Crystal structure of bis(μ -{2-[(5-bromo-2-oxidobenzylidene)amino]ethyl}sulfanido- κ^3N ,O,S){2,2'-[(3,4-dithiahexane-1,6-diyl)bis(nitrilomethanylylidene)]bis(4-bromophenolato)- κ^4O ,N,N',O'}dicobalt(III) dimethylformamide monosolvate

Julia A. Rusanova,* Vladimir N. Kokozay and Olena Bondarenko

Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska str., Kyiv 01601, Ukraine. *Correspondence e-mail: rusanova_j@yahoo.com

The title binuclear Co^{III} complex, $[Co_2(C_9H_8BrNOS)_2(C_{18}H_{16}Br_2N_2O_2S_2)]$ ·-C₃H₇NO, with a Schiff base ligand formed *in situ* from cysteamine (2-aminoethanethiol) and 5-bromosalicylaldehyde crystallizes in the space group $P2_1$. It was found that during the synthesis the ligand undergoes spontaneous oxidation, forming the new ligand H₂L' having an S–S bond. Thus, the asymmetric unit consists of one Co₂(L)₂(L') molecule and one DMF solvent molecule. Each Co^{III} ion has a slightly distorted octahedral S₂N₂O₂ coordination geometry. In the crystal, the components are linked into a three-dimensional network by several S···Br, C···Br, C–H···Br, short S···C (essentially shorter than the sum of the van der Waals radii for the atoms involved) contacts as well by weak C–H···O hydrogen bonds. The crystal studied was refined as an inversion twin.

1. Chemical context

Schiff bases represent one of the most widely used organic compounds. The ability to construct novel ligand systems by means of condensation of a variety of readily available aldehydes and amine makes them and their metal complexes ideal candidates for the construction of novel polynuclear compounds as well for investigation of a large range of properties (Mitra et al., 1997; Bera et al., 1998; Prabhakaran et al., 2004; Nesterov et al., 2014). It has been shown that the formation and cleavage of disulfide bonds is important for the biological activity of several sulfur-containing peptides and proteins (Gilbert et al., 1999; Jacob et al., 2003), which makes the study of complexes having a multidentate NSO-containing mixed-ligand environment of considerable interest. Thus, such complexes can be considered as model objects for studying the active sites of biological systems (Halcrow et al., 1994). Despite this, very few studies devoted to the synthesis and investigation of complexes of azomethines formed from thioamino alcohol have been reported. In this work we present a novel binuclear Co^{III} complex with a mixed N,O,S-donor Schiff base ligand derived from the condensation of 5-bromosalicylaldehvde with cysteamine (2-aminoethanthiol) hydrochloride. The synthesis, crystal structure and spectroscopic characterization are described herein.

https://doi.org/10.1107/S2056989019007217 863

Received 30 April 2019 Accepted 19 May 2019

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; binuclear Co^{III} complex; Schiff bases; 5-bromosalicylaldehyde; cysteamine (2-aminoethanthiol).

CCDC reference: 1916953

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

2. Structural commentary

The title compound (Fig. 1) crystallizes in the monoclinic space group $P2_1$. The asymmetric unit consists of a binuclear metal complex molecule and a DMF solvent molecule of crystallization. The coordination geometry around each Co^{III} ion can be described as slightly distorted octahedral with an $S_2N_2O_2$ coordination sphere, each ligand spanning the metal atom meridionally. The ligand fragments coordinated to the Co^{III} ions are twisted, as defined by the dihedral angles of 70.41 (2)° between the mean planes of atoms O3/N3/C19/C24/C25 and O4/N4/C28/C33/C34 around Co1, and 64.78 (2)°

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Table 1			
Hydrogen-bond geometry	(Å,	°).	

	•	•					
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$			
C42−H42 <i>B</i> ···O2	0.96	2.35	3.25 (2)	157			
$C25-H25\cdots O5^{i}$	0.93	2.56	3.39 (2)	149			
C3−H3···Br3 ⁱⁱ	0.93	2.85	3.633 (13)	142			
$C17 - H17B \cdots Br1^{i}$	0.97	3.00	3.743 (11)	134			

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, -z + 1; (ii) x - 1, y, z.

between the mean planes of atoms O2/N2/C15/C10/C16 and O1/N1/C1/C6/C7 around Co2. During the synthesis, the ligand is partially oxidized with the formation of a $-(CH_2)_2$ -S- $(CH_2)_2$ -bridge. Thus, in contrast to a closely related complex (Chakraborty *et al.*, 1994), in the title complex the oxidized Schiff base ligand binds to Co1 in a tetradentate fashion while the non-oxidized ligand binds to Co2 in a tridentate fashion, and its thiolate atoms lie in a *cis*-position, bridging atoms Co1 and Co2. The Co₂S₂ bridge is almost planar, with a mean deviation of 0.0673 (4) Å. The Co–S distances in the title complex are in the range 2.207 (3)–2.289 (3) Å, which is generally comparable to the range 2.23–2.26 Å observed for other thioether-Co^{III} complexes published earlier (Chakraborty *et al.*, 1994 and references therein). Contact distances such as for Co···Co and S···S are also similar.

3. Supramolecular features

In the crystal, the bridging ligands are involved in short $S \cdots Br(x, y, 1 + z)$ [3.596 (2) Å] and $S \cdots Br(x, y, -1 + z)$ [3.364 (2) Å] contacts, which connect neighboring structural units into chains along [001] (Fig. 2). The solvent DMF molecules are connected to the complex units by weak $C-H\cdots O$ hydrogen bonds (Table 1, Fig. 3). In addition, the components are linked by $C-H\cdots Br$ (Table 1), $C\cdots Br$ [C10 $\cdots Br = 3$ 3.443 (8) Å and C15 $\cdots Br3 = 3.506$ (7) Å] and short $S\cdots C$ contacts. These interatomic $C\cdots Br$ distances are in agreement with reported data (Echenique-Errandonea *et al.*, 2018; Tan *et*

Figure 2

The crystal packing of the title compound viewed along the *a* axis. Weak $C-H\cdots O$ hydrogen bonds and $C-H\cdots Br$ contacts are shown as dashed lines.

The crystal packing of the title compound with weak $C-H\cdots O$ hydrogen bonds and $S\cdots Br$ contacts shown as dashed lines.

al., 2018). The interatomic distances between the aliphatic sulfur atom (S4) and the C16 carbon atom of the ligand of an adjacent molecule (at 1 + x, y, z) are essentially shorter than the sum of the van der Waals radii for the atoms involved [S4…C16 = 3.198 (8) Å] (Fig. 4). Analogous short contacts are well known for coordination compounds with the 1,2,3,4,5-dithiadiazolyl radical (Beldjoudi *et al.*, 2013; Boeré, 2016 and references therein).

4. Database survey

A search of the Cambridge Structural Database (Version 5.40; last update February 2019; Groom *et al.*, 2016) for related Co complexes with an aminoethanethiol group gave 15 hits, including two closely related structures, binuclear bis[$(\mu^2$ -2-(salicylideneamino)ethanethiolato]-*N*-(3-thiapent-5-enyl)salicylaldiminato-*N*,*O*)dicobalt(III) acetonitrile solvate and [1,8bis(salicylideneamino)-3,6-dithiaoctane)cobalt(III) perchlorate with a disulfide moiety (Chakraborty *et al.*, 1994). Closely related structures with short S···C contacts are 4-(4-methylphenyl)-3*H*-1,2,3,5-dithiadiazole (Beldjoudi *et al.*, 2013) and bis[4-(4-trifluoromethylphenyl)-1,2,3,5-dithiadiazolyl radical] triphenylstibine (Boeré, 2016).

The crystal packing of the title compound. The $S \cdots Br$, $C \cdots Br$ and $C - H \cdots Br$ contacts that link the components in the crystal are shown as dashed lines.

5. Synthesis and crystallization

A solution of KOH (0.12 g, 2 mmol) in a minimum amount of methanol was added to a solution of 2-aminoethanthiol hydrochloride (0.23g, 2 mmol) in methanol (5 ml) and stirred in an ice bath for 10 min. The white precipitate of solid KCl was removed by filtration and 5-bromosalicylaldehyde (0.40 g, 2 mmol) in dimethylformamide (10 ml) were added to the filtrate and stirred on air magnetically for 40 min. Cobalt acetate (0.25 g, 1 mmol) was added to the yellowish solution of the Schiff base formed in situ, and the resulting deep-brown solution was stirred magnetically and heated in air at 323-333 K for 2 h. Crystals suitable for X-ray crystallographic study were formed within ca 1 month after successive addition of *i*-PrOH into the resulting solution. The crystals were filtered off, washed with dry i-PrOH and finally dried at room temperature (yield: 18%). Analysis calculated for $C_{39}H_{39}Br_4Co_2N_5O_5S_4$ (*M* = 1223.49): C,38.28; N, 5.72; H, 3.21%. Found: C, 38.31; N, 5.79; H, 3.28%. The compound is sparingly soluble in CH₃CN and good in DMSO, DMF.

The IR spectrum of the title complex in the 4000–400 cm⁻¹ range shows the characteristic azomethine group (-H-C=N) peak at 1616 cm⁻¹, indicating the formation of the Schiff base. There are no bands assignable to v(O-H), indicating the loss of the phenolic hydrogen of the free ligand. In addition, all the characteristic functional group peaks are present in the spectrum. Thus, signals in the 3000–3100 cm⁻¹ and 1600–1400 cm⁻¹ regions were assigned to the aromatic C–H and C–C stretches, and weak bands at 544 cm⁻¹ and 684 cm⁻¹ to the S–S and C–S stretches, respectively. The very strong bands at 1454 cm⁻¹ can be attributed to overlapped C–H bending (scissoring) (in the CH₃ groups of the solvent molecule) and aromatic –C=C stretching vibrations. Another strong band at 1310 cm⁻¹ can be assigned to C–O vibrations.

The structural assignment of the title compound was supplemented by its ¹H NMR spectra, obtained in DMSO- d_6

at room temperature using TMS as the internal standard. It revealed an azomethine proton singlet at 8.099 ppm as well the increase in spectroscopic complexity in both the aromatic and aliphatic regions. ¹H NMR, DMSO- d_6 , δ in ppm: –CH=N, 8.099 (*s*); aromatic protons (C₆H₃): 7.94–6.52; aliphatic protons (–SCH₂CH₂N=): 4.44 (*m*); solvent CH₃: 2.96 (*s*), 2.8 (*s*). Unfortunately, it could not provide any indication of the dinuclear binding mode, which was revealed only by the X-ray structure determination.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atoms bonded to carbon were included at geometrically calculated positions (C-H = 0.93-0.97 Å) and refined using a riding model with $U_{iso}(H) = 1.5U_{eq}(C-methyl)$ and $1.2U_{eq}(C)$ for other H atom. The crystal studied was refined as an inversion twin with the ratio of the twin components refining to 0.436 (12):0.564 (12).

Funding information

This work was supported by the Ministry of Education and Science of Ukraine (project No. 19BF037–05).

References

- Beldjoudi, Y., Haynes, D. A., Hayward, J. J., Manning, W. J., Pratt, D. R. & Rawson, J. M. (2013). *CrystEngComm*, **15**, 1107–1113.
- Bera, P., Butcher, R. J. & Saha, N. (1998). Chem. Lett. 27, 559-560.
- Boeré, R. T. (2016). CrystEngComm, 18, 2748-2756.
- Bruker (2008). SMART, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Chakraborty, P., Chandra, S. K. & Chakravorty, A. (1994). Inorg. Chem. 33, 4959–4965.
- Echenique-Errandonea, E., Zabala-Lekuona, A., Cepeda, J., Rodríguez-Diéguez, A., Seco, J. M., Oyarzabal, I. & Colacio, E. (2018). *Dalton Trans.* 48, 190–201.
- Gilbert, B. C., Silvester, S., Walton, P. H. & Whitwood, A. C. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 1891–1895.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Halcrow, M. A. & Christou, G. (1994). Chem. Rev. 94, 2421-2481.
- Jacob, C., Giles, G. L., Giles, N. M. & Sies, H. (2003). Angew. Chem. Int. Ed. 42, 4742–4758.

Table 2	
Experimental	details.

Crystal data	
Chemical formula	[Co ₂ (C ₉ H ₈ BrNOS) ₂ C ₁₈ H ₁₆ Br ₂ N ₂ -
	$O_2S_2)]\cdot C_3H_7NO$
M _r	1223.49
Crystal system, space group	Monoclinic, $P2_1$
Temperature (K)	296
a, b, c (Å)	11.532 (3), 17.714 (3), 12.192 (3)
β (°)	116.609 (6)
$V(Å^3)$	2226.9 (8)
Z	2
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	4.57
Crystal size (mm)	$0.33 \times 0.14 \times 0.11$
Data collection	
Diffractometer	Bruker SMART APEXII
Absorption correction	Numerical face-indexed
T_{\min}, \hat{T}_{\max}	0.314, 0.633
No. of measured, independent and	21805, 8890, 4960
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.067
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.630
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.051, 0.101, 0.94
No. of reflections	8890
No. of parameters	535
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.45, -0.46
Absolute structure	Refined as an inversion twin
Absolute structure parameter	0.436 (12)

Computer programs: *SMART* and *SAINT* (Bruker, 2008), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2016/4* (Sheldrick, 2015*b*), *SHELXTL* (Sheldrick, 2008) and *publCIF* (Westrip, 2010).

- Mitra, A., Banerjee, T., Roychowdhury, P., Chaudhuri, S., Bera, P. & Saha, N. (1997). *Polyhedron*, **16**, 3735–3742.
- Nesterov, D. S., Nesterova, O. V., Kokozay, V. N. & Pombeiro, A. J. L. (2014). *Eur. J. Inorg. Chem.* pp. 4496–4517.
- Prabhakaran, R., Geetha, A., Thilagavathi, M., Karvembu, R., Krishnan, V., Bertagnolli, H. & Natarajan, K. (2004). J. Inorg. Biochem. 98, 2131–2140.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Tan, Y., Jia, S., Hu, F., Liu, Y., Peng, L., Li, D. & Yan, H. (2018). J. Am. Chem. Soc. 140, 16893–16898.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2019). E75, 863-866 [https://doi.org/10.1107/S2056989019007217]

Crystal structure of bis(μ -{2-[(5-bromo-2-oxidobenzylidene)amino]ethyl}-sulfanido- $\kappa^3 N$,O,S){2,2'-[(3,4-dithiahexane-1,6-diyl)bis(nitrilomethanylyl-idene)]bis(4-bromophenolato)- $\kappa^4 O$,N,N',O'}dicobalt(III) dimethylformamide monosolvate

Julia A. Rusanova, Vladimir N. Kokozay and Olena Bondarenko

Computing details

Data collection: *SMART* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2016/4* (Sheldrick, 2015b); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

 $h = -14 \rightarrow 14$

 $k = -22 \longrightarrow 22$ $l = -15 \longrightarrow 13$

 $Bis(\mu-\{2-[(5-bromo-2-oxidobenzylidene)amino]ethyl\}sulfanido-\kappa^3N,O,S)\{2,2'-[(3,4-dithiahexane-1,6-diyl)bis(nitrilomethanylylidene)]bis(4-bromophenolato)-\kappa^4O,N,N',O'\}dicobalt(III) dimethylformamide monosolvate$

Crystal data

$[Co_{2}(C_{9}H_{8}BrNOS)_{2}C_{18}H_{16}Br_{2}N_{2}O_{2}S_{2})] \cdot C_{3}H_{7}NO$ $M_{r} = 1223.49$ Monoclinic, $P2_{1}$ a = 11.532 (3) Å b = 17.714 (3) Å c = 12.192 (3) Å $\beta = 116.609$ (6)° V = 2226.9 (8) Å ³	F(000) = 1212 $D_x = 1.825 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 920 reflections $\theta = 2.3-18.8^{\circ}$ $\mu = 4.57 \text{ mm}^{-1}$ T = 296 K Prizm, brown $0.22 \times 0.14 \times 0.11 \text{ mm}$
Z = 2	$0.33 \times 0.14 \times 0.11 \text{ mm}$
Data collection	
Bruker SMART APEXII diffractometer	21805 measured reflections 8890 independent reflections
Radiation source: sealed tube	4960 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.067$
φ and ω scans	$\theta_{\rm max} = 26.6^\circ, \ \theta_{\rm min} = 1.9^\circ$

Absorption correction: numerical face-indexed $T_{min} = 0.314, T_{max} = 0.633$

Refinement

Refinement on F^2 Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.051$	H-atom parameters constrained
$wR(F^2) = 0.101$	$w = 1/[\sigma^2(F_o^2) + (0.033P)^2]$
<i>S</i> = 0.94	where $P = (F_0^2 + 2F_c^2)/3$
8890 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
535 parameters	$\Delta ho_{ m max} = 0.45 \ { m e} \ { m \AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.46 \text{ e} \text{ Å}^{-3}$
	Absolute structure: Refined as an inversion twin
	Absolute structure parameter: 0.436 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. **Refinement**. Refined as a two-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

			_	II */II	
	χ	y	Z	U _{iso} ·/U _{eq}	
BR1	0.27868 (16)	0.76620 (8)	0.18956 (12)	0.0773 (5)	
BR2	0.57579 (17)	0.57341 (10)	1.36338 (12)	0.0919 (6)	
BR3	0.93442 (12)	0.64978 (8)	0.23531 (9)	0.0583 (4)	
BR4	1.20396 (17)	0.42429 (7)	1.46454 (11)	0.0774 (5)	
CO1	0.94686 (14)	0.55635 (7)	0.82744 (11)	0.0349 (4)	
CO2	0.67358 (15)	0.63351 (8)	0.81416 (12)	0.0386 (4)	
S1	0.7359 (3)	0.57089 (15)	0.6932 (2)	0.0408 (7)	
S2	0.8872 (3)	0.63423 (16)	0.9432 (2)	0.0424 (7)	
S3	1.2234 (4)	0.38961 (19)	0.7811 (3)	0.0677 (10)	
S4	1.3413 (4)	0.4697 (2)	0.8932 (3)	0.0722 (11)	
01	0.4946 (7)	0.6309 (4)	0.6944 (7)	0.050 (2)	
O2	0.6291 (8)	0.6884 (4)	0.9258 (7)	0.049 (2)	
O3	0.9688 (7)	0.6388 (4)	0.7410 (5)	0.0390 (18)	
O4	0.9199 (8)	0.4780 (4)	0.9197 (6)	0.046 (2)	
05	0.177 (3)	0.8614 (10)	0.602 (2)	0.260 (15)	
N1	0.7010 (9)	0.7301 (5)	0.7595 (8)	0.040 (2)	
N2	0.6434 (9)	0.5376 (4)	0.8673 (7)	0.038 (2)	
N3	0.9625 (8)	0.4804 (5)	0.7185 (7)	0.036 (2)	
N4	1.1350 (8)	0.5635 (5)	0.9465 (7)	0.035 (2)	
N5	0.356 (2)	0.8298 (13)	0.7453 (17)	0.143 (8)	
C1	0.4547 (11)	0.6629 (6)	0.5875 (11)	0.044 (3)	
C2	0.3323 (12)	0.6388 (7)	0.4908 (13)	0.059 (3)	
H2	0.285037	0.601437	0.506436	0.071*	
C3	0.2849 (12)	0.6700 (7)	0.3769 (13)	0.065 (4)	
Н3	0.207682	0.651838	0.314888	0.078*	
C4	0.3498 (14)	0.7284 (7)	0.3514 (12)	0.057 (4)	
C5	0.4626 (12)	0.7542 (6)	0.4398 (10)	0.050 (3)	

Н5	0.505155	0.793335	0.421852	0.060*
C6	0.5185 (11)	0.7231 (6)	0.5601 (10)	0.042 (3)
C7	0.6325 (12)	0.7562 (6)	0.6516 (10)	0.045 (3)
H7	0.660225	0.801060	0.631401	0.055*
C8	0.8050 (12)	0.7758 (6)	0.8552 (10)	0.053 (3)
H8A	0.776427	0.793289	0.914552	0.064*
H8B	0.823098	0.819709	0.817832	0.064*
C9	0.9255 (12)	0.7296 (6)	0.9187 (10)	0.051 (3)
H9A	0.981261	0.752557	0.996978	0.061*
H9B	0.972097	0.728743	0.869323	0.061*
C10	0.6155 (11)	0.6597 (6)	1.0181 (9)	0.038 (3)
C11	0.5939 (11)	0.7097 (7)	1.0972 (10)	0.053 (3)
H11	0.586732	0.761231	1.081041	0.063*
C12	0.5833 (13)	0.6823 (8)	1.1993 (11)	0.062 (4)
H12	0.571389	0.716067	1.251758	0.074*
C13	0.5899 (13)	0.6072 (8)	1.2237 (10)	0.054 (3)
C14	0.6085 (11)	0.5577 (7)	1.1483 (9)	0.050 (3)
H14	0.612356	0.506339	1.165184	0.060*
C15	0.6221 (10)	0.5824 (6)	1.0453 (8)	0.033 (3)
C16	0.6296 (11)	0.5264 (6)	0.9648 (10)	0.042 (3)
H16	0.623739	0.476383	0.984981	0.051*
C17	0.6270(13)	0.4697 (6)	0.7917 (10)	0.060 (4)
H17A	0.541320	0.448716	0.767656	0.071*
H17B	0.690367	0.432056	0.840066	0.071*
C18	0.6431 (12)	0.4873 (6)	0.6793 (10)	0.050 (3)
H18A	0.558072	0.493104	0.610353	0.060*
H18B	0.685403	0.444890	0.661665	0.060*
C19	0.9562 (10)	0.6378 (6)	0.6297 (9)	0.034 (2)
C20	0.9507 (13)	0.7066 (6)	0.5724 (10)	0.052 (3)
H20	0.951716	0.751035	0.613426	0.062*
C21	0.9438 (12)	0.7111 (6)	0.4553 (10)	0.052 (3)
H21	0.940160	0.757612	0.418564	0.062*
C22	0.9424 (10)	0.6445 (7)	0.3951 (9)	0.042 (3)
C23	0.9456 (10)	0.5774 (7)	0.4461 (8)	0.041 (3)
H23	0.943115	0.533509	0.403245	0.049*
C24	0.9527 (10)	0.5724 (6)	0.5641 (8)	0.038 (3)
C25	0.9568 (10)	0.4979 (6)	0.6133 (9)	0.036 (3)
H25	0.955114	0.457710	0.563470	0.043*
C26	0.9674 (12)	0.3996 (6)	0.7432 (10)	0.047 (3)
H26A	0.941201	0.372000	0.667030	0.057*
H26B	0.906448	0.387662	0.775484	0.057*
C27	1.1019 (12)	0.3743 (6)	0.8341 (11)	0.057 (3)
H27A	1.099336	0.320973	0.850905	0.068*
H27B	1.127029	0.401447	0.910528	0.068*
C28	0.9865 (12)	0.4679 (6)	1.0383 (10)	0.039 (3)
C29	0.9315 (12)	0.4238 (6)	1.1010 (9)	0.050 (3)
H29	0.849861	0.402480	1.056680	0.060*
C30	0.9965 (15)	0.4120 (6)	1.2256 (11)	0.056 (4)

H30	0.958376	0.383101	1.264395	0.067*
C31	1.1165 (14)	0.4423 (6)	1.2924 (10)	0.049 (3)
C32	1.1763 (12)	0.4823 (6)	1.2377 (10)	0.049 (3)
H32	1.260004	0.500364	1.283822	0.059*
C33	1.1110 (12)	0.4965 (6)	1.1100 (9)	0.039 (3)
C34	1.1809 (11)	0.5396 (6)	1.0563 (10)	0.040 (3)
H34	1.267389	0.550643	1.107427	0.048*
C35	1.2272 (10)	0.6034 (6)	0.9148 (9)	0.043 (3)
H35A	1.304458	0.614881	0.989742	0.051*
H35B	1.188873	0.650857	0.875868	0.051*
C36	1.2666 (11)	0.5590 (7)	0.8294 (10)	0.054 (3)
H36A	1.326841	0.589102	0.812178	0.065*
H36B	1.190367	0.550140	0.752367	0.065*
C41	0.303 (2)	0.7791 (13)	0.798 (2)	0.238 (18)
H41A	0.213588	0.770237	0.742278	0.356*
H41B	0.309157	0.799792	0.873079	0.356*
H41C	0.349888	0.732326	0.814585	0.356*
C42	0.4848 (19)	0.8462 (12)	0.8032 (18)	0.142 (9)
H42A	0.506836	0.877992	0.751540	0.214*
H42B	0.533990	0.800281	0.820119	0.214*
H42C	0.504510	0.871953	0.878817	0.214*
C43	0.284 (4)	0.857 (3)	0.637 (6)	0.33 (4)
H43	0.321891	0.873753	0.588075	0.400*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
BR1	0.0733 (11)	0.0729 (9)	0.0560 (8)	0.0139 (8)	0.0026 (8)	0.0018 (8)
BR2	0.1197 (15)	0.1217 (13)	0.0522 (8)	0.0358 (12)	0.0545 (9)	0.0168 (9)
BR3	0.0510 (8)	0.0923 (10)	0.0329 (6)	0.0013 (8)	0.0199 (6)	0.0129 (7)
BR4	0.1218 (15)	0.0692 (9)	0.0374 (7)	0.0211 (9)	0.0323 (8)	0.0133 (7)
CO1	0.0418 (10)	0.0362 (8)	0.0277 (7)	-0.0014 (8)	0.0165 (7)	0.0009(7)
CO2	0.0442 (10)	0.0364 (8)	0.0394 (8)	-0.0026 (8)	0.0224 (8)	-0.0026 (7)
S1	0.0432 (19)	0.0482 (18)	0.0303 (14)	0.0017 (15)	0.0158 (14)	0.0006 (14)
S2	0.0497 (19)	0.0478 (17)	0.0300 (13)	-0.0016 (16)	0.0181 (14)	-0.0026 (14)
S3	0.074 (3)	0.061 (2)	0.073 (2)	0.019 (2)	0.037 (2)	0.0007 (19)
S4	0.050(3)	0.077 (3)	0.081 (2)	0.012 (2)	0.021 (2)	0.009(2)
01	0.044 (5)	0.046 (5)	0.065 (5)	-0.010 (4)	0.029 (5)	0.001 (4)
O2	0.067 (6)	0.036 (4)	0.060 (5)	-0.002 (4)	0.042 (5)	-0.005 (4)
O3	0.056 (5)	0.035 (4)	0.026 (4)	-0.008 (4)	0.019 (4)	-0.010 (3)
O4	0.059 (6)	0.048 (5)	0.032 (4)	-0.007 (4)	0.020 (4)	-0.003 (4)
O5	0.53 (5)	0.108 (13)	0.23 (2)	0.05 (2)	0.24 (3)	0.052 (13)
N1	0.040 (6)	0.042 (5)	0.039 (5)	-0.011 (5)	0.018 (5)	-0.007(5)
N2	0.041 (6)	0.038 (5)	0.036 (5)	-0.001 (4)	0.020 (5)	-0.002 (4)
N3	0.042 (6)	0.035 (5)	0.031 (5)	0.000 (4)	0.018 (5)	0.004 (4)
N4	0.037 (6)	0.035 (5)	0.031 (5)	-0.013 (5)	0.014 (4)	-0.007 (4)
N5	0.105 (19)	0.162 (17)	0.121 (15)	0.064 (15)	0.015 (14)	0.032 (13)
C1	0.037 (8)	0.034 (7)	0.066 (8)	0.002 (6)	0.028 (7)	0.001 (6)

supporting information

C2	0.036 (8)	0.050 (8)	0.086 (10)	-0.005 (7)	0.021 (8)	0.000 (8)
C3	0.038 (8)	0.067 (10)	0.069 (10)	0.000 (8)	0.004 (8)	-0.015 (8)
C4	0.052 (10)	0.039 (7)	0.067 (9)	0.006 (7)	0.015 (8)	-0.011 (7)
C5	0.051 (9)	0.039 (7)	0.047 (7)	0.006 (7)	0.010 (7)	0.001 (6)
C6	0.042 (8)	0.031 (6)	0.049 (7)	-0.006 (6)	0.017 (7)	-0.005 (6)
C7	0.050 (8)	0.041 (7)	0.041 (7)	-0.017 (6)	0.017 (7)	0.003 (6)
C8	0.069 (10)	0.037 (7)	0.048 (7)	-0.016 (7)	0.021 (7)	-0.001 (6)
C9	0.057 (9)	0.043 (7)	0.050 (7)	-0.003 (6)	0.023 (7)	-0.012 (6)
C10	0.035 (7)	0.043 (7)	0.035 (6)	-0.003 (5)	0.016 (5)	-0.008 (6)
C11	0.044 (9)	0.056 (8)	0.054 (8)	-0.006 (7)	0.017 (7)	-0.019 (7)
C12	0.063 (11)	0.090 (12)	0.042 (8)	0.006 (8)	0.032 (8)	-0.017 (7)
C13	0.058 (10)	0.064 (9)	0.038 (7)	0.005 (7)	0.021 (7)	-0.003 (7)
C14	0.045 (8)	0.062 (8)	0.045 (7)	0.005 (7)	0.022 (6)	0.004 (7)
C15	0.037 (7)	0.037 (7)	0.022 (5)	-0.009 (5)	0.012 (5)	-0.009 (5)
C16	0.033 (7)	0.049 (7)	0.043 (7)	0.002 (6)	0.015 (6)	0.007 (6)
C17	0.079 (11)	0.050 (8)	0.068 (8)	-0.013 (7)	0.050 (8)	-0.019 (7)
C18	0.047 (8)	0.050 (7)	0.048 (7)	-0.015 (6)	0.018 (7)	-0.018 (6)
C19	0.043 (7)	0.028 (6)	0.033 (6)	-0.004 (6)	0.018 (5)	-0.002 (6)
C20	0.072 (10)	0.037 (7)	0.038 (7)	-0.014 (6)	0.016 (7)	-0.014 (6)
C21	0.064 (10)	0.038 (7)	0.040 (7)	-0.006 (7)	0.013 (7)	0.021 (6)
C22	0.034 (7)	0.057 (8)	0.032 (6)	0.003 (6)	0.013 (5)	0.007 (7)
C23	0.050 (8)	0.045 (7)	0.027 (6)	0.001 (6)	0.018 (6)	-0.002 (6)
C24	0.039 (7)	0.044 (7)	0.034 (6)	0.005 (6)	0.019 (6)	0.004 (6)
C25	0.036 (7)	0.040 (7)	0.037 (7)	0.009 (6)	0.021 (6)	0.005 (5)
C26	0.060 (10)	0.040 (7)	0.043 (7)	-0.009 (6)	0.023 (7)	-0.004 (6)
C27	0.065 (10)	0.037 (7)	0.061 (8)	-0.003 (7)	0.022 (8)	0.007 (6)
C28	0.047 (9)	0.032 (6)	0.039 (7)	-0.001 (6)	0.021 (7)	0.000 (6)
C29	0.062 (9)	0.046 (7)	0.040 (7)	0.000 (7)	0.021 (7)	0.009 (6)
C30	0.096 (12)	0.040 (8)	0.048 (8)	-0.004 (8)	0.045 (9)	0.011 (6)
C31	0.082 (11)	0.032 (7)	0.036 (7)	0.024 (7)	0.029 (8)	0.005 (6)
C32	0.061 (9)	0.047 (7)	0.041 (7)	0.019 (7)	0.024 (7)	0.007 (6)
C33	0.052 (9)	0.032 (6)	0.037 (7)	0.010 (6)	0.023 (7)	0.003 (5)
C34	0.036 (7)	0.043 (7)	0.038 (7)	0.000 (6)	0.013 (6)	-0.005 (6)
C35	0.031 (7)	0.045 (7)	0.048 (7)	-0.004 (6)	0.013 (6)	0.002 (6)
C36	0.049 (8)	0.062 (8)	0.058 (7)	-0.006 (7)	0.029 (7)	0.006 (7)
C41	0.14 (2)	0.21 (3)	0.29 (3)	-0.01 (2)	0.03 (2)	0.20 (3)
C42	0.072 (16)	0.21 (2)	0.118 (16)	0.041 (15)	0.014 (13)	-0.031 (15)
C43	0.14 (4)	0.40 (7)	0.50 (9)	0.02 (4)	0.18 (5)	-0.02 (6)

Geometric parameters (Å, °)

BR1—C4	1.889 (13)	C10-C11	1.411 (14)	
BR2—C13	1.880 (12)	C11—C12	1.391 (15)	
BR3—C22	1.911 (9)	C11—H11	0.9300	
BR4—C31	1.904 (10)	C12—C13	1.358 (16)	
CO1O3	1.883 (6)	C12—H12	0.9300	
CO104	1.898 (7)	C13—C14	1.355 (15)	
CO1—N3	1.955 (8)	C14—C15	1.403 (13)	

CO1—N4	2.003 (9)	C14—H14	0.9300
CO1—S1	2.258 (3)	C15—C16	1.425 (13)
CO1—S2	2.289 (3)	C16—H16	0.9300
CO2—N2	1.905 (8)	C17—C18	1.497 (14)
CO2—N1	1.913 (9)	C17—H17A	0.9700
CO2—O2	1.920 (7)	C17—H17B	0.9700
CO2—O1	1.922 (8)	C18—H18A	0.9700
CO2—S1	2.207 (3)	C18—H18B	0.9700
CO2—S2	2.253 (3)	C19—C20	1.392 (14)
S1—C18	1.790 (11)	C19—C24	1.399 (14)
S2—C9	1.805 (11)	C20—C21	1.396 (14)
S3—C27	1.807 (13)	С20—Н20	0.9300
S3—S4	2.016 (5)	C21—C22	1.385 (15)
S4—C36	1.803 (12)	C21—H21	0.9300
O1—C1	1.302 (12)	C22—C23	1.335 (14)
O2—C10	1.306 (11)	C23—C24	1.406 (12)
O3—C19	1.299 (10)	С23—Н23	0.9300
O4—C28	1.311 (12)	C24—C25	1.442 (14)
O5—C43	1.11 (5)	С25—Н25	0.9300
N1—C7	1.279 (12)	C26—C27	1.515 (15)
N1—C8	1.484 (13)	C26—H26A	0.9700
N2—C16	1.283 (12)	C26—H26B	0.9700
N2—C17	1.475 (12)	С27—Н27А	0.9700
N3—C25	1.292 (12)	С27—Н27В	0.9700
N3—C26	1.459 (12)	C28—C33	1.399 (15)
N4—C34	1.271 (11)	C28—C29	1.426 (14)
N4—C35	1.465 (12)	C29—C30	1.376 (15)
N5—C43	1.30 (6)	С29—Н29	0.9300
N5—C42	1.36 (3)	C30—C31	1.363 (17)
N5—C41	1.39 (3)	С30—Н30	0.9300
C1—C6	1.418 (14)	C31—C32	1.355 (16)
C1—C2	1.440 (16)	C32—C33	1.415 (14)
C2—C3	1.361 (16)	С32—Н32	0.9300
С2—Н2	0.9300	C33—C34	1.461 (14)
C3—C4	1.391 (17)	C34—H34	0.9300
С3—Н3	0.9300	C35—C36	1.527 (14)
C4—C5	1.344 (16)	С35—Н35А	0.9700
C5—C6	1.422 (14)	С35—Н35В	0.9700
С5—Н5	0.9300	С36—Н36А	0.9700
C6—C7	1.415 (15)	С36—Н36В	0.9700
С7—Н7	0.9300	C41—H41A	0.9600
C8—C9	1.496 (15)	C41—H41B	0.9600
C8—H8A	0.9700	C41—H41C	0.9600
C8—H8B	0.9700	C42—H42A	0.9600
С9—Н9А	0.9700	C42—H42B	0.9600
С9—Н9В	0.9700	C42—H42C	0.9600
C10—C15	1.403 (15)	C43—H43	0.9300

		~~~ ~~	
O3—CO1—O4	176.0 (3)	C13—C14—C15	121.4 (12)
O3—CO1—N3	94.4 (3)	C13—C14—H14	119.3
O4—CO1—N3	89.4 (3)	C15—C14—H14	119.3
O3—CO1—N4	89.0 (3)	C14—C15—C10	119.9 (10)
O4—CO1—N4	91.6 (3)	C14—C15—C16	117.8 (10)
N3—CO1—N4	97.8 (4)	C10-C15-C16	122.0 (9)
03—C01—S1	82.9 (2)	N2-C16-C15	127.0 (10)
04-C01-S1	95 9 (3)	N2-C16-H16	116.5
N3_C01_\$1	89.1 (3)	$C_{15}$ $C_{16}$ $H_{16}$	116.5
$N_{4} = CO1 = S1$	160.9(2)	$N_2 = C_{17} = C_{18}$	110.3
N4-C01-S1	109.8(3)	$N_2 = C_1 7 = C_{10}$	111.7 (9)
03-001-52	91.7 (2)	$N_2 - C_1 / - H_1 / A$	109.3
04-001-82	84.3 (2)	CI8—CI/—HI/A	109.3
N3—CO1—S2	168.1 (3)	N2—C17—H17B	109.3
N4—CO1—S2	92.4 (2)	С18—С17—Н17В	109.3
S1—CO1—S2	81.64 (11)	H17A—C17—H17B	107.9
N2—CO2—N1	179.1 (4)	C17—C18—S1	113.5 (8)
N2—CO2—O2	93.6 (3)	C17—C18—H18A	108.9
N1—CO2—O2	86.2 (3)	S1—C18—H18A	108.9
N2-CO2-O1	86.5 (4)	C17—C18—H18B	108.9
N1-CO2-O1	92.6 (4)	S1—C18—H18B	108.9
O2—CO2—O1	90.8 (3)	H18A—C18—H18B	107.7
N2—CO2—S1	86.7 (3)	O3—C19—C20	118.1 (9)
N1—CO2—S1	93.6 (3)	O3—C19—C24	124.8 (9)
02 - C02 - 81	176 9 (3)	$C_{20}$ $C_{19}$ $C_{24}$	1171(8)
01 - C02 - S1	923(2)	$C_{19} - C_{20} - C_{21}$	1221(10)
$N_{2} = C_{02} = S_{1}^{2}$	94.4(3)	$C_{19} = C_{20} = H_{20}$	118.9
N1 CO2 S2	86 5 (3)	$C_{21}$ $C_{20}$ $H_{20}$	118.0
$\Omega_1 = CO_2 = S_2$	03.3(3)	$C_{21} = C_{20} = 1120$	118.7
02 - 02 - 32	33.3(3)	$C_{22} = C_{21} = C_{20}$	110.4 (9)
01 - 02 - 52	1/3.7(2)	$C_{22} = C_{21} = H_{21}$	120.8
S1 - C02 - S2	85.57 (11)		120.8
C18—S1—C02	96.9 (4)	C23—C22—C21	121.3 (9)
	112.2 (4)	C23—C22—BR3	119.8 (8)
CO2—S1—CO1	98.07 (11)	C21—C22—BR3	118.8 (8)
C9—S2—CO2	99.3 (4)	C22—C23—C24	120.6 (10)
C9—S2—CO1	107.4 (4)	С22—С23—Н23	119.7
CO2—S2—CO1	95.88 (11)	C24—C23—H23	119.7
C27—S3—S4	105.0 (4)	C19—C24—C23	120.4 (10)
C36—S4—S3	106.2 (4)	C19—C24—C25	122.2 (8)
C1—O1—CO2	121.8 (7)	C23—C24—C25	117.4 (10)
C10—O2—CO2	125.9 (7)	N3—C25—C24	127.6 (10)
C19—O3—CO1	126.4 (6)	N3—C25—H25	116.2
C28—O4—CO1	125.7 (7)	C24—C25—H25	116.2
C7—N1—C8	121.4 (9)	N3—C26—C27	111.9 (9)
C7—N1—CO2	124.0 (8)	N3—C26—H26A	109.2
C8—N1—CO2	114.5 (7)	C27—C26—H26A	109.2
C16 - N2 - C17	114.7 (9)	N3—C26—H26B	109.2
C16 - N2 - CO2	124 8 (8)	C27_C26_H26B	109.2
C17 N2 C02	121.0 (0)	$H_{26} = C_{26} = H_{26}$	107.9
01/-112-002	120.T (U)	1120A 020 1120D	10/.7

C25—N3—C26	114.9 (9)	C26—C27—S3	113.4 (8)
C25—N3—CO1	122.0 (7)	С26—С27—Н27А	108.9
C26—N3—CO1	122.8 (7)	S3—C27—H27A	108.9
C34—N4—C35	115.4 (9)	С26—С27—Н27В	108.9
C34—N4—CO1	123.2 (8)	S3—C27—H27B	108.9
C35—N4—CO1	121.2 (6)	H27A—C27—H27B	107.7
C43—N5—C42	120 (4)	04-C28-C33	124.8 (10)
C43—N5—C41	120 (4)	04-C28-C29	119.0 (11)
C42 - N5 - C41	1200(19)	$C_{33}$ $C_{28}$ $C_{29}$	116.2(10)
01-C1-C6	125.0(17) 125.1(11)	$C_{30}$ $C_{29}$ $C_{28}$	121.5(12)
01 - C1 - C2	123.1(11) 117.9(10)	$C_{30}$ $C_{29}$ $H_{29}$	110.3
$C_{1} = C_{1} = C_{2}$	117.9(10) 116.9(11)	$C_{28}$ $C_{29}$ $H_{29}$	119.3
$C_0 = C_1 = C_2$	120.9(11)	$C_{20} = C_{20} = C_{20} = C_{20}$	119.5 120.4(11)
$C_{3} = C_{2} = C_{1}$	120.9 (12)	$C_{31} = C_{30} = C_{29}$	120.4 (11)
$C_{1} = C_{2} = H_{2}$	119.0	$C_{20}$ $C_{20}$ $H_{20}$	119.0
$C_1 = C_2 = H_2$	119.0 121.2(12)	$C_{29} = C_{30} = H_{30}$	119.0
$C_2 = C_3 = C_4$	121.3 (12)	$C_{32} = C_{31} = C_{30}$	121.0(11)
$C_2 = C_3 = H_3$	119.4	$C_{32}$ — $C_{31}$ —BR4	119.7 (11)
C4—C3—H3	119.4	$C_{30}$ — $C_{31}$ —BR4	119.2 (10)
$C_{5}$	119.9 (12)	$C_{31} = C_{32} = C_{33}$	119.8 (12)
C5—C4—BRI	121.9 (10)	C31—C32—H32	120.1
C3—C4—BRI	118.2 (10)	С33—С32—Н32	120.1
C4—C5—C6	121.6 (12)	C28—C33—C32	121.0 (11)
C4—C5—H5	119.2	C28—C33—C34	121.8 (9)
С6—С5—Н5	119.2	C32—C33—C34	117.2 (11)
C7—C6—C1	121.5 (10)	N4—C34—C33	126.4 (11)
C7—C6—C5	119.0 (10)	N4—C34—H34	116.8
C1—C6—C5	119.4 (11)	C33—C34—H34	116.8
N1—C7—C6	126.1 (11)	N4—C35—C36	113.9 (8)
N1—C7—H7	117.0	N4—C35—H35A	108.8
С6—С7—Н7	117.0	С36—С35—Н35А	108.8
N1—C8—C9	110.1 (9)	N4—C35—H35B	108.8
N1—C8—H8A	109.6	С36—С35—Н35В	108.8
С9—С8—Н8А	109.6	H35A—C35—H35B	107.7
N1—C8—H8B	109.6	C35—C36—S4	112.8 (7)
С9—С8—Н8В	109.6	С35—С36—Н36А	109.0
H8A—C8—H8B	108.1	S4—C36—H36A	109.0
C8—C9—S2	111.0 (8)	С35—С36—Н36В	109.0
С8—С9—Н9А	109.4	S4—C36—H36B	109.0
S2—C9—H9A	109.4	H36A—C36—H36B	107.8
С8—С9—Н9В	109.4	N5—C41—H41A	109.5
S2—C9—H9B	109.4	N5—C41—H41B	109.5
H9A—C9—H9B	108.0	H41A—C41—H41B	109.5
O2—C10—C15	124.6 (9)	N5—C41—H41C	109.5
O2—C10—C11	118.1 (10)	H41A—C41—H41C	109.5
C15—C10—C11	117.3 (10)	H41B—C41—H41C	109.5
C12—C11—C10	120.4 (12)	N5—C42—H42A	109.5
C12—C11—H11	119.8	N5—C42—H42B	109.5
C10-C11-H11	119.8	H42A—C42—H42B	109.5

## supporting information

C13—C12—C11	121.3 (11)	N5—C42—H42C	109.5
C13—C12—H12 C11—C12—H12	119.4	H42A—C42—H42C H42B—C42—H42C	109.5
C14—C13—C12 C14—C13—BP2	119.7 (11)	O5—C43—N5 O5 C43 H43	121 (6) 119 7
C12—C13—BR2	119.4 (9)	N5—C43—H43	119.7

## Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C42—H42 <i>B</i> ···O2	0.96	2.35	3.25 (2)	157
C25—H25···O5 ⁱ	0.93	2.56	3.39 (2)	149
C3—H3···Br3 ⁱⁱ	0.93	2.85	3.633 (13)	142
C17—H17 $B$ ···Br1 ⁱ	0.97	3.00	3.743 (11)	134

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+1; (ii) *x*-1, *y*, *z*.