CRYSTALLOGRAPHIC COMMUNICATIONS

Received 21 May 2019
Accepted 29 May 2019

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; naphthalenetetracarboxylic diimide; crystal packing; hydrogen bonding; DFT calculations; Hirshfeld surface analysis..

CCDC reference: 1919395

Supporting information: this article has supporting information at journals.iucr.org/e

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{~S} 1$	0.99	2.84	$3.300(2)$	109
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{O} 1$	0.99	2.32	$2.688(3)$	101
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.95	2.39	$3.316(3)$	164
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{~S} 1^{\mathrm{ii}}$	0.95	2.86	$3.779(2)$	162

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $x+1, y+1, z$.

2. Structural commentary

The title compound comprises a central naphthalene diimide with terminal thiopropyl chains (Fig. 1). The molecule lies on a crystallographic inversion center located at the centroid of the naphthalene ring system and the asymmetric unit is composed of one half of the molecule. As expected, the naphthalene diimide plane ($\mathrm{N} 1 / \mathrm{C} 5 / \mathrm{O} 1 / \mathrm{C} 6 / \mathrm{C} 10 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 11 / \mathrm{C} 9 / \mathrm{O} 2$) is roughly planar with an r.m.s. deviation of $0.024 \AA$. The total distance between the terminal carbon atoms is 18.621 A . Furthermore, this molecule has an anti form as a result of the intramolecular $\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{O} 1$ and $\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{~S} 1$ hydrogen bonds (Table 1). The terminal methylthiopropylamine group is fixed at an $\mathrm{O} 1 \cdots \mathrm{H} 4 A \cdots \mathrm{~S} 1$ angle of 100.8° by the aforementioned intramolecular hydrogen bonds. The C3/C2/S1/C1 section of the methylthiopropyl substituent is almost parallel to the naphthalene diimide unit with the $\mathrm{C} 3 / \mathrm{C} 2 / \mathrm{S} 1 / \mathrm{C} 1$ mean plane inclined to the naphthalene diimide plane at a dihedral angle of 13.1 (2) ${ }^{\circ}$.

3. Theoretical calculations

DFT calculations were performed using the GAUSSIAN09 software package (Frisch et al., 2009) and the calculated distances and angles were compared with experimental values from the X-ray diffraction studies. The overall structural calculation was performed using the B3LYP level theory with a $6-311^{++} G^{* *}$ basis set. The parameters optimized for bond lengths and bond angles are in close agreement with experimental crystallographic data (Table 2). The terminal methylthiopropyl group is fixed by internal hydrogen bonding in the crystal, whereas its internal hydrogen bonds are broken in the

Figure 1
The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius and yellow and green dashed lines represent intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, respectively. Unlabelled atoms are generated by the symmetry operation $(-x+2$, $-y+1,-z$).

Table 2
Experimental and calculated bond lengths (\AA).

Bond	X-ray	B3LYP $\left(6-311++\mathrm{G}^{* *}\right)$
O1-C5	$1.210(3)$	1.2158
O2-C9	$1.221(3)$	1.2173
N1-C4	$1.471(3)$	1.4779
N1-C5	$1.404(3)$	1.4047
N1-C 9	$1.394(3)$	1.4029
S1-C1	$1.785(3)$	1.8244
S1-C2	$1.803(2)$	1.8399
C2-C3	$1.523(3)$	1.5301
C3-C4	$1.521(3)$	1.5341
C5-C6	$1.479(3)$	1.4880
C6-C7	$1.408(3)$	1.4135
C7-C8	$1.415(3)$	1.4136
C8-C9	$1.478(3)$	1.4877
C6-C10	$1.381(3)$	1.3835
C8-C11	$1.373(3)$	1.3835

gas-phase structural calculation. This can be confirmed by the fact that the $\mathrm{O} 1 \cdots \mathrm{H} 4 A \cdots \mathrm{~S} 1$ angle of the methylthiopropyl group has changed from 100.8 to 122.0° (Fig. 2). However, even in the gas phase the molecule has an anti form similar to that found in the solid state.

4. Supramolecular features

In the crystal, $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds (Table 1) link the molecules, forming $R_{2}^{2}(11)$ and $R_{2}^{2}(10)$ rings (Fig. 3) and resulting in chains along the [220] direction. Adjacent chains are linked by intermolecular $\pi-\pi$ interactions between naphthalene diimide rings $[C g 1 \cdots C g 2=$ 3.5756 (12) $\AA ; C g 1$ and $C g 2$ are the centroids of the $\mathrm{C} 6 / \mathrm{C} 7 /$ $\mathrm{C} 7^{\mathrm{iii}} / \mathrm{C} 8^{\mathrm{iii}} / \mathrm{C} 10 / \mathrm{C} 11^{\text {iii }}$ and $\mathrm{C} 6^{\mathrm{iv}} / \mathrm{C} 7^{\mathrm{iv}} / \mathrm{C} 7^{\mathrm{v}} / \mathrm{C} 8^{\mathrm{v}} / \mathrm{C} 10^{\mathrm{iv}} / \mathrm{C} 11^{\mathrm{v}}$ rings, respectively; symmetry codes: (iii) $-x+2,-y+1,-z$; (iv) $-x+2,-y,-z$; (v) $x, y-1, z]$. These $\pi-\pi$ interactions lead to a two-dimensional network structure parallel to the (001) plane (Fig. 4). The network structures are stacked in an alternating $A B A B$ sequence along the c-axis direction (Fig. 5).

Figure 2
Atom-by-atom superimposition of the calculated structure (blue) using B3LYP/6-311++ $\mathrm{G}^{* *}$ and the X-ray structure (green) for the title compound.

Figure 3
Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (yellow and green dashed lines) forming chains along the [2020] direction with $R_{2}^{2}(11)$ and $R_{2}^{2}(10)$ motifs.

Figure 4
A packing diagram for the title compound, showing the two-dimensional network formed by $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (yellow and green dashed lines) and $\pi-\pi$ interactions (black dashed lines). H atoms not involved in intermolecular interactions have been omitted for clarity.

Figure 5
Packing diagrams of the title compound showing (a) the $A B A B$ stacking pattern and (b) the two-dimensional structure.

5. Hirshfeld surface analysis

Hirshfeld surface analysis was performed using CrystalExplorer (Turner et al., 2017) to quantify the various intermolecular interactions in the molecular packing of the title compound. The bright red dots in Fig. 6 showing the Hirshfeld surface mapped to the normalized contact distance ($d_{\text {norm }}$)

Table 3
Percentage contributions of interatomic contacts to the Hirshfeld surface of the title compound..

Contact	Percentage contribution
$\mathrm{H} \cdots \mathrm{H}$	44.2
$\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}$	18.3
$\mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}$	14.4
$\mathrm{H} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{H}$	10.2
$\mathrm{C} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{C}$	5.6
$\mathrm{C} \cdots \mathrm{C}$	4.5
$\mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}$	1.4
$\mathrm{O} \cdots \mathrm{O}$	0.5
$\mathrm{~N} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{N}$	0.4
$\mathrm{C} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{C}$	0.4

indicate the $R_{2}^{2}(11)$ and $R_{2}^{2}(10)$ loops, and the contact points of the intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds. The lighter red dot on the surface represents the $\pi-\pi$ interaction with adjacent molecules. The white and blue colours that make up the majority of the surface indicate contact distances that are equal to or greater than the van der Wails radii.

Figure 6
A view of the Hirshfeld surface of the title compound mapped over $d_{\text {norm }}$, showing the $\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{H} \cdots \mathrm{O}$ contacts of the intermolecular interactions using a fixed colour scale of -0.2580 (red) to 1.0789 (blue) a.u.

Figure 7
(a) The full two-dimensional fingerprint plot for the title compound and those delineated into $(b) \mathrm{H} \cdots \mathrm{H},(c) \mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H},(d) \mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}$ and (e) $\mathrm{H} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{H}$ contacts. The d_{i} and d_{e} values are the closest internal and external distances (in \AA) from given points on the Hirshfeld surface contacts.

The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds and $\pi-\pi$ stacking interactions are identified in the two-dimensional fingerprint plots (Fig. 7a-e), which show the $\mathrm{H} \cdots \mathrm{H}, \mathrm{H} \cdots \mathrm{C} /$ $\mathrm{C} \cdots \mathrm{H}, \quad \mathrm{H} \cdots \mathrm{O} / \quad \mathrm{O} \cdots \mathrm{H}, \quad \mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}$, and $\mathrm{H} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{H}$ contacts. The relative contributions of the atomic contacts to the Hirshfeld surface are summarized in Table 3. These show that the dominant interaction, accounting for 44.2% of the surface, is the $\mathrm{H} \cdots \mathrm{H}$ van der Waals interaction. Substantial contributions are also made by $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}(18.3 \%), \mathrm{H} \cdots \mathrm{C} /$ $\mathrm{C} \cdots \mathrm{H}(14.4 \%)$, and $\mathrm{H} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{H}(10.2 \%)$ contacts, which are indicated by two sharp peaks in each fingerprint plot. Lesser contributions from $\mathrm{C} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{C}, \mathrm{C} \cdots \mathrm{C}, \mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}$, $\mathrm{O} \cdots \mathrm{O}, \mathrm{N} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{N}$, and $\mathrm{C} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{C}$ contacts are included in Table 3 for completeness.

6. Synthesis and crystallization

A mixture of 1,4,5,8-naphthalenetetracarboxylic dianhydride $(6.70 \mathrm{~g}, \quad 25.0 \mathrm{mmol})$ and 3 -(methylsulfanyl)propylamine ($5.6 \mathrm{~mL}, 50.0 \mathrm{mmol}$) in toluene (5 mL) and quinoline (15 mL) was heated at 453 K with stirring for 1 h . Upon cooling to room temperature, a golden yellow crude solid was filtered off and washed with diethyl ether. A golden yellow powder was obtained. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a dichloromethane solution of the title compound.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.77(s, 2 \mathrm{H}, \mathrm{Ar}), 4.33(t, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 2.64\left(t, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.14\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.07\left(t, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right)$. ${ }^{13} \mathrm{C}$ NMR (75.4 MHz, CDCl_{3}): $\delta 162.81,130.99,126.69,126.57$, $40.01,31.61,27.16$ and 15.31. IR ($\mathrm{v}, \mathrm{cm}^{-1}$): $3344(\mathrm{~m}) ; 3071(\mathrm{~m})$; 2916 (s) ; 2848 (s); 1999 ($s) ; 1693$ (s).

7. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, updated February 2019; Groom et al., 2016) for naphthalene diimide derivatives gave 31 hits for structures that include a terminal propyl group. The title compound was not found. Related compounds include a series of cycloalkylsubstituted naphthalene tetracarboxylic diimides (Kakinuma et al., 2013). Other terminal n-alkyl groups are known with 2,7-dibutylbenzo [lmn][3,8]phenanthroline-1,3,6,8-tetraone (Alvey et al., 2010), bis- N, N^{\prime}-dipentylnaphthalene-1,4,5,8tetracarboxylic diimide (Andric et al., 2004), N, N^{\prime}-di- n-hexyl-1,4;5,8-naphthalenetetracarboxylic diimide (Ofir et al., 2006), and $\quad N, N^{\prime}$-di(n-dodecyl)naphthalene-4,5,8,9-tetracarboxylic acid diimide (Kozycz et al., 2015).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. All H atoms were positioned geometrically and refined using a riding model with $d(\mathrm{C}-\mathrm{H})$ $=0.95 \AA, U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic, $d(\mathrm{C}-\mathrm{H})=0.99 \AA$, $U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$ for methylene, and $d(\mathrm{C}-\mathrm{H})=0.98 \AA, U_{\text {iso }}=$ $1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl H atoms.

Table 4
Experimental details.
Crystal data

Chemical formula	$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$
$M_{\text {r }}$	442.53
Crystal system, space group	Monoclinic, $P 2_{1} / \mathrm{c}$
Temperature (K)	173
$a, b, c(\AA)$	8.0500 (2), 4.9407 (1), 24.9626 (7)
$\beta{ }^{\circ}{ }^{\circ}$)	94.333 (2)
$V\left(\AA^{3}\right)$	989.99 (4)
Z	2
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.30
Crystal size (mm)	$0.23 \times 0.05 \times 0.04$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	```Multi-scan (SADABS; Bruker, 2014)```
$T_{\text {min }}, T_{\text {max }}$	0.676, 0.746
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	5641, 1732, 1360
$R_{\text {int }}$	0.046
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.595
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.042, 0.101, 1.05
No. of reflections	1732
No. of parameters	137
H -atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.25,-0.26$

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS97 and SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 2010) and publCIF (Westrip, 2010).

Acknowledgements

The authors thank Dr J.-E. Lee of the Central Research Facilities for her assistance with the NMR and XRD experiments.

Funding information

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant Nos. 2017M2B2A9A020049940 and 2018R1D1A3B07042615).

References

Alvey, P. M., Reczek, J. J., Lynch, V. \& Iverson, B. L. (2010). J. Org. Chem. 75, 7682-7690.
Andric, G., Boas, J. F., Bond, A. M., Fallon, G. D., Ghiggino, K. P., Hogan, C. F., Hutchison, J. A., Lee, M. A.-P., Langford, S. J., Pilbrow, J. R., Troup, G. J. \& Woodward, C. P. (2004). Aust. J. Chem. 57, 1011-1019.
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Claudio-Catalán, M. Á., Medrano, F., Tlahuext, H. \& GodoyAlcántar, C. (2016). Acta Cryst. E72, 1503-1508.
Fang, X., Guo, M.-D., Weng, L.-J., Chen, Y. \& Lin, M.-J. (2015). Dyes \& Pigments, 113, 251-256.
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian,
H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. \& Fox, D. J. (2009). Gaussian09. Gaussian Inc, Wallingford, Connecticut, USA.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Kakinuma, T., Kojima, H., Ashizawa, M., Matsumoto, H. \& Mori, T. (2013). J. Mater. Chem. C. 1, 5395-5401.

Kozycz, L. M., Guo, C., Manion, J. G., Tilley, A. J., Lough, A. J., Li, Y. \& Seferos, D. S. (2015). J. Mater. Chem. C. 3, 1150511515.

Landey-Álvarez, M. A., Ochoa-Terán, A., Pina-Luis, G., MartínezQuiroz, M., Aguilar-Martínez, M., Elías-García, J., Miranda-Soto, V., Ramírez, J.-Z., Machi-Lara, L., Labastida-Galván, V. \& Ordoñez, M. (2016). Supramol. Chem. 28, 892-906.
Liu, J.-J., Dong, Y., Chen, L.-Z., Wang, L., Xia, S.-B. \& Huang, C.-C. (2018). Acta Cryst. C74, 94-99.

Ofir, Y., Zelichenok, A. \& Yitzchaik, S. (2006). J. Mater. Chem. 16, 2142-2149.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. \& Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Crystal structure of N, N^{\prime}-bis[3-(methylsulfanyl)propyl]-1,8:4,5-naphthalenetetracarboxylic diimide

Juhyeon Park, Seung Heon Lee, Myong Yong Choi, Cheol Joo Moon and Tae Ho Kim

Computing details

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).
N, N^{\prime}-Bis[3-(methylsulfanyl)propyl]-1,8:4,5-naphthalenetetracarboxylic diimide

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$
$M_{r}=442.53$
Monoclinic, $P 2{ }_{1} / c$
$a=8.0500$ (2) Å
$b=4.9407$ (1) \AA
$c=24.9626(7) \AA$
$\beta=94.333$ (2) ${ }^{\circ}$
$V=989.99(4) \AA^{3}$
$Z=2$

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
$T_{\min }=0.676, T_{\text {max }}=0.746$
5641 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.101$
$S=1.05$
1732 reflections
137 parameters
0 restraints
$F(000)=464$
$D_{\mathrm{x}}=1.485 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1676 reflections
$\theta=3.1-26.1^{\circ}$
$\mu=0.30 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Rod, yellow
$0.23 \times 0.05 \times 0.04 \mathrm{~mm}$

1732 independent reflections
1360 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=1.6^{\circ}$
$h=-9 \rightarrow 9$
$k=-5 \rightarrow 5$
$l=-29 \rightarrow 25$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0403 P)^{2}+0.3426 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.25 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.26 \mathrm{e} \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
S1	$0.25895(9)$	$0.32924(13)$	$0.17605(3)$	$0.0356(2)$
O1	$0.5336(2)$	$0.2804(3)$	$0.04996(7)$	$0.0310(4)$
O2	$0.8407(2)$	$0.9669(3)$	$0.12693(6)$	$0.0326(5)$
N1	$0.6852(2)$	$0.6297(4)$	$0.08708(8)$	$0.0243(5)$
C1	$0.0764(4)$	$0.4611(6)$	$0.20299(12)$	$0.0458(8)$
H1A	0.0888	0.4506	0.2423	0.069^{*}
H1B	-0.0207	0.3548	0.1895	0.069^{*}
H1C	0.0609	0.6503	0.1919	0.069^{*}
C2	$0.4130(3)$	$0.5621(5)$	$0.20506(10)$	$0.0273(6)$
H2A	0.3685	0.7488	0.2024	0.033^{*}
H2B	0.4374	0.5191	0.2436	0.033^{*}
C3	$0.5728(3)$	$0.5448(5)$	$0.17623(9)$	$0.0276(6)$
H3A	0.6650	0.6315	0.1985	0.033^{*}
H3B	0.6023	0.3526	0.1710	0.033^{*}
C4	$0.5500(3)$	$0.6857(5)$	$0.12200(10)$	$0.0274(6)$
H4A	0.4431	0.6269	0.1035	0.033^{*}
H4B	0.5434	0.8834	0.1279	0.033^{*}
C5	$0.6592(3)$	$0.4151(4)$	$0.05056(9)$	$0.0243(6)$
C6	$0.7912(3)$	$0.3668(4)$	$0.01356(9)$	$0.0214(5)$
C7	$0.9374(3)$	$0.5241(4)$	$0.01778(8)$	$0.0200(5)$
C8	$0.9613(3)$	$0.7304(4)$	$0.05690(9)$	$0.0228(5)$
C9	$0.8287(3)$	$0.7878(4)$	$0.09317(9)$	$0.0249(6)$
C10	$0.7698(3)$	$0.1661(4)$	$-0.02484(9)$	$0.0234(5)$
H10	0.6712	0.0598	0.0273	0.028^{*}
C11	$1.1054(3)$	$0.8802(4)$	$0.06017(9)$	$0.0242(6)$
H11	1.1210	1.0173	0.0868	0.029^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0366(5)$	$0.0304(4)$	$0.0400(4)$	$-0.0049(3)$	$0.0038(3)$	$-0.0064(3)$
O1	$0.0268(11)$	$0.0293(9)$	$0.0371(10)$	$-0.0088(8)$	$0.0036(8)$	$-0.0010(8)$
O2	$0.0372(11)$	$0.0284(9)$	$0.0322(10)$	$-0.0041(8)$	$0.0025(8)$	$-0.0113(8)$
N1	$0.0252(12)$	$0.0200(10)$	$0.0273(11)$	$-0.0021(9)$	$0.0009(9)$	$-0.0004(8)$
C1	$0.0360(19)$	$0.0483(17)$	$0.0541(19)$	$-0.0024(14)$	$0.0104(14)$	$0.0018(15)$
C2	$0.0320(16)$	$0.0220(12)$	$0.0276(13)$	$-0.0002(11)$	$-0.0003(11)$	$-0.0003(10)$
C3	$0.0292(15)$	$0.0272(13)$	$0.0260(13)$	$0.0017(11)$	$-0.0011(11)$	$-0.0019(10)$
C4	$0.0254(15)$	$0.0255(13)$	$0.0314(14)$	$0.0034(11)$	$0.0038(11)$	$0.0005(11)$
C5	$0.0275(15)$	$0.0199(12)$	$0.0247(13)$	$-0.0006(11)$	$-0.0034(10)$	$0.0039(10)$

C6	$0.0237(14)$	$0.0150(11)$	$0.0248(13)$	$0.0001(10)$	$-0.0031(10)$	$0.0028(9)$
C7	$0.0226(14)$	$0.0152(11)$	$0.0214(12)$	$-0.0006(10)$	$-0.0037(9)$	$0.0028(9)$
C8	$0.0253(14)$	$0.0178(11)$	$0.0246(13)$	$-0.0015(10)$	$-0.0026(10)$	$0.0028(9)$
C9	$0.0284(15)$	$0.0211(12)$	$0.0246(13)$	$0.0008(10)$	$-0.0021(10)$	$0.0034(10)$
C10	$0.0220(14)$	$0.0198(12)$	$0.0273(13)$	$-0.0028(10)$	$-0.0065(10)$	$0.0044(10)$
C11	$0.0302(15)$	$0.0177(11)$	$0.0236(13)$	$-0.0019(10)$	$-0.0045(10)$	$-0.0018(9)$

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

S1-C1	1.785 (3)	C3-H3B	0.9900
S1-C2	1.803 (2)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9900
O1-C5	1.210 (3)	C4-H4B	0.9900
O2-C9	1.221 (3)	C5-C6	1.479 (3)
N1-C9	1.394 (3)	C6-C10	1.381 (3)
N1-C5	1.404 (3)	C6-C7	1.408 (3)
N1-C4	1.471 (3)	C7-C7 ${ }^{\text {i }}$	1.413 (4)
C1-H1A	0.9800	C7-C8	1.415 (3)
C1-H1B	0.9800	C8-C11	1.373 (3)
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9800	C8-C9	1.478 (3)
C2-C3	1.523 (3)	C10-C11 ${ }^{\text {i }}$	1.404 (3)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9900	C10-H10	0.9500
C2-H2B	0.9900	C11-C10 ${ }^{\text {i }}$	1.404 (3)
C3-C4	1.521 (3)	C11-H11	0.9500
C3-H3A	0.9900		
C1-S1-C2	100.17 (12)	N1-C4-H4B	108.9
C9-N1-C5	125.2 (2)	C3-C4-H4B	108.9
C9-N1-C4	118.31 (19)	H4A-C4-H4B	107.7
C5-N1-C4	116.52 (19)	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{N} 1$	120.4 (2)
S1-C1-H1A	109.5	O1-C5-C6	122.9 (2)
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	N1-C5-C6	116.7 (2)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	C10-C6-C7	120.5 (2)
S1-C1- H 1 C	109.5	C10-C6-C5	119.5 (2)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	C7-C6-C5	120.0 (2)
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	C6-C7-C7 ${ }^{\text {i }}$	119.5 (2)
C3-C2-S1	110.75 (16)	C6-C7-C8	121.3 (2)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5	C7--C7-C8	119.3 (3)
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5	C11-C8-C7	120.0 (2)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5	C11-C8-C9	120.4 (2)
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5	C7-C8-C9	119.6 (2)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.1	O2-C9-N1	120.2 (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	110.2 (2)	O2-C9-C8	122.6 (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.6	N1-C9-C8	117.2 (2)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.6	C6-C10- $\mathrm{C} 11^{\text {i }}$	119.7 (2)
C4-C3-H3B	109.6	C6- $\mathrm{C} 10-\mathrm{H} 10$	120.1
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.6	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10$	120.1
H3A-C3-H3B	108.1	C8-C11-C10 ${ }^{\text {i }}$	121.1 (2)
N1-C4-C3	113.37 (19)	C8-C11-H11	119.5

$\mathrm{N} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	108.9
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	108.9
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 3$	$-163.99(17)$
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$75.4(2)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	$-84.9(2)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	$94.0(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$	$-167.95(19)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 5-\mathrm{O} 1$	$176.4(2)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 5-\mathrm{O} 1$	$-2.5(3)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6$	$-4.1(3)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6$	$177.07(18)$
$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 10$	$2.3(3)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 10$	$-177.28(19)$
$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-177.5(2)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$3.0(3)$
$\mathrm{C} 10-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 7^{\mathrm{i}}$	$0.2(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 7^{\mathrm{i}}$	$179.9(2)$
$\mathrm{C} 10-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-179.9(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-0.2(3)$

C10i- $\mathrm{C} 11-\mathrm{H} 11$

C6-C7-C8-C11
C7i-C7-C8-C11
C6-C7-C8-C9
C7 ${ }^{\text {i }}-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$
C5-N1-C9-O2
C4-N1-C9-O2
C5-N1-C9-C8
C4-N1-C9-C8
C11-C8-C9-O2
C7-C8-C9-O2
C11-C8-C9—N1
C7-C8-C9-N1
C7-C6-C10-C11 ${ }^{\text {i }}$
C5-C6-C10-C11 ${ }^{\text {i }}$
C7-C8-C11-C10 ${ }^{\text {i }}$
C9-C8-C11-C10
119.5
179.8 (2)
-0.3 (4)
-1.7 (3)
178.1 (2)
-178.5 (2)
0.3 (3)
2.2 (3)
-178.94 (19)
0.0 (3)
-178.4 (2)
179.24 (19)
0.8 (3)
-0.4 (3)
179.8 (2)
0.5 (3)
-177.9 (2)

Symmetry code: (i) $-x+2,-y+1,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4 — \mathrm{H} 4 A \cdots \mathrm{~S} 1$	0.99	2.84	$3.300(2)$	109
$\mathrm{C} 4 — \mathrm{H} 4 A \cdots \mathrm{O} 1$	0.99	2.32	$2.688(3)$	101
$\mathrm{C} 10 — \mathrm{H} 10 \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.95	2.39	$3.316(3)$	164
$\mathrm{C} 11 — \mathrm{H} 11 \cdots \mathrm{~S}^{\mathrm{iii}}$	0.95	2.86	$3.779(2)$	162

Symmetry codes: (ii) $-x+1,-y,-z$; (iii) $x+1, y+1, z$.

