Н25С	109.5
С7—С12—Н12	119.7	H25A—C25—H25B	109.5
C11—C12—C7	120.59 (17)	H25A—C25—H25C	109.5
C11—C12—H12	119.7	H25B—C25—H25C	109.5
С7—С8—Н8	119.5	C18—C17—H17	119.8
C9—C8—C7	121.08 (17)	C16—C17—C18	120.32 (18)
С9—С8—Н8	119.5	C16—C17—H17	119.8
C4—C3—C13	127.69 (16)	С24—С29—Н29А	109.5
C4—C3—C2	107.95 (15)	C24—C29—H29B	109.5
C2—C3—C13	124.37 (15)	С24—С29—Н29С	109.5
	× /		

C7—C1—C5	127.02 (15)	H29A—C29—H29B	109.5
C2—C1—C7	125.79 (16)	H29A—C29—H29C	109.5
C2—C1—C5	107.15 (15)	H29B—C29—H29C	109.5
С3—С2—Н2	125.0	C21—C26—H26A	109.5
C1—C2—C3	109.98 (15)	C21—C26—H26B	109.5
C1—C2—H2	125.0	C21—C26—H26C	109.5
C13—C18—H18	119.8	H26A—C26—H26B	109.5
C17—C18—C13	120.49 (17)	H26A—C26—H26C	109.5
C17—C18—H18	119.8	H26B—C26—H26C	109.5
С19—С6—Н6	116.7	C23—C28—H28A	109.5
C5—C6—C19	126.66 (16)	C23—C28—H28B	109.5
С5—С6—Н6	116.7	C23—C28—H28C	109.5
C19—C24—C23	118.97 (17)	H28A—C28—H28B	109.5
C19 - C24 - C29	121.18 (16)	H28A—C28—H28C	109.5
C_{23} C_{24} C_{29}	119.81 (16)	H28B-C28-H28C	109.5
C_{24} C_{23} C_{28}	119.87 (17)	$C_{22} = C_{27} = H_{27A}$	109.5
C^{2} C^{2} C^{2} C^{2} C^{2} C^{2}	120.31(17)	C^{22} C^{27} H27B	109.5
$C_{22} = C_{23} = C_{24}$	120.51(17) 119.81(17)	$C_{22} = C_{27} = H_{27} = H_{27}$	109.5
$C_{22} = C_{23} = C_{23}$	119.81 (17)	H274 - C27 - H27C	109.5
C_{10} C_{10} H_{10}	120.4	H27A C27 H27C	109.5
C_{9} C_{10} C_{11}	120.4	H27R C27 H27C	109.5
C)CI0CII	119.27 (17)	112/ D —C2/—112/C	109.5
C13—C14—C15—C16	-0.1 (3)	C3—C13—C18—C17	177.71 (16)
C13—C3—C2—C1	-179.76 (16)	C1—C7—C12—C11	176.90 (16)
C13—C18—C17—C16	1.2 (3)	C1—C7—C8—C9	-175.49 (16)
C7—C12—C11—C10	-0.8(3)	C1—C5—C4—C3	-1.99 (19)
C7—C8—C9—C10	-2.1(3)	C1—C5—C6—C19	178.18 (17)
C7—C1—C2—C3	175.98 (16)	C18—C13—C14—C15	1.7 (3)
C19—C20—C21—C22	-0.3(2)	C18—C13—C3—C4	-25.0(3)
C19—C20—C21—C26	-179.85(16)	C18 - C13 - C3 - C2	155.29 (17)
C19—C24—C23—C22	0.4 (3)	C6-C19-C20-C21	176.97 (15)
C19 - C24 - C23 - C28	179.05 (16)	C6-C19-C20-C25	-2.7(2)
C_{5} C_{4} C_{3} C_{13}	-178.73(16)	C6-C19-C24-C23	-176.92(16)
$C_{5}-C_{4}-C_{3}-C_{2}$	10(2)	C6-C19-C24-C29	07(3)
$C_{5} - C_{1} - C_{2} - C_{3}$	-1.7(2)	C6-C5-C4-C3	173.08(18)
C_{20} C_{19} C_{6} C_{5}	112.0(2)	C6-C5-C1-C7	95(3)
C_{20} C_{19} C_{24} C_{23}	-0.5(3)	C6-C5-C1-C2	-172.87(18)
C_{20} C_{19} C_{24} C_{29}	177.06(16)	C_{24} C_{19} C_{20} C_{21}	0 4 (2)
C_{20} C_{21} C_{22} C_{23}	0.2(3)	C_{24} C_{19} C_{20} C_{21} C_{25}	-179.27(16)
C_{20} C_{21} C_{22} C_{23} C_{27}	-178.62(16)	C_{24} C_{19} C_{20} C_{23} C_{24} C_{19} C_{6} C_{5}	-715(3)
C4 - C5 - C1 - C7	-175.40(16)	C_{24} C_{23} C_{22} C_{21}	-0.3(3)
C4 - C5 - C1 - C2	2 27 (19)	$C_{24} = C_{23} = C_{22} = C_{21}$	178 50 (16)
C_{4}^{-} C_{5}^{-} C_{6}^{-} C_{19}^{19}	41(3)	$C_{24} = C_{23} = C_{22} = C_{27}$	178.30(10) 1.2(3)
$C_4 = C_3 = C_7 = C_1^3$	(3)	$C_{1} = C_{10} = C_{2} = C_{3}$	1.2(3) 0 2 (3)
$C_1 = C_2 = C_1$	154 04 (18)	$C_{2} = C_{10} = C_{11} = C_{12}$	0.2(3)
$C_{14} = C_{13} = C_{3} = C_{4}$	-24.7(2)	$C_{13} - C_{10} - C_{17} - C_{10}$	0.4(3) 170/12(16)
$C_{14} = C_{13} = C_{3} = C_{2}$	-24.7(3)	$C_{23} - C_{20} - C_{21} - C_{22}$	1/9.43(10)
$C_{14} = C_{15} = C_{16} = C_{17}$	-2.5(3)	$C_{23} - C_{20} - C_{21} - C_{20}$	-0.1(2)
U12-U/-U8-U9	1.3 (2)	U1/-U10-U13-U14	-1.0(3)

C12—C7—C1—C5	42.2 (3)	C29—C24—C23—C22	-177.17 (16)
C12—C7—C1—C2	-135.07 (19)	C29—C24—C23—C28	1.4 (3)
C8—C7—C12—C11	0.0 (2)	C26—C21—C22—C23	179.79 (16)
C8—C7—C1—C5	-140.94 (18)	C26—C21—C22—C27	1.0 (2)
C8—C7—C1—C2	41.8 (3)	C28—C23—C22—C21	-178.90 (16)
C3—C13—C14—C15	-178.30 (16)	C28—C23—C22—C27	-0.1 (3)

Hydrogen-bond geometry (Å, °)

Cg10 is the centroid of the C13–C18 ring.

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
C10—H10···Cg10 ⁱ	0.95	2.70	3.4521 (9)	136

Symmetry code: (i) -x, y+1, -z+1/2.