

Received 1 April 2019 Accepted 2 May 2019

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; hydrogen bonding; spin crossover; P450; iron(III) porphyrin.

CCDC reference: 1913651

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of bis(4-methoxypyridine- κN)-(meso-5,10,15,20-tetraphenylporphyrinato- $\kappa^4 N, N', N'', N'''$)iron(III) perchlorate

Morten K. Peters,^a Christian Näther^b and Rainer Herges^a*

^aOtto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität Kiel, Otto-Hahn-Platz 4, D-24098 Kiel, Germany, and ^bInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Str. 2, D-24118 Kiel, Germany. *Correspondence e-mail: rherges@oc.uni-kiel.de

In the crystal structure of the title compound, $[Fe(C_{44}H_{28}N_4)(C_6H_7NO)_2]ClO_4$, the Fe^{III} ions are coordinated in an octahedral fashion by four N atoms of the porphyrin moiety and two N atoms of two 4-methoxypyridine ligands into discrete complexes that are located on inversion centers. Charge-balance is achieved by perchlorate anions that are disordered around twofold rotation axes. In the crystal structure, the discrete cationic complexes and the perchlorate anions are arranged into layers with weak $C-H \cdots O$ interactions between the cations and the anions. The porphyrin moieties of neighboring layers show a herringbone-like arrangement.

1. Chemical context

Porphyrins are of great interest for a number of different applications in medicine and nature (Peters & Herges, 2018; Peters *et al.*, 2018; Shankar *et al.*, 2018; Dommaschk *et al.*, 2015). For example, metal porphyrins show spin crossover (SCO), which is the key step in a number of enzymatic reactions, *e.g.* catalysts in selective CH activation (cytochrome P450) (Konishi *et al.*, 1992; Momenteau *et al.*, 1983), hydrogen peroxide decomposition (catalases) (Maté *et al.*, 2001) and a number of other biologically important processes (Collman *et al.*, 1995; Gunter *et al.*, 1994; Morgan & Dolphin, 1987). The spin state and electronic configuration of ferrous porphyrins are dependent on temperature, pressure, light or axial ligands.

Iron(III) porphyrins can exist in high-spin $(S = \frac{5}{2})$, intermediate-spin $(S = \frac{3}{2})$, admixed-spin $(S = \frac{3}{2}, \frac{5}{2})$ and low-spin $(S = \frac{3}{2}, \frac{5}{2})$ $\frac{1}{2}$) states of iron (Scheidt, 2000; Ikezaki *et al.*, 2009; Nakamura, 2006; Shankar et al., 2018). Most of the anionic ligands such as chloride, hydroxide and azide lead to the formation of complexes in the high-spin state, whereas weak ligands like ClO_4^- and SbF_6^- usually give the complexes in an admixedspin state (Scheidt, 2000). However, six-coordinate complexes with strong axial ligands tend to be in the low-spin state (Scheidt, 2000). In our ongoing investigations on SCO compounds based on iron porphyrins, we became interested in the complex bis(4-methoxypyridine- κN)(meso-5,10,15,20tetraphenylporphyrinato- $\kappa^4 N, N', N'', N'''$ iron(III) perchlorate, which was synthesized and characterized by high-resolution mass spectroscopy (Shankar et al., 2018). Preliminary investigations indicate that the complex is in the low-spin state but unfortunately no single crystals were obtained. In the course of subsequent investigations, we we able to obtain crystals by the layering technique starting from the Fe^{III} tetraphenylporphyrin perchlorate complexes and using 4-methoxypyridine dissolved in dichloromethane as the lower and *n*-heptane as the upper layer. These crystals were identified by single crystal X-ray diffraction, which confirmed that crystals of the title compound were obtained.

2. Structural commentary

The crystal structure of the title compound consists of discrete complexes which lie on inversion centers. The Fe^{III} ions are sixfold coordinated by four N atoms of the porphyrin moiety and two N atoms of two 4-methoxypyridine ligands in an octahedral coordination environment (Fig. 1). The Fe–N bond lengths to the porphyrin atoms of 1.9989 (13) Å and to the pyridine N atoms of 2.0002 (13) Å are nearly identical and

Figure 1

Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Atoms with the suffix A are generated by the symmetry operation (1 - x, 1 - y, 1 - z).

Table 1	
Selected geometric parameters (Å, °).	

Fe1-N1	1.9989 (13)	Fe1-N2	2.0003 (13)
Fe1-N2 ⁱ	2.0002 (13)	Fe1-N31	2.0177 (14)
N1 ⁱ -Fe1-N1	180.00 (4)	N1-Fe1-N31	91.13 (5)
N1-Fe1-N2i	91.44 (5)	N2-Fe1-N31	89.64 (6)
N1-Fe1-N2	88.56 (5)	N2-Fe1-N31 ⁱ	90.36 (6)
N2 ⁱ -Fe1-N2	180.00 (8)	N31-Fe1-N31 ⁱ	180.0
N1 ¹ -Fe1-N31	88.87 (6)		

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

the iron cations are located exactly in the plane of the coordinating porphyrin N atoms (Table 1). The Fe-N bond lengths to the two axial 4-methoxypyridine ligands at 2.0 Å are typical for low-spin complexes (Geiger et al., 1985; Scheidt & Geiger, 1979), whereas high-spin complexes have a significant longer bond length of about 2.2 Å (Geiger et al., 1984, 1985; Geiger & Scheidt, 1984). The N-Fe-N bond angles within the equatorial porphyrin plane range between 88.56 (5) and 91.44 (5)°, whereas that to the axial ligands are 180° because of symmetry, which proves that the octahedra are slightly distorted (Table 1). The six-membered ring planes of the two coordinating 4-methoxypyridine ligands are eclipsed and rotated relative to the Fe-N bonds of the Fe^{III}-porphyrin moiety (Fig. 2). Two of the four phenyl rings are nearly perpendicular to the porphyrin ring planes with a dihedral angle of $87.82 (5)^\circ$, whereas the other two rings are rotated out of this plane by $63.64 (5)^{\circ}$. The positive charge of the Fe^{III}porphyrin moiety is compensated by one perchlorate anion that is disordered around a twofold rotation axis.

Figure 2 Molecular structure of the title compound viewed onto the porphyrin plane.

research communications

Table 2 Hydrogen-bond geometry (Å, °).						
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	D-		
C35-H35···O4 ⁱⁱ	0.95	2.55	3.103 (8)	117		
C36-H36C···O1	0.98	2.64	3.551 (3)	154		

 $H \cdot \cdot \cdot A$

Symmetry code: (ii) $-x + 1, y, -z + \frac{1}{2}$.

3. Supramolecular features

In the crystal structure, the Fe-porphyrin cations and the perchlorate anions are each arranged in layers that are located parallel to the *ab* plane (Fig. 3). These layers are connected to the perchlorate anions by weak $C-H \cdots O$ contacts (Table 2). For one of these contacts, the $C-H \cdots O$ angle is close to linearity, indicating weak intermolecular hydrogen bonding (Fig. 3 and Table 2). The porphyrin units of neighboring layers exhibit a herringbone-like arrangement (Fig. 4).

4. Database survey

According to a search in the Cambridge Structural Database (CSD Version 5.4, update of February 2019; Groom *et al.*, 2016), 1009 structures of ferrous porphyrins have been reported. However, ferrous porphyrins with axial 4-meth-oxypyridine ligands are unknown although ferrous porphyrins with perchlorate as counter-ion and other pyridines as axial

Figure 3

Crystal packing of the title compound viewed along the *b* axis. Intermolecular $C-H\cdots O$ contacts are shown as dashed lines.

Figure 4 Crystal packing of the title compound viewed along the *a* axis.

ligands have been published, for instance the sterically congested porphyrin (2,3,7,8,12,13,17,18-octamethyl-5,10,15,20-tetraphenylporphyrinato)iron(III) perchlorate which has two pyridine molecules as axial ligands (Ohgo *et al.*, 2002, 2004). Other iron(III) porphyrin perchlorates are known with 3-chloropyridine (Scheidt & Geiger, 1979), 4-cyanopyridine (Safo *et al.*, 1994), 3,5-dichloropyridine (Scheidt *et al.*, 1989) and 4-cyanopyridine ligands (Yatsunyk & Walker 2004; Safo *et al.* 1994; Safo *et al.* 1992).

5. Synthesis and crystallization

Fe^{III} tetraphenylporphyrin perchlorate (FeTPPClO₄) was synthesized as previously reported (Shankar *et al.*, 2018). The layering technique was used for crystallization. The lower layer was dichloromethane with 50 μ L 4-methoxypyridine and *n*-heptane was used for the upper antisolvent.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The C—H hydrogen atoms were positioned with idealized geometries (C—H = 0.95–0.98 Å; methyl H atoms allowed to rotate but not to tip) and were refined isotropically using a riding model with $U_{iso}(H) =$ $1.2U_{eq}(C)$ or $1.5U_{eq}(C$ -methyl). The perchlorate anion is disordered around a twofold rotation axis that passes through O1 and thus, disordered because of symmetry.

Acknowledgements

We thank Professor Dr. Wolfgang Bensch for access to his experimental facility.

Funding information

The authors gratefully acknowledge financial support by the Deutsche Forschungsgesellschaft within the Sonder-forschungsbereich 677.

Table 3Experimental details.

Crystal data	
Chemical formula	$[Fe(C_{44}H_{28}N_4)(C_6H_7NO)_2]ClO_4$
$M_{ m r}$	986.25
Crystal system, space group	Orthorhombic, Pbcn
Temperature (K)	170
a, b, c (Å)	16.9772 (4), 11.1879 (2),
	24.3484 (6)
$V(Å^3)$	4624.72 (18)
Z	4
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.45
Crystal size (mm)	$0.12\times0.10\times0.09$
Data collection	
Diffractometer	Stoe IPDS2
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	36542, 5029, 4454
Rint	0.033
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.639
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.099, 1.07
No. of reflections	5029
No. of parameters	337
H-atom treatment	H-atom parameters constrained
$\Delta ho_{ m max}, \Delta ho_{ m min} \; ({ m e} \; { m \AA}^{-3})$	0.28, -0.48

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), XP (Sheldrick, 2008), DIAMOND (Brandenburg, 2014) and publCIF (Westrip, 2010).

References

- Brandenburg, K. (2014). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Collman, J. P., Lee, V. J., Kellen-Yuen, C. J., Zhang, X., Ibers, J. A. & Brauman, J. I. (1995). J. Am. Chem. Soc. 117, 692–703.
- Dommaschk, M., Peters, M., Gutzeit, F., Schütt, C., Näther, C., Sönnichsen, F. D., Tiwari, S., Riedel, C., Boretius, S. & Herges, R. (2015). J. Am. Chem. Soc. 137, 7552–7555.
- Geiger, D. K., Chunplang, V. & Scheidt, W. R. (1985). *Inorg. Chem.* **24**, 4736–4741.
- Geiger, D. K., Lee, Y. J. & Scheidt, W. R. (1984). J. Am. Chem. Soc. 106, 6339–6343.

- Geiger, D. K. & Scheidt, W. R. (1984). Inorg. Chem. 23, 1970–1972.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gunter, M. J., Hockless, D. C. R., Johnston, M. R., Skelton, B. W. & White, A. H. (1994). J. Am. Chem. Soc. 116, 4810–4823.
- Ikezaki, A., Ohgo, Y. & Nakamura, M. (2009). Coord. Chem. Rev. 253, 2056–2069.
- Konishi, K., Oda, K., Nishida, K., Aida, T. & Inoue, S. (1992). J. Am. Chem. Soc. 114, 1313–1317.
- Maté, M. J., Murshudov, G., Bravo, J., Melik-Adamyan, W., Loewen, P. C. & Fita, I. (2001). *Handbook of Metalloproteins* 1, 486– 502.
- Momenteau, M., Mispelter, J., Loock, B. & Bisagni, E. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 189–196.
- Morgan, B. & Dolphin, D. (1987). Struct. Bond. 64, 115-203.
- Nakamura, M. (2006). Coord. Chem. Rev. 250, 2271-2294.
- Ohgo, Y., Ikeue, T. & Nakamura, M. (2002). *Inorg. Chem.* **41**, 1698–1700.
- Ohgo, Y., Ikeue, T., Takahashi, M., Takeda, M. & Nakamura, M. (2004). *Eur. J. Inorg. Chem.* pp. 798–809.
- Peters, M. K. & Herges, R. (2018). Inorg. Chem. 57, 3177-3182.
- Peters, M. K., Röhricht, F., Näther, C. & Herges, R. (2018). Org. Lett. 20, 7879–7883.
- Safo, M. K., Gupta, G. P., Watson, C. T., Simonis, U., Walker, F. A. & Scheidt, W. R. (1992). J. Am. Chem. Soc. 114, 7066–7075.
- Safo, M. K. M., Walker, F. A., Raitsimring, A. M., Walters, W. P., Dolata, D. P., Debrunner, P. G. & Scheidt, W. R. (1994). J. Am. Chem. Soc. 116, 7760–7770.
- Scheidt, W. R. (2000). The Porphyrin Handbook 3, 49.
- Scheidt, W. R. & Geiger, D. K. (1979). J. Chem. Soc. Chem. Commun. pp. 1154–1155.
- Scheidt, W. R., Osvath, S. R., Lee, Y. J., Reed, C. A., Shaevitz, B. & Gupta, G. P. (1989). *Inorg. Chem.* 28, 1591–1595.
- Shankar, S., Peters, M., Steinborn, K., Krahwinkel, B., Sönnichsen, F. D., Grote, D., Sander, W., Lohmiller, T., Rüdiger, O. & Herges, R. (2018). *Nat. Commun.* Article No. 4750.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Stoe & Cie (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yatsunyk, L. A. & Walker, F. A. (2004). Inorg. Chem. 43, 757– 777.

supporting information

Acta Cryst. (2019). E75, 762-765 [https://doi.org/10.1107/S2056989019006194]

Crystal structure of bis(4-methoxypyridine- κN)(*meso*-5,10,15,20-tetraphenyl-porphyrinato- $\kappa^4 N$, N', N'', N''')iron(III) perchlorate

Morten K. Peters, Christian Näther and Rainer Herges

Computing details

Data collection: *X-AREA* (Stoe & Cie, 2008); cell refinement: *X-AREA* (Stoe & Cie, 2008); data reduction: *X-AREA* (Stoe & Cie, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *XP* (Sheldrick, 2008) and *DIAMOND* (Brandenburg, 2014); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Bis(4-methoxypyridine- κN)(meso-5,10,15,20-tetraphenylporphyrinato- $\kappa^4 N, N', N'', N'''$)iron(III) perchlorate

Crystal data	
$[Fe(C_{44}H_{28}N_4)(C_6H_7NO)_2]ClO_4$ $M_r = 986.25$ Orthorhombic, <i>Pbcn</i> a = 16.9772 (4) Å b = 11.1879 (2) Å c = 24.3484 (6) Å V = 4624.72 (18) Å ³ Z = 4 F(000) = 2044	$D_x = 1.416 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 36542 reflections $\theta = 1.7-27.0^{\circ}$ $\mu = 0.45 \text{ mm}^{-1}$ T = 170 K Block, colorless $0.12 \times 0.10 \times 0.09 \text{ mm}$
Data collection STOE IPDS-2 diffractometer ω scans 36542 measured reflections 5029 independent reflections 4454 reflections with $I > 2\sigma(I)$	$R_{int} = 0.033$ $\theta_{max} = 27.0^{\circ}, \ \theta_{min} = 1.7^{\circ}$ $h = -21 \rightarrow 21$ $k = -13 \rightarrow 14$ $l = -29 \rightarrow 31$
Refinement Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.099$ S = 1.07	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0472P)^2 + 2.1988P]$ where $P = (F_c^2 + 2F_c^2)/3$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0472P)^{2} + 2.1988$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.48 \text{ e} \text{ Å}^{-3}$

5029 reflections

337 parameters

0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Fe1	0.5000	0.5000	0.5000	0.02670 (10)	
N1	0.51998 (8)	0.59036 (13)	0.43056 (5)	0.0287 (3)	
N2	0.38550 (8)	0.53845 (13)	0.49210 (5)	0.0285 (3)	
C1	0.66431 (9)	0.56717 (15)	0.42585 (6)	0.0303 (3)	
C2	0.59265 (9)	0.61091 (16)	0.40705 (7)	0.0312 (3)	
C3	0.58436 (10)	0.68660 (18)	0.36008 (7)	0.0386 (4)	
Н3	0.6257	0.7136	0.3369	0.046*	
C4	0.50747 (10)	0.71259 (17)	0.35457 (7)	0.0374 (4)	
H4	0.4844	0.7618	0.3271	0.045*	
C5	0.46682 (9)	0.65166 (15)	0.39806 (6)	0.0301 (3)	
C6	0.38565 (9)	0.65732 (15)	0.40647 (6)	0.0294 (3)	
C7	0.34876 (9)	0.60222 (15)	0.45098 (6)	0.0295 (3)	
C8	0.26493 (9)	0.60202 (16)	0.45999 (7)	0.0322 (3)	
H8	0.2263	0.6386	0.4373	0.039*	
C9	0.25149 (10)	0.54030 (17)	0.50662 (7)	0.0332 (3)	
H9	0.2016	0.5257	0.5230	0.040*	
C10	0.32645 (9)	0.50074 (15)	0.52689 (7)	0.0293 (3)	
C11	0.33579 (9)	0.72443 (15)	0.36631 (6)	0.0294 (3)	
C12	0.33009 (10)	0.68687 (16)	0.31184 (7)	0.0341 (4)	
H12	0.3600	0.6203	0.2996	0.041*	
C13	0.28082 (10)	0.74660 (19)	0.27552 (7)	0.0390 (4)	
H13	0.2768	0.7199	0.2386	0.047*	
C14	0.23762 (10)	0.84445 (19)	0.29253 (8)	0.0415 (4)	
H14	0.2040	0.8849	0.2675	0.050*	
C15	0.24377 (10)	0.88294 (17)	0.34625 (8)	0.0395 (4)	
H15	0.2145	0.9506	0.3581	0.047*	
C16	0.29235 (10)	0.82350 (16)	0.38300 (7)	0.0341 (4)	
H16	0.2960	0.8506	0.4199	0.041*	
C17	0.73642 (9)	0.59461 (16)	0.39261 (7)	0.0312 (3)	
C18	0.76060 (12)	0.51717 (19)	0.35181 (8)	0.0437 (4)	
H18	0.7316	0.4461	0.3450	0.052*	
C19	0.82706 (12)	0.5424 (2)	0.32064 (9)	0.0500 (5)	
H19	0.8438	0.4878	0.2931	0.060*	
C20	0.86880 (10)	0.6461 (2)	0.32953 (8)	0.0434 (4)	
H20	0.9137	0.6640	0.3077	0.052*	
C21	0.84516 (11)	0.72356 (19)	0.37005 (9)	0.0460 (5)	
H21	0.8740	0.7950	0.3764	0.055*	
C22	0.77939 (11)	0.69788 (18)	0.40173 (8)	0.0423 (4)	
H22	0.7637	0.7516	0.4299	0.051*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

N31	0.48297 (8)	0.34725 (13)	0.45758 (6)	0.0299 (3)		
C31	0.50607 (12)	0.23963 (17)	0.47644 (8)	0.0420 (4)		
H31	0.5320	0.2360	0.5110	0.050*		
C32	0.49415 (13)	0.13525 (18)	0.44838 (8)	0.0457 (5)		
H32	0.5116	0.0614	0.4633	0.055*		
C33	0.45604 (11)	0.13819 (16)	0.39757 (7)	0.0363 (4)		
C34	0.43316 (10)	0.24801 (16)	0.37747 (7)	0.0351 (4)		
H34	0.4077	0.2541	0.3429	0.042*		
C35	0.44775 (10)	0.34847 (16)	0.40822 (7)	0.0342 (4)		
H35	0.4319	0.4235	0.3937	0.041*		
031	0.44631 (9)	0.03299 (12)	0.37175 (6)	0.0467 (3)		
C36	0.41268 (13)	0.03669 (19)	0.31772 (8)	0.0461 (5)		
H36A	0.3605	0.0738	0.3194	0.069*		
H36B	0.4078	-0.0448	0.3034	0.069*		
H36C	0.4468	0.0836	0.2934	0.069*		
Cl1	0.51249 (9)	0.41187 (7)	0.25605 (9)	0.0354 (3)	0.5	
01	0.5000	0.28459 (18)	0.2500	0.0480 (5)		
O2	0.4431 (3)	0.4585 (8)	0.2775 (3)	0.084 (3)	0.5	
03	0.5724 (2)	0.4344 (3)	0.29567 (16)	0.0722 (10)	0.5	
04	0.5362 (5)	0.4650 (9)	0.2069 (3)	0.095 (3)	0.5	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.02464 (16)	0.02978 (17)	0.02567 (16)	0.00148 (12)	0.00190 (11)	0.00273 (12)
N1	0.0254 (6)	0.0324 (7)	0.0282 (6)	0.0014 (5)	0.0020 (5)	0.0033 (5)
N2	0.0259 (6)	0.0325 (7)	0.0272 (6)	0.0018 (5)	0.0017 (5)	0.0032 (5)
C1	0.0285 (7)	0.0334 (9)	0.0292 (8)	0.0003 (6)	0.0032 (6)	0.0012 (6)
C2	0.0294 (8)	0.0347 (9)	0.0296 (8)	0.0003 (6)	0.0044 (6)	0.0042 (7)
C3	0.0323 (8)	0.0479 (11)	0.0357 (9)	0.0010 (7)	0.0057 (7)	0.0118 (8)
C4	0.0324 (8)	0.0431 (10)	0.0367 (9)	0.0022 (7)	0.0018 (7)	0.0116 (8)
C5	0.0296 (8)	0.0327 (9)	0.0281 (7)	0.0023 (6)	0.0002 (6)	0.0047 (6)
C6	0.0294 (7)	0.0302 (8)	0.0288 (7)	0.0025 (6)	0.0003 (6)	0.0005 (6)
C7	0.0276 (7)	0.0322 (8)	0.0286 (8)	0.0023 (6)	-0.0011 (6)	0.0005 (6)
C8	0.0269 (8)	0.0377 (9)	0.0321 (8)	0.0034 (7)	-0.0008 (6)	0.0029 (7)
C9	0.0264 (7)	0.0382 (9)	0.0349 (8)	0.0020 (7)	0.0022 (6)	0.0019 (7)
C10	0.0263 (7)	0.0322 (8)	0.0293 (8)	0.0006 (6)	0.0022 (6)	0.0003 (6)
C11	0.0268 (7)	0.0315 (8)	0.0300 (8)	0.0003 (6)	0.0004 (6)	0.0044 (6)
C12	0.0339 (8)	0.0364 (9)	0.0321 (8)	0.0007 (7)	0.0021 (6)	0.0016 (7)
C13	0.0348 (8)	0.0528 (11)	0.0294 (8)	-0.0045 (8)	-0.0030 (7)	0.0058 (8)
C14	0.0305 (8)	0.0516 (11)	0.0424 (9)	0.0022 (8)	-0.0026 (7)	0.0168 (9)
C15	0.0325 (8)	0.0375 (10)	0.0486 (10)	0.0074 (7)	0.0047 (8)	0.0096 (8)
C16	0.0334 (8)	0.0351 (9)	0.0339 (8)	0.0019 (7)	0.0024 (7)	0.0022 (7)
C17	0.0262 (7)	0.0366 (9)	0.0309 (8)	0.0020 (6)	0.0014 (6)	0.0063 (7)
C18	0.0439 (10)	0.0459 (11)	0.0414 (10)	-0.0082 (8)	0.0113 (8)	-0.0035 (8)
C19	0.0459 (11)	0.0614 (13)	0.0427 (10)	-0.0035 (10)	0.0156 (8)	-0.0055 (10)
C20	0.0288 (8)	0.0622 (13)	0.0394 (9)	-0.0021 (8)	0.0052 (7)	0.0110 (9)
C21	0.0332 (9)	0.0473 (11)	0.0574 (12)	-0.0083 (8)	0.0014 (8)	0.0054 (9)

supporting information

C22	0.0356 (9)	0.0424 (10)	0.0489 (10)	-0.0017 (8)	0.0081 (8)	-0.0037 (8)
N31	0.0284 (6)	0.0325 (7)	0.0289 (6)	0.0019 (5)	0.0009 (5)	0.0019 (6)
C31	0.0550 (11)	0.0366 (10)	0.0342 (9)	0.0036 (8)	-0.0073 (8)	0.0035 (7)
C32	0.0652 (13)	0.0338 (10)	0.0381 (10)	0.0025 (9)	-0.0075 (9)	0.0052 (8)
C33	0.0404 (9)	0.0330 (9)	0.0355 (9)	-0.0041 (7)	0.0010 (7)	0.0001 (7)
C34	0.0341 (8)	0.0388 (9)	0.0324 (8)	0.0020 (7)	-0.0034 (7)	0.0005 (7)
C35	0.0352 (8)	0.0349 (9)	0.0325 (8)	0.0040 (7)	-0.0017 (6)	0.0021 (7)
O31	0.0652 (9)	0.0333 (7)	0.0416 (7)	-0.0056 (6)	-0.0088 (6)	-0.0011 (6)
C36	0.0558 (12)	0.0411 (10)	0.0413 (10)	-0.0094 (9)	-0.0083 (9)	-0.0030 (8)
Cl1	0.0332 (11)	0.0327 (3)	0.0404 (10)	0.0001 (4)	0.0032 (6)	-0.0014 (4)
01	0.0637 (13)	0.0331 (10)	0.0472 (11)	0.000	-0.0063 (9)	0.000
O2	0.044 (2)	0.053 (3)	0.154 (8)	0.0169 (19)	0.050 (3)	-0.008 (4)
O3	0.066 (2)	0.067 (2)	0.083 (2)	-0.0006 (18)	-0.0318 (19)	-0.0234 (19)
O4	0.184 (9)	0.051 (3)	0.050 (3)	-0.006 (5)	0.049 (4)	0.006 (2)

Geometric parameters (Å, °)

Fe1—N1 ⁱ	1.9988 (13)	C17—C22	1.384 (3)
Fe1—N1	1.9989 (13)	C18—C19	1.389 (3)
Fe1—N2 ⁱ	2.0002 (13)	C18—H18	0.9500
Fe1—N2	2.0003 (13)	C19—C20	1.377 (3)
Fe1—N31	2.0177 (14)	C19—H19	0.9500
Fe1—N31 ⁱ	2.0177 (14)	C20—C21	1.373 (3)
N1-C2	1.379 (2)	C20—H20	0.9500
N1-C5	1.382 (2)	C21—C22	1.387 (3)
N2-C10	1.379 (2)	C21—H21	0.9500
N2C7	1.379 (2)	C22—H22	0.9500
C1-C10 ⁱ	1.388 (2)	N31—C35	1.342 (2)
C1—C2	1.389 (2)	N31—C31	1.347 (2)
C1—C17	1.499 (2)	C31—C32	1.368 (3)
C2—C3	1.430 (2)	C31—H31	0.9500
C3—C4	1.344 (2)	C32—C33	1.397 (3)
С3—Н3	0.9500	С32—Н32	0.9500
C4—C5	1.436 (2)	C33—O31	1.344 (2)
C4—H4	0.9500	C33—C34	1.378 (3)
C5—C6	1.395 (2)	C34—C35	1.373 (3)
С6—С7	1.395 (2)	C34—H34	0.9500
C6—C11	1.495 (2)	С35—Н35	0.9500
С7—С8	1.440 (2)	O31—C36	1.435 (2)
C8—C9	1.348 (2)	C36—H36A	0.9800
С8—Н8	0.9500	C36—H36B	0.9800
C9—C10	1.435 (2)	C36—H36C	0.9800
С9—Н9	0.9500	Cl1—Cl1 ⁱⁱ	0.5162 (19)
C10-C1 ⁱ	1.388 (2)	Cl1—O2 ⁱⁱ	1.228 (6)
C11—C16	1.392 (2)	Cl1—O4 ⁱⁱ	1.361 (8)
C11—C12	1.395 (2)	Cl1—O2	1.391 (5)
C12—C13	1.389 (2)	Cl1—O4	1.396 (8)
C12—H12	0.9500	Cl1—O3	1.425 (3)

supporting information

C13 C14	1 381 (3)	C11 01	1 447 (2)
$C_{13} = C_{14}$	0.0500	$C_{11} = O_1$	1.447(2)
C13—H15	1.391(2)	C1 - C11	1.931(3)
C14 - C13	0.0500	$02 04^{ij}$	1.447(2)
C14—H14	0.9300	02-04	0.324(14)
C15_U15	1.387 (2)		1.228(0)
CIG-HIS	0.9500		1.931(3)
C10—H10	0.9500	04-02"	0.524(14)
C1/-C18	1.381 (3)	04—CII"	1.301 (8)
N1i Est N1	190.00 (4)	C10 C19 U19	110.9
NI Est N2	180.00 (4) 99 56 (5)	$C_{19} = C_{10} = C_{10}$	119.0
N1 = Fe1 = N2	00.30(3)	$C_{20} = C_{19} = C_{18}$	120.21 (19)
NI = FeI = N2	91.44 (5)	C18 C10 H10	119.9
N1 = Fe1 = N2	91.44(3)	С16—С19—Н19	119.9
N1 - FeI - N2	88.30 (3)	$C_{21} = C_{20} = C_{19}$	119.04 (17)
N2 - FeI - N2	180.00 (8)	C21—C20—H20	120.2
NI-FeI-N3I	88.87 (6)	C19—C20—H20	120.2
N1—Fe1—N31	91.13 (5)	C20—C21—C22	120.27 (19)
$N2^{i}$ —Fe1—N31	90.36 (6)	С20—С21—Н21	119.9
N2—Fe1—N31	89.64 (6)	C22—C21—H21	119.9
$N1^{i}$ —Fe1—N31 ⁱ	91.13 (5)	C17—C22—C21	120.52 (18)
$N1$ —Fe1— $N31^{1}$	88.87 (6)	C17—C22—H22	119.7
$N2^{i}$ —Fe1—N31 ⁱ	89.64 (6)	C21—C22—H22	119.7
$N2$ —Fe1— $N31^{i}$	90.36 (6)	C35—N31—C31	116.36 (15)
N31—Fe1—N31 ⁱ	180.0	C35—N31—Fe1	120.90 (12)
C2—N1—C5	105.28 (13)	C31—N31—Fe1	122.74 (12)
C2—N1—Fe1	125.95 (11)	N31—C31—C32	123.34 (17)
C5—N1—Fe1	128.63 (11)	N31—C31—H31	118.3
C10—N2—C7	106.01 (13)	С32—С31—Н31	118.3
C10—N2—Fe1	125.58 (11)	C31—C32—C33	119.39 (18)
C7—N2—Fe1	128.37 (11)	С31—С32—Н32	120.3
C10 ⁱ —C1—C2	124.42 (15)	С33—С32—Н32	120.3
C10 ⁱ —C1—C17	117.87 (14)	O31—C33—C34	125.44 (16)
C2—C1—C17	117.71 (14)	O31—C33—C32	116.77 (17)
N1—C2—C1	126.01 (15)	C34—C33—C32	117.78 (17)
N1—C2—C3	110.04 (14)	C35—C34—C33	119.04 (16)
C1—C2—C3	123.95 (15)	С35—С34—Н34	120.5
C4—C3—C2	107.67 (15)	С33—С34—Н34	120.5
C4—C3—H3	126.2	N31—C35—C34	124.07 (16)
C2-C3-H3	126.2	N31—C35—H35	118.0
C_{3} $-C_{4}$ $-C_{5}$	106 88 (15)	C34—C35—H35	118.0
$C_3 - C_4 - H_4$	126.6	$C_{33} = O_{31} = C_{36}$	116.89 (15)
C5 - C4 - H4	126.6	031 - C36 - H36A	109 5
N1-C5-C6	125.70 (15)	O31—C36—H36B	109.5
N1-C5-C4	110 12 (14)	H36A_C36_H36B	109.5
C6-C5-C4	124 16 (15)	O31_C36_H36C	109.5
C_{5} C_{5} C_{7}	127.10(15) 127.52(15)	H_{364} C_{36} H_{36C}	109.5
$C_{5} = C_{6} = C_{11}$	122.52(15) 110 00 (14)	H36B_C36_H36C	109.5
C7 - C6 - C11	118.30 (14)		07.2 (6)
-0	110.37(17)	-01 - 02	$J_{1,2}(0)$

N2—C7—C6	126.14 (14)	Cl1 ⁱⁱ —Cl1—O4 ⁱⁱ	83.1 (6)
N2—C7—C8	109.61 (14)	O2 ⁱⁱ —Cl1—O4 ⁱⁱ	128.9 (2)
C6—C7—C8	124.24 (15)	Cl1 ⁱⁱ —Cl1—O2	61.2 (6)
C9—C8—C7	107.24 (14)	O2 ⁱⁱ —Cl1—O2	127.7 (7)
С9—С8—Н8	126.4	O4 ⁱⁱ —Cl1—O2	21.9 (6)
С7—С8—Н8	126.4	Cl1 ⁱⁱ —Cl1—O4	75.4 (6)
C8—C9—C10	107.31 (14)	O2 ⁱⁱ —Cl1—O4	21.8 (6)
С8—С9—Н9	126.3	O4 ⁱⁱ —Cl1—O4	123.9 (7)
С10—С9—Н9	126.3	O2—C11—O4	114.0 (4)
N2-C10-C1 ⁱ	126.50 (15)	Cl1 ⁱⁱ —Cl1—O3	166.6 (5)
N2—C10—C9	109.82 (14)	O2 ⁱⁱ —Cl1—O3	86.4 (4)
C1 ⁱ C10C9	123.66 (15)	O4 ⁱⁱ —Cl1—O3	84.7 (4)
C16—C11—C12	118.74 (15)	O2—Cl1—O3	106.5 (4)
C16—C11—C6	120.59 (15)	O4—Cl1—O3	107.4 (4)
C12—C11—C6	120.65 (15)	Cl1 ⁱⁱ —Cl1—O1	79.73 (4)
C13—C12—C11	120.16 (17)	O2 ⁱⁱ —Cl1—O1	116.1 (5)
C13—C12—H12	119.9	O4 ⁱⁱ —Cl1—O1	114.1 (4)
C11—C12—H12	119.9	O2—Cl1—O1	106.5 (4)
C14—C13—C12	120.68 (17)	O4—C11—O1	112.0 (4)
C14—C13—H13	119.7	O3—Cl1—O1	110.32 (17)
C12—C13—H13	119.7	Cl1 ⁱⁱ —Cl1—O3 ⁱⁱ	9.8 (3)
C15—C14—C13	119.41 (16)	O2 ⁱⁱ —Cl1—O3 ⁱⁱ	88.3 (4)
C15—C14—H14	120.3	O4 ⁱⁱ —Cl1—O3 ⁱⁱ	85.6 (4)
C13—C14—H14	120.3	O2—C11—O3 ⁱⁱ	64.1 (4)
C14—C15—C16	120.43 (17)	O4—C11—O3 ⁱⁱ	66.4 (4)
C14—C15—H15	119.8	O3—C11—O3 ⁱⁱ	162.2 (3)
C16—C15—H15	119.8	O1—C11—O3 ⁱⁱ	87.28 (13)
C15—C16—C11	120.57 (16)	Cl1—O1—Cl1 ⁱⁱ	20.54 (8)
С15—С16—Н16	119.7	O4 ⁱⁱ —O2—Cl1 ⁱⁱ	97.4 (13)
C11—C16—H16	119.7	O4 ⁱⁱ —O2—Cl1	75.8 (13)
C18—C17—C22	118.85 (16)	Cl1 ⁱⁱ —O2—Cl1	21.61 (13)
C18—C17—C1	120.18 (16)	Cl1—O3—Cl1 ⁱⁱ	3.54 (12)
C22—C17—C1	120.96 (16)	O2 ⁱⁱ —O4—Cl1 ⁱⁱ	82.2 (13)
C17—C18—C19	120.50 (19)	O2 ⁱⁱ —O4—Cl1	60.7 (12)
C17—C18—H18	119.8	Cl1 ⁱⁱ —O4—Cl1	21.53 (14)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, *y*, -*z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
С35—Н35…О4 ^{іі}	0.95	2.55	3.103 (8)	117
C36—H36C…O1	0.98	2.64	3.551 (3)	154

Symmetry code: (ii) -x+1, y, -z+1/2.