

Received 7 May 2019 Accepted 21 May 2019

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy

Keywords: isoxazolines; liquid crystals; [3 + 2] cycloaddition; single crystals; crystal structure.

CCDC reference: 1917652

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 5-(4-*tert*-butoxyphenyl)-3-(4-*n*-octyloxyphenyl)-4,5-dihydroisoxazole

Eric S. Sales,^a Adailton J. Bortoluzzi^b and Aloir A. Merlo^a*

^aInstituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, 91501 - 970 -Porto Alegre - RS, Brazil, and ^bDepto. de Química - Campus Trindade, Universidade Federal de Santa Catarina - UFSC, 88040-900 - Florianópolis, Santa Catarina, Brazil. *Correspondence e-mail: aloir.merlo@ufrgs.br

The molecule of the title compound, $C_{27}H_{37}NO_3$, was prepared by [3 + 2] 1,3dipolar cycloaddition of 4-*n*-octylphenylnitrile oxide and 4-*tert*-butoxystyrene, the latter compound being a very useful intermediate to the synthesis of liquidcrystalline materials. In the molecule, the benzene rings of the *n*-octyloxyphenyl and *tert*-butoxyphenyl groups form dihedral angles of 2.83 (7) and 85.49 (3)°, respectively, with the mean plane of the isoxazoline ring. In the crystal, molecules are linked by weak C-H···O hydrogen interactions into chains running parallel to the *b* axis.

1. Chemical context

Nitrogen- and oxygen-containing heterocycles known as Δ^2 isoxazolines constitute an important class of five-membered heterocycles which have significant synthetic and biological applications (Pirrung et al., 2002; Choe et al., 2016; Huang et al., 2017; Stosic-Grujicic et al., 2007). Isoxazolines display diverse biological and pharmacological properties. This unique class of pharmacophores occurs naturally in many therapeutic agents. The chlorinated isoxazoline antitumor antibiotics U-42,126 and U-43,795 isolated from Streptomyces sviceus, exhibit significant activity against L 1210 lymphoid leukaemia in mice (Martin et al., 1975; Hanka et al., 1975). Inspired by this class of natural antibiotics, a new library of natural products probes have been designed, synthesized and tested for bacterial proteome analysis (Orth et al., 2010). Nitrofuranylisoxazolines with increased proteolytic stability have been investigated, leading to the discovery of several compounds with potent in vitro anti-tuberculosis activity (Tangallapally et al., 2007). Trihalomethyl-pyrimidine sugarmodified nucleosides containing the isoxazoline ring were synthesized and their in vitro antiproliferactive activity evaluated against human cancer cell lines and one of them was three times more selective than MXT standard anticancer drugs (Lobo et al., 2015). Isoxazolines have proven be an excellent GABA receptors, as demonstrated by Ozoe et al. (2010) who reported isoxazoline A1443 to exhibit antiparasitic activity against cat fleas and dog ticks comparable to that of the commercial ectoparasiticide fipronil. From a synthetic point of view, Δ^2 -isoxazolines constitute an important way to synthesize many natural products with diverse and intricate molecular connectivity. Bafilomycin A1 and erythromycin A, reported by the Carreira group, are examples of the versatility of isoxazoline in the total synthesis of natural products (Kleinbeck & Carreira 2009; Muri & Carreira 2009).

Previously we have demonstrated that [3 + 2] 1,3-dipolar cvcloaddition of arvlnitrile oxide to alkene is a excellent route to access different 3,5-disubstituted isoxazolines (Tavares et al., 2010, 2016; Fritsch & Merlo, 2016; Lopes et al., 2018). Using this methodology, a collection of isoxazolines can be constructed with specific applications ranging from biological compounds through use as intermediates in organic synthesis to liquid-crystal materials (El-Khatatneh et al., 2017; Fader & Carreira, 2004; Bezborodov et al., 2004). With this purpose in mind, we have established a concise route to the synthesis of liquid crystals based on isoxazolines and their full characterization. The [3 + 2] 1,3-dipolar cycloaddition requires two partners, one being nitrile oxide (1,3-dipole) obtained from oxime correspondent and other is an alkene (Huisgen, 1976). Thus, considering the liquid crystals thematic, we focused our attention on the preparation of distorted rod-shaped molecules based on isoxazolines using 4-t-butoxyphenyl styrene as the dipholarophile and 4-n-alkoxyphenyl nitrile oxide as the 1,3-dipole. The title compound was synthesized in three steps starting from 4-hydroxybenzaldehyde by alkylation reaction (85% yield), oximation reaction (89% yield) and [3 + 2] 1,3dipolar cycloaddition (51% yield).

2. Structural commentary

In the molecule of the title compound (Fig. 1), the isoxazoline ring adopts a twist conformation, with puckering parameters $q_2 = 0.1522 (11) \text{ Å}$ and $\Phi_2 = 149.6 (4)^{\circ}$. The mean plane through the isoxazoline ring [maximum deviation 0.1113 (12) Å for atom C7] is approximately coplanar with the C10–C15 aromatic ring of the *n*-octyloxyphenyl group [dihedral angle = 2.83 (7)°], whereas it is almost perpendicular to the C1–C6 benzene ring of the *t*-butoxyphenyl group [dihedral angle = 85.49 (3)°]. The C16–C23 aliphatic chain shows a regular extended conformation.

3. Supramolecular features

In the crystal, molecules of Δ^2 -isoxazolines are accommodated in sheets parallel to (010). In each sheet, centrosymmetrically related molecules are connected by a pair of

Figure 1

ORTEP plot of the title compound showing displacement ellipsoids drawn at the 40% probability level. Hydrogen atoms are omitted for clarity.

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C26-H26B\cdots O2^{i}$ $C15-H15\cdots O1^{ii}$	0.98 0.95	2.56 2.61	3.4652 (14) 3.5542 (12)	154 173

Symmetry codes: (i) -x + 3, -y + 2, -z; (ii) -x + 3, -y + 1, -z.

weak non-classical C-H···O hydrogen bonds (Table 1), forming dimeric units (Fig. 2), which are further linked into chains parallel to the *b* axis by weak C-H···O hydrogen bonds involving the oxygen atoms of the *t*-butoxy group as acceptors. No C-H··· π contacts or π - π interactions involving the benzene rings of the 3,5-diarylisoxazoline system are observed.

4. Database survey

A search of the 3,5-diarylisoxazoline moiety revealed 22 entries in the Cambridge Structural Database (Version 2.0.1, update of February 2019; Groom *et al.*, 2016). However, when the search was restricted to *para*-diether-3,5-diarylisoxazoline, just one entry was retrieved. The match AWUYUN is associated with the work published by Samshuddin *et al.* (2011), which describes the crystal structure of 3,5-*bis*(4-methoxy-phenyl)-4,5-dihydroisoxazole. In both cases, the five-membered isoxazoline ring is coplanar with the phenyl ring bonded to the nitrogen side, whereas the phenyl ring on the oxygen side is very twisted, with dihedral angles between the mean planes of the phenyl rings close to orthogonal.

5. Synthesis and crystallization

4-(*n*-Octyloxy)benzaldehyde and 4-(*n*-octyloxy)benzaldehyde oxime were prepared according to the procedures reported by Passo *et al.* (2008) and Tavares *et al.* (2009). The general procedure for the preparation of 5-[4-(*tert*-butoxy)phenyl]-3-[4-(octyloxy)phenyl]-4,5-dihydroisoxazole is described as follows: To a solution of 4-*n*-octyloxybenzaldehyde oxime (5 mmol, 1,246 g) and *N*-chlorosuccinimide (5.35 mmol, 0.72 g) in THF (40 mL) was added 1 drop of concentrated HCl. The final solution was stirred by additional 30 min and cooled to 273 K. Then 4-*tert*-butoxystirene (5 mmol, 0.9 mL)

Figure 2 Hydrogen-bonding interactions (dashed lines) in the title compound.

research communications

 Table 2

 Experimental details.

Crystal data	
Chemical formula	C ₂₇ H ₃₇ NO ₃
M _r	423.57
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	173
a, b, c (Å)	5.8493 (1), 10.7773 (3), 19.3201 (6)
α, β, γ (°)	92.325 (1), 91.806 (1), 94.145 (1)
$V(Å^3)$	1213.02 (5)
Ζ	2
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.07
Crystal size (mm)	$0.50 \times 0.20 \times 0.12$
Data collection	
Diffractometer	Bruker APEXII DUO
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2012)
T + T	0.711 0.747
No. of measured, independent and	10857, 7607, 6342
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.009
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.725
Refinement	
$R[F^2 > 2\sigma(F^2)] wR(F^2) S$	0.049 0.140 1.03
No of reflections	7607
No. of parameters	284
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.40, -0.19
· ······· / ······ /	

Computer programs: *APEX2* and *SAINT* (Bruker, 2012), *SHELXTL* (Sheldrick, 2008), *SHELXL2018* (Sheldrick, 2015), *PLATON* (Spek, 2009), *Mercury* (Macrae *et al.*, 2008) and *publCIF* (Westrip, 2010).

in triethylamine (15 mmol, 2.1 mL) was added dropwise, followed by stirring for one h at room temperature. The final solution was filtered and THF was removed by evaporation. The crude product was dissolved in CH_2Cl_2 (2 ×100mL) and washed with 1 M HCl (3 \times 50 mL), saturated NaHCO₃ (1 \times 50 mL) and brine (1 \times 50 mL). The organic solution was dried over Na₂SO₄, the solvent was removed by evaporation and the yellow solid was recrystallized in ethanol. Single crystals of the title compound were collected on slow evaporation of the solvent. Data collected for 5-[4-(tert-butoxy)phenyl)-3-[4-(noctyloxy)phenyl]-4,5-dihydro-isoxazole: white solid; yield: 51%; m.p. 335–337 K; ¹H NMR (300 MHz, CDCl₃), δ (ppm): 7.65-7.58 (m, 2H), 7.32-7.26 (m, 2H), 7.02-6.95 (m, 2H), 6.95-6.88 (m, 2H), 5.66 (dd, $J_{cis} = 10.8$ Hz, $J_{trans} = 8.5$ Hz, 1H), 3.98 $(t, J = 6.6 \text{ Hz}, 2\text{H}), 3.71 (dd, J_{\text{gem}} = 16.6 \text{ Hz}, J_{\text{cis}} = 10.8 \text{ Hz}, 1\text{H}),$ $3.32 (dd, J_{gem} = 16.6 \text{ Hz}, J_{trans} = 8.5 \text{ Hz}, 1\text{H}), 1.84-1.72 (m, 2\text{H}),$ 1.53–1.19 (m, 19H), 0.93–0.83 (m, 3H); ¹³C NMR (75 MHz, CDCl₃), δ (ppm): 160.8, 156.0, 155.5, 135.8, 128.4, 126.8, 124.5, 121.9, 114.8, 82.3, 78.8, 77.4, 68.3, 43.4, 31.9, 29.5, 29.4, 29.3, 29.0, 26.1, 22.8, 14.3 (1 signal is missing).

6. Refinement

Selected crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were positioned geometrically using a riding atom approximation, with C-H = 0.95-1.00 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for methyl H atoms. A rotating model was used for the methyl groups.

Acknowledgements

The authors thank the Financiadora de Estudos e Projetos (FINEP) for the X-ray diffraction facilities.

Funding information

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (CAPES; Finance Code 001) and the Conselho Nacional de Pesquisa Científica (CNPq) for fellowships and for financial support under CNPq/Universal grant No. 01/2016 403075 2016–5.

References

- Bezborodov, V., Kauhanka, N. & Lapanik, V. (2004). Mol. Cryst. Liq. Cryst. 411, 1145–1152.
- Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Choe, H., Pham, T. T., Lee, J. Y., Latif, M., Park, H., Kang, Y. K. & Lee, J. (2016). J. Org. Chem. 81, 2612–2617.
- El-Khatatneh, N., Vinayaka, A. C., Chandra, , Sadashiva, M. P., Jeyaseelan, S. & Mahendra, M. (2017). *IUCrData*, **2**, x170278.
- Fader, L. D. & Carreira, E. M. (2004). Org. Lett. 6, 2485-2488.
- Fritsch, L. & Merlo, A. A. (2016). ChemistrySelect, 1, 23-30.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hanka, L. J., Gerpheide, S. A., Spieles, P. R., Martin, D. G., Belter, P. A., Coleman, T. A. & Meyer, H. F. (1975). Antimicrob. Agents Chemother. 7, 807–810.
- Huang, H., Li, F., Xu, Z., Cai, J., Ji, X. & Deng, G.-J. (2017). Adv. Synth. Catal. 359, 3102–3107.
- Huisgen, R. (1976). J. Org. Chem. 41, 403-419.
- Kleinbeck, F. & Carreira, E. M. (2009). Angew. Chem. Int. Ed. 48, 578–581.
- Lobo, M. M., Viau, C. M., dos Santos, J. M., Bonacorso, H. G., Martins, M. A. P., Amaral, S. S., Saffi, J. & Zanatta, N. (2015). *Eur. J. Med. Chem.* **101**, 836–842.
- Lopes, L. D., Bortoluzzi, A. J., Prampolini, G., dos Santos, F. P., Livotto, P. R. & Merlo, A. A. (2018). J. Fluor. Chem. 211, 24– 36.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Martin, D. G., Chidester, C. G., Mizsak, S. A., Duchamp, D. J., Baczynskyj, L., Krueger, W. C., Wnuk, R. J. & Meulman, P. A. (1975). J. Antibiot. 28, 91–93.
- Muri, D. & Carreira, E. M. (2009). J. Org. Chem. 74, 8695-8712.
- Orth, R., Böttcher, T. & Sieber, S. A. (2010). Chem. Commun. 46, 8475–8477.
- Ozoe, Y., Asahi, M., Ozoe, F., Nakahira, K. & Mita, T. (2010). Biochem. Biophys. Res. Commun. **391**, 744–749.
- Passo, J. A., Vilela, G. D., Schneider, P. H., Ritter, O. M. S. & Merlo, A. A. (2008). *Liq. Cryst.* 35, 833–840.
- Pirrung, M. C., Tumey, L. N., Raetz, C. R. H., Jackman, J. E., Snehalatha, K., McClerren, M. L., Fierke, C. A., Gantt, S. L. & Rusche, K. M. (2002). J. Med. Chem. 45, 4359–4370.
- Samshuddin, S., Butcher, R. J., Akkurt, M., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1975–o1976.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stosic-Grujicic, S., Cvetkovic, I., Mangano, K., Fresta, M., Maksimovic-Ivanic, D., Harhaji, L., Popadic, D., Momcilovic, M., Miljkovic, D., Kim, J., Abed, Y. A. & Nicoletti, F. (2007). J. *Pharmacol. Exp. Ther.* **320**, 1038–1049.

- Tangallapally, R. P., Sun, D., Rakesh, Budha, N., Lee, R. E., Lenaerts, A. J., Meibohm, B. & Lee, R. E. (2007). *Bioorg. & Med. Chem. Lett.* 17, 6638–6642.
- Tavares, A., Ritter, O. M. S., Vasconcelos, U. B., Arruda, B. C., Schrader, A., Schneider, P. H. & Merlo, A. A. (2010). *Liq. Cryst.* 37, 159–169.
- Tavares, A., Schneider, P. H. & Merlo, A. A. (2009). Eur. J. Org. Chem. pp. 889–897.
 Tavares, A., Toldo, J. M., Vilela, G. D., Gonçalves, P. F. B., Bechtold, I.
- Tavares, A., Toldo, J. M., Vilela, G. D., Gonçalves, P. F. B., Bechtold, I. H., Kitney, S. P., Kelly, S. M. & Merlo, A. A. (2016). *New J. Chem.* 40, 393–401.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2019). E75, 896-899 [https://doi.org/10.1107/S2056989019007412]

Crystal structure of 5-(4-*tert*-butoxyphenyl)-3-(4-*n*-octyloxyphenyl)-4,5-dihydro-isoxazole

Eric S. Sales, Adailton J. Bortoluzzi and Aloir A. Merlo

Computing details

Data collection: *APEX2* (Bruker, 2012); cell refinement: *SAINT* (Bruker, 2012); data reduction: *SAINT* (Bruker, 2012); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015); molecular graphics: *PLATON* (Spek, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2018* (Sheldrick, 2015) and *publCIF* (Westrip, 2010).

5-(4-tert-Butoxyphenyl)-3-(4-n-octyloxyphenyl)-4,5-\ dihydroisoxazole

Crystal data

 $C_{27}H_{37}NO_3$ $M_r = 423.57$ Triclinic, *P*1 a = 5.8493 (1) Å b = 10.7773 (3) Å c = 19.3201 (6) Å a = 92.325 (1)° $\beta = 91.806$ (1)° $\gamma = 94.145$ (1)° V = 1213.02 (5) Å³

Data collection

Bruker APEXII DUO diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2012) $T_{\min} = 0.711, T_{\max} = 0.747$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.140$ S = 1.037607 reflections 284 parameters 0 restraints Z = 2 F(000) = 460 $D_x = 1.160 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7320 reflections $\theta = 2.8-34.2^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 173 K Block, colourless $0.50 \times 0.20 \times 0.12 \text{ mm}$

10857 measured reflections 7607 independent reflections 6342 reflections with $I > 2\sigma(I)$ $R_{int} = 0.009$ $\theta_{max} = 31.0^\circ, \theta_{min} = 2.9^\circ$ $h = -7 \rightarrow 8$ $k = -15 \rightarrow 15$ $l = -27 \rightarrow 27$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.0667P)^2 + 0.4021P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	1.64769 (16)	0.74894 (8)	-0.05545 (5)	0.02252 (17)
C2	1.43190 (17)	0.69199 (10)	-0.04304 (5)	0.02649 (19)
H2	1.318117	0.680926	-0.079384	0.032*
C3	1.38402 (17)	0.65151 (10)	0.02272 (5)	0.0276 (2)
Н3	1.236687	0.613066	0.031010	0.033*
C4	1.54893 (17)	0.66646 (9)	0.07669 (5)	0.02462 (18)
C5	1.76598 (18)	0.71882 (10)	0.06288 (6)	0.0287 (2)
Н5	1.881608	0.727313	0.098755	0.034*
C6	1.81591 (17)	0.75896 (10)	-0.00292 (5)	0.0275 (2)
H6	1.965700	0.793326	-0.011855	0.033*
C7	1.4927 (2)	0.63786 (10)	0.14996 (6)	0.0298 (2)
H7	1.639120	0.635864	0.177901	0.036*
C8	1.3386 (2)	0.52173 (10)	0.16367 (6)	0.0331 (2)
H8A	1.257332	0.486755	0.120734	0.040*
H8B	1.426563	0.456841	0.184659	0.040*
C9	1.17552 (18)	0.57422 (9)	0.21388 (5)	0.02437 (18)
C10	1.00340 (17)	0.50153 (9)	0.25159 (5)	0.02354 (18)
C11	0.85608 (19)	0.56078 (9)	0.29567 (5)	0.0283 (2)
H11	0.870372	0.649014	0.301232	0.034*
C12	0.6903 (2)	0.49430 (10)	0.33136 (6)	0.0305 (2)
H12	0.590952	0.536589	0.360612	0.037*
C13	0.66989 (19)	0.36438 (10)	0.32407 (5)	0.0277 (2)
C14	0.8169 (2)	0.30396 (10)	0.28077 (6)	0.0305 (2)
H14	0.804578	0.215616	0.276084	0.037*
C15	0.98029 (19)	0.37134 (9)	0.24460 (5)	0.0282 (2)
H15	1.077691	0.328959	0.214763	0.034*
C16	0.3577 (2)	0.34639 (11)	0.40164 (6)	0.0317 (2)
H16A	0.264382	0.402808	0.375405	0.038*
H16B	0.442735	0.395495	0.439870	0.038*
C17	0.2055 (2)	0.24281 (11)	0.43018 (6)	0.0335 (2)
H17A	0.302437	0.184383	0.453525	0.040*
H17B	0.119058	0.196173	0.391341	0.040*
C18	0.0366 (2)	0.29097 (11)	0.48151 (6)	0.0330 (2)
H18A	-0.060442	0.349489	0.458264	0.040*
H18B	0.122729	0.337310	0.520501	0.040*
C19	-0.1167 (2)	0.18553 (11)	0.50984 (6)	0.0349 (2)

H19A	-0.208792	0.142655	0.470892	0.042*
H19B	-0.018349	0.124293	0.530006	0.042*
C20	-0.2783 (2)	0.22801 (10)	0.56467 (6)	0.0318 (2)
H20A	-0.379620	0.287585	0.544232	0.038*
H20B	-0.186764	0.272574	0.603192	0.038*
C21	-0.4267 (2)	0.12127 (10)	0.59381 (6)	0.0327 (2)
H21A	-0.508740	0.072300	0.554987	0.039*
H21B	-0.326314	0.065477	0.617931	0.039*
C22	-0.6008(2)	0.16621 (11)	0.64401 (6)	0.0331 (2)
H22A	-0.699866	0.222595	0.619849	0.040*
H22B	-0.518114	0.214970	0.682803	0.040*
C23	-0.7519 (3)	0.06135 (14)	0.67351 (7)	0.0447 (3)
H23A	-0.837883	0.013891	0.635584	0.067*
H23B	-0.859495	0.096688	0.705400	0.067*
H23C	-0.655669	0.006054	0.698516	0.067*
C24	1.65820 (16)	0.91821 (9)	-0.13541 (5)	0.02269 (17)
C25	1.40381 (18)	0.93736 (11)	-0.13308 (6)	0.0317 (2)
H25A	1.317724	0.874246	-0.163469	0.047*
H25B	1.376322	1.020479	-0.148808	0.047*
H25C	1.353249	0.929723	-0.085465	0.047*
C26	1.7923 (2)	1.00842 (10)	-0.08406 (6)	0.0312 (2)
H26A	1.738292	0.994948	-0.037262	0.047*
H26B	1.769305	1.094089	-0.096335	0.047*
H26C	1.955819	0.994439	-0.085452	0.047*
C27	1.7451 (2)	0.93263 (11)	-0.20797 (5)	0.0308 (2)
H27A	1.909480	0.920386	-0.207896	0.046*
H27B	1.719501	1.016327	-0.223155	0.046*
H27C	1.662418	0.870491	-0.239749	0.046*
N1	1.19161 (18)	0.69382 (8)	0.21931 (5)	0.0310 (2)
01	1.69856 (13)	0.78825 (6)	-0.12071 (4)	0.02499 (15)
O2	1.36545 (16)	0.74135 (7)	0.17716 (4)	0.03545 (19)
O3	0.51450 (15)	0.28925 (8)	0.35685 (4)	0.03590 (19)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0238 (4)	0.0203 (4)	0.0240 (4)	0.0033 (3)	0.0063 (3)	0.0010 (3)
C2	0.0241 (4)	0.0280 (4)	0.0268 (4)	-0.0020 (3)	0.0016 (3)	0.0013 (3)
C3	0.0227 (4)	0.0290 (5)	0.0312 (5)	-0.0010 (3)	0.0053 (4)	0.0046 (4)
C4	0.0273 (4)	0.0212 (4)	0.0263 (4)	0.0042 (3)	0.0056 (3)	0.0051 (3)
C5	0.0256 (4)	0.0315 (5)	0.0291 (5)	0.0007 (4)	0.0000 (4)	0.0070 (4)
C6	0.0211 (4)	0.0300 (5)	0.0316 (5)	0.0004 (3)	0.0031 (3)	0.0065 (4)
C7	0.0351 (5)	0.0285 (5)	0.0271 (5)	0.0050 (4)	0.0069 (4)	0.0079 (4)
C8	0.0458 (6)	0.0206 (4)	0.0353 (5)	0.0092 (4)	0.0192 (5)	0.0071 (4)
C9	0.0314 (5)	0.0211 (4)	0.0214 (4)	0.0048 (3)	0.0044 (3)	0.0024 (3)
C10	0.0294 (4)	0.0211 (4)	0.0205 (4)	0.0035 (3)	0.0030 (3)	0.0011 (3)
C11	0.0361 (5)	0.0224 (4)	0.0268 (4)	0.0034 (4)	0.0077 (4)	-0.0008 (3)
C12	0.0367 (5)	0.0267 (5)	0.0285 (5)	0.0029 (4)	0.0104 (4)	-0.0013 (4)

C13	0.0317 (5)	0.0271 (5)	0.0238 (4)	-0.0011 (4)	0.0044 (4)	0.0004 (3)
C14	0.0388 (6)	0.0214 (4)	0.0312 (5)	0.0000 (4)	0.0074 (4)	-0.0013 (4)
C15	0.0357 (5)	0.0223 (4)	0.0272 (4)	0.0034 (4)	0.0080 (4)	-0.0005 (3)
C16	0.0332 (5)	0.0341 (5)	0.0278 (5)	-0.0007 (4)	0.0072 (4)	0.0018 (4)
C17	0.0329 (5)	0.0352 (5)	0.0320 (5)	-0.0036 (4)	0.0067 (4)	0.0037 (4)
C18	0.0327 (5)	0.0369 (5)	0.0295 (5)	-0.0010 (4)	0.0055 (4)	0.0045 (4)
C19	0.0346 (6)	0.0351 (5)	0.0346 (5)	-0.0028 (4)	0.0097 (4)	-0.0002(4)
C20	0.0336 (5)	0.0309 (5)	0.0306 (5)	-0.0021 (4)	0.0068 (4)	0.0000 (4)
C21	0.0359 (5)	0.0275 (5)	0.0352 (5)	0.0017 (4)	0.0098 (4)	0.0021 (4)
C22	0.0376 (6)	0.0318 (5)	0.0295 (5)	-0.0019 (4)	0.0084 (4)	-0.0008(4)
C23	0.0443 (7)	0.0479 (7)	0.0425 (7)	-0.0032 (6)	0.0112 (5)	0.0131 (6)
C24	0.0229 (4)	0.0216 (4)	0.0240 (4)	0.0036 (3)	0.0037 (3)	0.0014 (3)
C25	0.0233 (4)	0.0380 (5)	0.0347 (5)	0.0080 (4)	0.0034 (4)	0.0019 (4)
C26	0.0344 (5)	0.0241 (4)	0.0345 (5)	0.0013 (4)	-0.0036 (4)	-0.0006 (4)
C27	0.0341 (5)	0.0327 (5)	0.0272 (5)	0.0065 (4)	0.0090 (4)	0.0060 (4)
N1	0.0436 (5)	0.0233 (4)	0.0265 (4)	0.0019 (3)	0.0114 (4)	0.0008 (3)
O1	0.0318 (4)	0.0211 (3)	0.0230 (3)	0.0046 (3)	0.0093 (3)	0.0011 (2)
O2	0.0524 (5)	0.0219 (3)	0.0328 (4)	0.0004 (3)	0.0180 (4)	0.0023 (3)
O3	0.0399 (4)	0.0302 (4)	0.0372 (4)	-0.0043 (3)	0.0151 (3)	-0.0002 (3)

Geometric parameters (Å, °)

C1—O1	1.3808 (11)	C17—C18	1.5243 (16)
C1—C6	1.3866 (14)	C17—H17A	0.9900
C1—C2	1.3951 (13)	C17—H17B	0.9900
C2—C3	1.3902 (14)	C18—C19	1.5259 (16)
С2—Н2	0.9500	C18—H18A	0.9900
C3—C4	1.3944 (15)	C18—H18B	0.9900
С3—Н3	0.9500	C19—C20	1.5205 (15)
C4—C5	1.3898 (14)	C19—H19A	0.9900
C4—C7	1.5024 (14)	C19—H19B	0.9900
C5—C6	1.3923 (14)	C20—C21	1.5272 (15)
С5—Н5	0.9500	C20—H20A	0.9900
С6—Н6	0.9500	С20—Н20В	0.9900
C7—O2	1.4735 (13)	C21—C22	1.5188 (15)
С7—С8	1.5256 (15)	C21—H21A	0.9900
С7—Н7	1.0000	C21—H21B	0.9900
C8—C9	1.5043 (14)	C22—C23	1.5244 (17)
C8—H8A	0.9900	C22—H22A	0.9900
C8—H8B	0.9900	С22—Н22В	0.9900
C9—N1	1.2854 (13)	С23—Н23А	0.9800
C9—C10	1.4616 (13)	С23—Н23В	0.9800
C10—C11	1.3991 (13)	С23—Н23С	0.9800
C10—C15	1.4005 (13)	C24—O1	1.4744 (11)
C11—C12	1.3825 (14)	C24—C27	1.5160 (14)
C11—H11	0.9500	C24—C25	1.5188 (14)
C12—C13	1.3976 (15)	C24—C26	1.5190 (14)
C12—H12	0.9500	С25—Н25А	0.9800

C13—O3	1.3618 (12)	C25—H25B	0.9800
C13—C14	1.3945 (15)	C25—H25C	0.9800
C14—C15	1.3830 (14)	C26—H26A	0.9800
C14—H14	0.9500	C26—H26B	0 9800
C15—H15	0.9500	C26—H26C	0.9800
C_{16} O_{3}	1,4345(13)	C27 H27A	0.9800
C16 C17	1.4343(13)	$C_2/-I_2/A$	0.9800
	1.3099 (13)	С27—П27В	0.9800
CIG-HIGA	0.9900	$C_2/-H_2/C$	0.9800
С16—Н16В	0.9900	NI02	1.4036 (12)
O1—C1—C6	119.95 (9)	C17—C18—H18A	109.2
01 - C1 - C2	120.37 (9)	C19—C18—H18A	109.2
C_{6}	119 56 (9)	C17—C18—H18B	109.2
C_{3} C_{2} C_{1}	119.30 (9)	C19— $C18$ — $H18B$	109.2
$C_3 = C_2 = C_1$	119.74 (9)		107.2
$C_3 = C_2 = H_2$	120.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.3
C1 - C2 - H2	120.1	$C_{20} = C_{19} = C_{18}$	114.01 (10)
$C_2 = C_3 = C_4$	121.02 (9)	C20—C19—H19A	108.7
С2—С3—Н3	119.5	C18—C19—H19A	108.8
С4—С3—Н3	119.5	C20—C19—H19B	108.8
C5—C4—C3	118.59 (9)	C18—C19—H19B	108.7
C5—C4—C7	119.33 (9)	H19A—C19—H19B	107.6
C3—C4—C7	121.87 (9)	C19—C20—C21	113.48 (9)
C4—C5—C6	120.76 (10)	C19—C20—H20A	108.9
C4—C5—H5	119.6	C21—C20—H20A	108.9
С6—С5—Н5	119.6	C19—C20—H20B	108.9
C1—C6—C5	120.21 (9)	C21—C20—H20B	108.9
С1—С6—Н6	119.9	H20A—C20—H20B	107.7
С5—С6—Н6	119.9	C22—C21—C20	112.75 (9)
Q2—C7—C4	106.70 (8)	C22—C21—H21A	109.0
$0^{2}-0^{7}-0^{8}$	104.03 (8)	C20—C21—H21A	109.0
C_{4} C_{7} C_{8}	119 41 (10)	$C_{22} = C_{21} = H_{21}R$	109.0
$O_2 C_7 H_7$	108 7	C20 C21 H21B	109.0
$C_{4} = C_{7} = H_{7}$	108.7	$\begin{array}{c} C20 \\ \hline \\ C21 \\ C21 \\ \hline C21 \\ \hline \\ C21 \\ \hline C21 \\ \hline$	109.0
$C_{4} C_{7} U_{7}$	108.7	1121A - C21 - 1121B	107.0 112.74(10)
$C_{0} = C_{1} = H_{1}$	108.7	$C_{21} - C_{22} - C_{23}$	115.74 (10)
$C_{2} = C_{3} = C_{1}$	101.00 (8)	C_{21} C_{22} H_{22A}	108.8
C9—C8—H8A	111.6	C23—C22—H22A	108.8
С/—С8—Н8А	111.6	C21—C22—H22B	108.8
C9—C8—H8B	111.6	C23—C22—H22B	108.8
С7—С8—Н8В	111.6	H22A—C22—H22B	107.7
H8A—C8—H8B	109.4	C22—C23—H23A	109.5
N1—C9—C10	120.82 (9)	C22—C23—H23B	109.5
N1—C9—C8	113.57 (9)	H23A—C23—H23B	109.5
C10—C9—C8	125.54 (8)	C22—C23—H23C	109.5
C11—C10—C15	118.12 (9)	H23A—C23—H23C	109.5
С11—С10—С9	120.59 (9)	H23B—C23—H23C	109.5
C15—C10—C9	121.29 (9)	O1—C24—C27	103.52 (7)
C12—C11—C10	121.74 (9)	O1—C24—C25	110.07 (8)
C12—C11—H11	119.1	C27—C24—C25	111.21 (9)

C10-C11-H11	119.1	O1—C24—C26	110.96 (8)
C11—C12—C13	119.47 (9)	C27—C24—C26	110.80 (9)
C11—C12—H12	120.3	C25—C24—C26	110.12 (9)
C13—C12—H12	120.3	C24—C25—H25A	109.5
O3—C13—C14	115.85 (9)	C24—C25—H25B	109.5
O3—C13—C12	124.70 (9)	H25A—C25—H25B	109.5
C14—C13—C12	119.45 (9)	C24—C25—H25C	109.5
C15—C14—C13	120.66 (9)	H25A—C25—H25C	109.5
C15—C14—H14	119.7	H25B—C25—H25C	109.5
C13—C14—H14	119.7	C24—C26—H26A	109.5
C14—C15—C10	120.55 (9)	C24—C26—H26B	109.5
C14—C15—H15	119.7	H26A—C26—H26B	109.5
C10—C15—H15	119.7	C24—C26—H26C	109.5
O3—C16—C17	107.12 (9)	H26A—C26—H26C	109.5
O3—C16—H16A	110.3	H26B—C26—H26C	109.5
C17—C16—H16A	110.3	C24—C27—H27A	109.5
O3—C16—H16B	110.3	C24—C27—H27B	109.5
C17—C16—H16B	110.3	H27A—C27—H27B	109.5
H16A—C16—H16B	108.5	С24—С27—Н27С	109.5
C16—C17—C18	112.46 (10)	H27A—C27—H27C	109.5
C16—C17—H17A	109.1	H27B—C27—H27C	109.5
C18—C17—H17A	109.1	C9—N1—O2	109.83 (8)
C16—C17—H17B	109.1	C1	117.13 (7)
C18—C17—H17B	109.1	N1—O2—C7	109.13 (7)
H17A—C17—H17B	107.8	C13—O3—C16	118.29 (9)
C17—C18—C19	111.98 (10)		
O1—C1—C2—C3	179.22 (9)	C11—C12—C13—C14	-0.15 (17)
C6—C1—C2—C3	3.20 (15)	O3—C13—C14—C15	179.57 (10)
C1—C2—C3—C4	-0.24 (16)	C12—C13—C14—C15	-0.68 (17)
C2—C3—C4—C5	-2.29 (15)	C13-C14-C15-C10	0.94 (17)
C2—C3—C4—C7	172.41 (10)	C11-C10-C15-C14	-0.37 (16)
C3—C4—C5—C6	1.90 (15)	C9—C10—C15—C14	179.85 (10)
C7—C4—C5—C6	-172.94 (10)	O3—C16—C17—C18	177.42 (9)
O1—C1—C6—C5	-179.63 (9)	C16—C17—C18—C19	179.84 (10)
C2-C1-C6-C5	-3.60 (15)	C17—C18—C19—C20	176.39 (10)
C4—C5—C6—C1	1.04 (16)	C18—C19—C20—C21	-178.64 (10)
C5—C4—C7—O2	98.97 (11)	C19—C20—C21—C22	-175.20 (10)
C3—C4—C7—O2	-75.69 (12)	C20—C21—C22—C23	179.67 (11)
C5—C4—C7—C8	-143.67 (10)	C10—C9—N1—O2	-178.73 (9)
C3—C4—C7—C8	41.67 (14)	C8—C9—N1—O2	-1.68 (13)
O2—C7—C8—C9	-14.56 (11)	C6-C1-O1-C24	-91.52 (11)
C4—C7—C8—C9	-133.30 (10)	C2-C1-O1-C24	92.48 (11)
C7—C8—C9—N1	10.69 (13)	C27—C24—O1—C1	176.34 (8)
C7—C8—C9—C10	-172.42 (9)	C25—C24—O1—C1	-64.71 (11)
N1-C9-C10-C11	-1.52 (15)	C26—C24—O1—C1	57.44 (11)
C8—C9—C10—C11	-178.19 (10)	C9—N1—O2—C7	-8.77 (12)
N1-C9-C10-C15	178.25 (10)	C4—C7—O2—N1	142.06 (9)

C8—C9—C10—C15	1.58 (16)	C8—C7—O2—N1	14.95 (12)
C15—C10—C11—C12	-0.47 (16)	C14—C13—O3—C16	-179.53 (10)
C9—C10—C11—C12	179.31 (10)	C12—C13—O3—C16	0.74 (17)
C10-C11-C12-C13	0.72 (17)	C17—C16—O3—C13	179.46 (9)
C11—C12—C13—O3	179.58 (11)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C26—H26 <i>B</i> ····O2 ⁱ	0.98	2.56	3.4652 (14)	154
C15—H15…O1 ⁱⁱ	0.95	2.61	3.5542 (12)	173

Symmetry codes: (i) -*x*+3, -*y*+2, -*z*; (ii) -*x*+3, -*y*+1, -*z*.