

### CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 24 May 2019 Accepted 27 May 2019

Edited by J. Simpson, University of Otago, New Zealand

**Keywords:** crystal structure; protonated macrocycle; nitrate; hydrate; hydrogen bonds; synchrotron radiation.

CCDC reference: 1918729

**Supporting information**: this article has supporting information at journals.iucr.org/e



OPEN  $\widehat{\odot}$  ACCESS

## Crystal structure of 3,14-diethyl-2,13-diaza-6,17diazoniatricyclo[16.4.0.0<sup>7,12</sup>]docosane dinitrate dihydrate from synchrotron X-ray data

#### Dohyun Moon,<sup>a</sup> Sunghwan Jeon,<sup>b</sup> Keon Sang Ryoo<sup>b</sup> and Jong-Ha Choi<sup>b</sup>\*

<sup>a</sup>Beamline Department, Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea, and <sup>b</sup>Department of Chemistry, Andong National University, Andong 36729, Republic of Korea. \*Correspondence e-mail: jhchoi@anu.ac.kr

The crystal structure of title salt,  $C_{22}H_{46}N_4^{2+}\cdot 2NO_3^{-}\cdot 2H_2O$ , has been determined using synchrotron radiation at 220 K. The structure determination reveals that protonation has occurred at diagonally opposite amine N atoms. The asymmetric unit contains half a centrosymmetric dication, one nitrate anion and one water molecule. The molecular dication,  $C_{22}H_{46}N_4^{2+}$ , together with the nitrate anion and hydrate water molecule are involved in an extensive range of hydrogen bonds. The molecular  $N-H\cdots O$ ,  $O-H\cdots O$ , together with intramolecular  $N-H\cdots N$  hydrogen bonds.

#### 1. Chemical context

3,14-diethyl-2,6,13,17-tetraazatricyclo(16.4.0.0<sup>7,12</sup>)doco-The sane macrocycle ( $C_{22}H_{44}N_4$ , L) contains a cyclam backbone with two cyclohexane subunits. Ethyl groups are also attached to the 3 and 14 carbon atoms of the propyl chains that bridge opposite pairs of N atoms in the structure. The macrocyclic ligand L is a strongly basic amine capable of forming the dication,  $[C_{22}H_{46}N_4]^{2+}$  or the tetracation  $[C_{22}H_{48}N_4]^{4+}$  in which all of the N-H bonds are generally available for hydrogenbond formation. These di- or tetra-ammonium cations may be suitable for the removal of toxic heavy metal ions from water. The crystal structures of  $[Cu(L)](ClO_4)_2$  (Lim *et al.*, 2006),  $[Cu(L)](NO_3)_2$ ,  $[Cu(L)(H_2O)_2](SCN)_2$  (Choi et al., 2012),  $[Ni(L)(NO_3)_2]$  (Subhan & Choi, 2014),  $[Ni(L)(N_3)_2]$  (Lim et al., 2015) and [Ni(L)(NCS)<sub>2</sub>] (Lim & Choi, 2017) have been reported. In these complexes, Cu<sup>II</sup> or Ni<sup>II</sup> cations have tetragonally distorted octahedral environments with the four N atoms of the macrocyclic ligand in equatorial positions and the O/N atoms of anions or water molecules in the axial positions, while  $[Ni(L)](ClO_4)_2 \cdot 2H_2O$  (Subhan & Choi, 2014) has a square-planar geometry around the Ni<sup>II</sup> atom that binds to the four nitrogen atoms of the macrocyclic ligand. The macrocyclic ligands in the Cu<sup>II</sup> and Ni<sup>II</sup> complexes adopt the most stable trans-III conformation. Recently, we also reported the crystal structures of [C<sub>22</sub>H<sub>46</sub>N<sub>4</sub>](ClO<sub>4</sub>)<sub>2</sub> (Aree et al., 2018),  $[C_{22}H_{46}N_4]Cl_2 \cdot 4H_2O$  (Moon *et al.*, 2013) and  $(C_{22}H_{44}N_4)_2 \cdot -$ 2NaClO<sub>4</sub> (Aree et al., 2018). To further investigate the hydrogen-bonding behavior, we report here on the synthesis of a new hydrated nitrate salt, [C<sub>22</sub>H<sub>46</sub>N<sub>4</sub>](NO<sub>3</sub>)<sub>2</sub>·2H<sub>2</sub>O, (I), and its structural characterization by synchrotron singlecrystal X-ray diffraction.

## research communications



Table 1Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$        | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdot \cdot \cdot A$ |  |
|------------------------------------|----------|-------------------------|--------------|-----------------------------|--|
| $N2-H2AN\cdots N1$                 | 0.90     | 2.40                    | 2.9703 (18)  | 121                         |  |
| $N2-H2AN \cdot \cdot \cdot N1^{i}$ | 0.90     | 2.41                    | 2.8141 (17)  | 107                         |  |
| $N1 - H1N \cdots O4$               | 0.94     | 1.84                    | 2.7493 (19)  | 163                         |  |
| $N2-H2AN \cdot \cdot \cdot N1$     | 0.90     | 2.40                    | 2.9703 (18)  | 121                         |  |
| $N2-H2BN\cdots O1$                 | 0.90     | 2.27                    | 3.031 (2)    | 142                         |  |
| O4−H1 <i>O</i> ···O1               | 0.94(1)  | 2.57 (2)                | 3.169 (3)    | 122 (2)                     |  |
| O4−H1 <i>O</i> ···O2               | 0.94(1)  | 1.84 (1)                | 2.768 (2)    | 174 (2)                     |  |
| $O4-H2O\cdots O2^{ii}$             | 0.94(1)  | 2.04 (1)                | 2.914 (2)    | 155 (2)                     |  |
| $O4-H2O\cdots O3^{ii}$             | 0.94 (1) | 2.31 (2)                | 3.120 (4)    | 144 (2)                     |  |

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x,  $-y + \frac{3}{2}$ ,  $z - \frac{1}{2}$ .

### 2. Structural commentary

The title compound has a positively charged macrocyclic dication, two nitrate anions and two solvent water molecules and was prepared during a study of the macrocyclic ligand and its silver(II) complex. An ellipsoid plot of the molecular components in compound (I) is shown in Fig. 1 along with the atom-numbering scheme. The asymmetric unit consists of one half of the macrocycle, which lies about a center of inversion, one nitrate anion and one solvent water molecule. The four N atoms are coplanar, and the two ethyl substituents are anti with respect to the macrocyclic plane as a result of the molecular inversion symmetry. The six-membered cyclohexane ring is in a stable chair conformation. Within the centrosymmetric diprotonated amine unit  $[C_{22}H_{46}N_4]^{2+}$ , the C-C and N-C bond lengths vary from 1.517 (2) to 1.533 (2) Å and from 1.485 (2) to 1.501 (2) Å, respectively. The macrocycle is protonated at the N2 atom, which is similar to the situation found for [C<sub>22</sub>H<sub>46</sub>N<sub>4</sub>](ClO<sub>4</sub>)<sub>2</sub> (Aree et al., 2018), but differs from the protonation of the N1 atom in [C<sub>22</sub>H<sub>46</sub>N<sub>4</sub>]Cl<sub>2</sub>·4H<sub>2</sub>O (Moon et al., 2013). The protonation on the N atom might



Figure 1

The molecular structure of (I), drawn with displacement ellipsoids at the 30% probability level. Primed atoms are related by the symmetry code (1 - x, 1 - y, 1 - z). Dashed lines represent N-H···O (cyan), N-H···N (pink) and O-H···O (blue) hydrogen-bonding interactions, respectively.

depend on the location of the acceptor atoms of the counteranion involved in hydrogen bonding. The ranges of N–C–C and C–N–C angles are 108.07 (11) to 111.14 (12)° and 115.09 (11) to 115.19 (10)°, respectively. The bond lengths and angles within the  $[C_{22}H_{46}N_4]^{2+}$  dication are comparable to those found in  $[C_{22}H_{46}N_4](ClO_4)_2$  (Aree *et al.*, 2018) and  $[C_{22}H_{46}N_4]Cl_2\cdot4H_2O$  (Moon *et al.*, 2013). The nitrate counteranion has a distorted trigonal-planar geometry as a result of the influence of hydrogen bonding on the N–O bond lengths and the O–N–O angles. The N–O bond distances range from 1.204 (3) to 1.214 (2) Å and the O–N–O angles from 117.4 (2) to 123.1 (3)°.

#### 3. Supramolecular features

Extensive  $N-H\cdots O$ ,  $O-H\cdots O$  and  $N-H\cdots N$  hydrogenbonding interactions occur in the crystal structure (Table 1).



Figure 2

The crystal packing in (I), viewed perpendicular to the *bc* plane. Dashed lines represent  $N-H\cdots O$  (cyan),  $N-H\cdots N$  (pink) and  $O-H\cdots O$  (blue) hydrogen bonding interactions, respectively. H atoms bound to C have been omitted.

Table 2Experimental details.

| Crystal data                                                               |                                                                              |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Chemical formula                                                           | $C_{22}H_{46}N_4^{2+}\cdot 2NO_3^{-}\cdot 2H_2O$                             |
| Mr                                                                         | 526.68                                                                       |
| Crystal system, space group                                                | Monoclinic, $P2_1/c$                                                         |
| Temperature (K)                                                            | 220                                                                          |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                         | 8.6420 (17), 16.687 (3), 9.7340 (19                                          |
| β (°)                                                                      | 96.46 (3)                                                                    |
| $V(Å^3)$                                                                   | 1394.8 (5)                                                                   |
| Ζ                                                                          | 2                                                                            |
| Radiation type                                                             | Synchrotron, $\lambda = 0.610 \text{ Å}$                                     |
| $\mu \text{ (mm}^{-1})$                                                    | 0.07                                                                         |
| Crystal size (mm)                                                          | $0.13 \times 0.09 \times 0.05$                                               |
| Data collection                                                            |                                                                              |
| Diffractometer                                                             | Rayonix MX225HS CCD area                                                     |
| Absorption correction                                                      | Empirical (using intensity                                                   |
| Assorption correction                                                      | Minor 1997)                                                                  |
| T + T                                                                      | 0.919_1.000                                                                  |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections   | 14284, 3736, 2968                                                            |
| R <sub>int</sub>                                                           | 0.027                                                                        |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                       | 0.693                                                                        |
| Refinement                                                                 |                                                                              |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                        | 0.062, 0.211, 1.10                                                           |
| No. of reflections                                                         | 3736                                                                         |
| No. of parameters                                                          | 170                                                                          |
| No. of restraints                                                          | 4                                                                            |
| H-atom treatment                                                           | H atoms treated by a mixture of<br>independent and constrained<br>refinement |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$ | 0.73, -0.56                                                                  |

Computer programs: PAL BL2D-SMDC Program (Shin et al., 2016), HKL3000sm (Otwinowski & Minor, 1997), SHELXT2018 (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b), DIAMOND 4 (Putz & Brandenburg, 2014) and publCIF (Westrip, 2010).

The crystal packing viewed along the *a* axis is shown in Fig. 2. The  $O-H\cdots O$  hydrogen bonds link the water molecules to neighboring nitrate anions, while  $N-H\cdots O$  hydrogen bonds interconnect the  $[C_{22}H_{46}N_4]^{2+}$  cations with both the nitrate anions and the water molecules. The crystal structure is stabilized by molecular hydrogen bonds involving the macrocycle N-H groups and water O-H groups as donors, and the O atoms of the water molecules and nitrate anions as acceptors, giving rise to a three-dimensional framework (Figs. 1 and 2).

#### 4. Database survey

A search of the Cambridge Structural (Version 5.40, Feb 2019 with 1 update; Groom *et al.*, 2016) gave just three hits for organic compounds containing the macrocycles  $[C_{22}H_{48}N_4]^{4+}$ ,  $[C_{22}H_{46}N_4]^{2+}$  or  $(C_{22}H_{44}N_4)$ . The crystal structures of  $[C_{22}H_{46}N_4](ClO_4)_2$  (Aree *et al.*, 2018),  $[C_{22}H_{46}N_4]Cl_2\cdot 4H_2O$  (Moon *et al.*, 2013) and  $(C_{22}H_{44}N_4)_2\cdot 2NaClO_4$  (Aree *et al.*, 2018) were reported by us previously. Until now, no crystal structures of any  $[C_{22}H_{46}N_4]^{2+}$  or  $[C_{22}H_{48}N_4]^{4+}$  compounds with a nitrate anion have been deposited.

#### 5. Synthesis and crystallization

Commercially available *trans*-1,2-cyclohexanediamine, ethyl vinyl ketone and silver nitrate (Sigma–Aldrich) were used as provided. All other chemicals were reagent grade and used without further purification. As a starting material, 3,14-diethyl-2,6,13,17-tetraazatricyclo( $(16.4.0.0^{7,12})$ docosane, *L* was prepared according to a published procedure (Lim *et al.*, 2006). A solution of the macrocyclic ligand, *L* (0.33 g, 1.0 mmol) in methanol 10 mL was added dropwise to a stirred solution of AgNO<sub>3</sub> (0.34 g, 2.0 mmol) in water 10 mL. The solution turned an orange color and the metallic silver that formed was filtered off. The orange filtrate was kept in an open beaker, protected from light, at room temperature. Block-like colorless crystals of suitable for X-ray analysis were obtained unexpectedly from the solution over a period of a few weeks.

#### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All C and N-bound H atoms in the complex were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.97–0.99 Å, and with an N–H distance of 0.90 Å with  $U_{iso}(H)$  values of 1.2 and 1.5 times the  $U_{eq}$  of the parent atoms, respectively. The N-bound H atoms of the  $[C_{22}H_{46}N_4]^{2+}$  cation and the O-bound H atoms of the water molecules were located in a difference-Fourier map and refined isotropically, with the N–H distance restrained using DFIX [0.9 (2) Å] and the O– H distances and H–O–H angles restrained using DFIX and DANG constraints [0.94 (2) and 1.55 (2) Å], respectively.

#### **Funding information**

This work was supported by a Research Grant of Andong National University. The X-ray crystallography experiment at the PLS-II BL2D-SMC beamline was supported in part by MSICT and POSTECH.

#### References

- Aree, T., Hong, Y. P. & Choi, J.-H. (2018). J. Mol. Struct. 1163, 86–93.
- Choi, J.-H., Subhan, M. A. & Ng, S. W. (2012). J. Coord. Chem. 65, 3481–3491.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Lim, I.-T. & Choi, K.-Y. (2017). Polyhedron, 127, 361-368.
- Lim, I.-T., Kim, C.-H. & Choi, K.-Y. (2015). Polyhedron, 100, 43–48.
- Lim, J. H., Kang, J. S., Kim, H. C., Koh, E. K. & Hong, C. S. (2006). *Inorg. Chem.* 45, 7821–7827.
- Moon, D., Subhan, M. A. & Choi, J.-H. (2013). Acta Cryst. E69, 01620. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol.
- 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307–326. New York: Academic Press.
- Putz, H. & Brandenburg, K. (2014). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369– 373. Subhan, M. A. & Choi, J.-H. (2014). Spectrochim. Acta Part A, 123, 410–415.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Acta Cryst. (2019). E75, 921-924 [https://doi.org/10.1107/S2056989019007655]

Crystal structure of 3,14-diethyl-2,13-diaza-6,17-diazoniatricyclo-[16.4.0.0<sup>7,12</sup>]docosane dinitrate dihydrate from synchrotron X-ray data

### Dohyun Moon, Sunghwan Jeon, Keon Sang Ryoo and Jong-Ha Choi

**Computing details** 

Data collection: *PAL BL2D-SMDC Program* (Shin *et al.*, 2016); cell refinement: *HKL3000sm* (Otwinowski & Minor, 1997); data reduction: *HKL3000sm* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXT2018* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015b); molecular graphics: *DIAMOND 4* (Putz & Brandenburg, 2014); software used to prepare material for publication: *publCIF* (Westrip, 2010).

F(000) = 576

 $\theta = 0.4 - 33.7^{\circ}$ 

 $\mu = 0.07 \text{ mm}^{-1}$ 

Block, colorless

 $0.13 \times 0.09 \times 0.05 \text{ mm}$ 

T = 220 K

 $D_{\rm x} = 1.254 {\rm Mg m^{-3}}$ 

Synchrotron radiation,  $\lambda = 0.610$  Å Cell parameters from 46866 reflections

3,14-Diethyl-2,13-diaza-6,17-diazoniatricyclo[16.4.0.0<sup>7,12</sup>]docosane dinitrate dihydrate

C<sub>22</sub>H<sub>46</sub>N<sub>4</sub><sup>2+</sup>·2NO<sub>3</sub><sup>-</sup>·2H<sub>2</sub>O  $M_r = 526.68$ Monoclinic,  $P2_1/c$  a = 8.6420 (17) Å b = 16.687 (3) Å c = 9.7340 (19) Å  $\beta = 96.46$  (3)° V = 1394.8 (5) Å<sup>3</sup> Z = 2

Data collection

| Rayonix MX225HS CCD area detector<br>diffractometer | 14284 measured reflections<br>3736 independent reflections      |
|-----------------------------------------------------|-----------------------------------------------------------------|
| Radiation source: PLSII 2D bending magnet           | 2968 reflections with $I > 2\sigma(I)$                          |
| $\omega$ scan                                       | $R_{\rm int} = 0.027$                                           |
| Absorption correction: empirical (using             | $\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.0^\circ$ |
| intensity measurements)                             | $h = -11 \rightarrow 11$                                        |
| (HKL3000sm SCALEPACK; Otwinowski &                  | $k = -21 \rightarrow 21$                                        |
| Minor, 1997)                                        | $l = -13 \rightarrow 13$                                        |
| $T_{\min} = 0.919, \ T_{\max} = 1.000$              |                                                                 |
| Refinement                                          |                                                                 |
| Refinement on $F^2$                                 | Hydrogen site location: mixed                                   |
| Least-squares matrix: full                          | H atoms treated by a mixture of independent                     |
| $R[F^2 > 2\sigma(F^2)] = 0.062$                     | and constrained refinement                                      |
| $wR(F^2) = 0.211$                                   | $w = 1/[\sigma^2(F_o^2) + (0.1295P)^2 + 0.2454P]$               |
| S = 1.10                                            | where $P = (F_o^2 + 2F_c^2)/3$                                  |
| 3736 reflections                                    | $(\Delta/\sigma)_{\rm max} < 0.001$                             |
| 170 parameters                                      | $\Delta \rho_{\rm max} = 0.73 \text{ e } \text{\AA}^{-3}$       |
| 4 restraints                                        | $\Delta \rho_{\rm min} = -0.56 \text{ e} \text{ Å}^{-3}$        |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|      | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|--------------|--------------|-----------------------------|--|
| N1   | 0.51219 (14) | 0.59626 (8)  | 0.36407 (11) | 0.0308 (3)                  |  |
| H1N  | 0.473300     | 0.634200     | 0.422800     | 0.037*                      |  |
| N2   | 0.28123 (13) | 0.47313 (7)  | 0.42499 (11) | 0.0278 (3)                  |  |
| H2AN | 0.385711     | 0.476834     | 0.431710     | 0.033*                      |  |
| H2BN | 0.246719     | 0.513235     | 0.475356     | 0.033*                      |  |
| C1   | 0.76020 (15) | 0.60393 (9)  | 0.51374 (13) | 0.0286 (3)                  |  |
| H1   | 0.716885     | 0.647557     | 0.566781     | 0.034*                      |  |
| C2   | 0.93544 (17) | 0.61843 (10) | 0.51640 (16) | 0.0365 (3)                  |  |
| H2A  | 0.983763     | 0.617356     | 0.612413     | 0.044*                      |  |
| H2B  | 0.981148     | 0.575002     | 0.466503     | 0.044*                      |  |
| C3   | 0.97155 (18) | 0.69835 (10) | 0.45121 (17) | 0.0386 (4)                  |  |
| H3A  | 0.936038     | 0.742285     | 0.506664     | 0.046*                      |  |
| H3B  | 1.084368     | 0.703693     | 0.450342     | 0.046*                      |  |
| C4   | 0.89135 (18) | 0.70410 (10) | 0.30389 (15) | 0.0373 (3)                  |  |
| H4A  | 0.935358     | 0.663904     | 0.245983     | 0.045*                      |  |
| H4B  | 0.910323     | 0.757161     | 0.266013     | 0.045*                      |  |
| C5   | 0.71640 (17) | 0.69051 (9)  | 0.30041 (15) | 0.0342 (3)                  |  |
| H5A  | 0.667680     | 0.692382     | 0.204553     | 0.041*                      |  |
| H5B  | 0.670830     | 0.733224     | 0.352056     | 0.041*                      |  |
| C6   | 0.68403 (16) | 0.60924 (9)  | 0.36398 (13) | 0.0296 (3)                  |  |
| H6   | 0.726833     | 0.566354     | 0.308993     | 0.035*                      |  |
| C7   | 0.42136 (18) | 0.59147 (10) | 0.22379 (14) | 0.0353 (3)                  |  |
| H7A  | 0.467359     | 0.550519     | 0.168718     | 0.042*                      |  |
| H7B  | 0.427202     | 0.643030     | 0.176434     | 0.042*                      |  |
| C8   | 0.25211 (17) | 0.57083 (9)  | 0.23440 (14) | 0.0337 (3)                  |  |
| H8A  | 0.192762     | 0.580870     | 0.144215     | 0.040*                      |  |
| H8B  | 0.212715     | 0.607652     | 0.300777     | 0.040*                      |  |
| C9   | 0.21823 (17) | 0.48504 (9)  | 0.27811 (13) | 0.0314 (3)                  |  |
| Н9   | 0.103745     | 0.478672     | 0.271539     | 0.038*                      |  |
| C10  | 0.2802 (3)   | 0.42191 (11) | 0.18588 (16) | 0.0471 (4)                  |  |
| H10A | 0.393272     | 0.428242     | 0.189202     | 0.056*                      |  |
| H10B | 0.259978     | 0.368749     | 0.222744     | 0.056*                      |  |
| C11  | 0.2090 (4)   | 0.42595 (16) | 0.0363 (2)   | 0.0792 (8)                  |  |
| H11A | 0.096417     | 0.427628     | 0.032597     | 0.119*                      |  |
| H11B | 0.239639     | 0.378996     | -0.012820    | 0.119*                      |  |
| H11C | 0.245453     | 0.473817     | -0.006600    | 0.119*                      |  |
| N3   | 0.2912 (2)   | 0.63006 (12) | 0.76865 (18) | 0.0581 (5)                  |  |
| 01   | 0.3086 (2)   | 0.58294 (10) | 0.6746 (2)   | 0.0812 (6)                  |  |
| 02   | 0.2872(2)    | 0.70307 (10) | 0.74420 (17) | 0.0696 (5)                  |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{A}^2)$ 

| O3  | 0.2875 (5)   | 0.6094 (2)  | 0.8868 (3)   | 0.1636 (16) |
|-----|--------------|-------------|--------------|-------------|
| O4  | 0.42576 (16) | 0.72874 (9) | 0.50503 (14) | 0.0501 (3)  |
| H1O | 0.373 (3)    | 0.7221 (16) | 0.5829 (17)  | 0.075*      |
| H2O | 0.366 (3)    | 0.7605 (14) | 0.439 (2)    | 0.075*      |

Atomic displacement parameters  $(A^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$    |
|-----|-------------|-------------|-------------|--------------|--------------|-------------|
| N1  | 0.0327 (6)  | 0.0418 (7)  | 0.0171 (5)  | -0.0017 (5)  | -0.0003 (4)  | 0.0035 (4)  |
| N2  | 0.0303 (6)  | 0.0363 (6)  | 0.0163 (5)  | -0.0001 (4)  | -0.0003 (4)  | 0.0006 (4)  |
| C1  | 0.0300 (6)  | 0.0370 (7)  | 0.0185 (6)  | -0.0006 (5)  | 0.0012 (5)   | 0.0007 (5)  |
| C2  | 0.0303 (7)  | 0.0486 (9)  | 0.0302 (7)  | -0.0013 (6)  | 0.0012 (5)   | 0.0050 (6)  |
| C3  | 0.0361 (7)  | 0.0496 (9)  | 0.0305 (7)  | -0.0078 (6)  | 0.0055 (6)   | 0.0016 (6)  |
| C4  | 0.0380 (7)  | 0.0482 (9)  | 0.0269 (7)  | -0.0029 (6)  | 0.0090 (6)   | 0.0038 (6)  |
| C5  | 0.0368 (7)  | 0.0423 (8)  | 0.0240 (6)  | -0.0006 (5)  | 0.0048 (5)   | 0.0065 (5)  |
| C6  | 0.0317 (6)  | 0.0389 (7)  | 0.0180 (6)  | 0.0007 (5)   | 0.0024 (5)   | 0.0015 (5)  |
| C7  | 0.0393 (8)  | 0.0476 (8)  | 0.0176 (6)  | -0.0062 (6)  | -0.0027 (5)  | 0.0057 (5)  |
| C8  | 0.0344 (7)  | 0.0437 (8)  | 0.0213 (6)  | 0.0024 (5)   | -0.0040 (5)  | 0.0046 (5)  |
| C9  | 0.0329 (7)  | 0.0430 (8)  | 0.0172 (6)  | -0.0033 (5)  | -0.0013 (5)  | 0.0010 (5)  |
| C10 | 0.0721 (12) | 0.0461 (10) | 0.0240 (7)  | -0.0041 (8)  | 0.0097 (7)   | -0.0044 (6) |
| C11 | 0.141 (3)   | 0.0743 (15) | 0.0214 (8)  | -0.0135 (15) | 0.0046 (11)  | -0.0093 (9) |
| N3  | 0.0674 (11) | 0.0633 (11) | 0.0418 (9)  | -0.0045 (8)  | -0.0025 (8)  | 0.0016 (7)  |
| 01  | 0.1056 (14) | 0.0553 (10) | 0.0739 (12) | 0.0074 (8)   | -0.0284 (10) | -0.0228 (8) |
| O2  | 0.1060 (14) | 0.0545 (9)  | 0.0509 (9)  | 0.0048 (8)   | 0.0204 (9)   | -0.0098 (6) |
| O3  | 0.285 (5)   | 0.140 (3)   | 0.0760 (18) | 0.010 (3)    | 0.063 (2)    | 0.0501 (17) |
| O4  | 0.0555 (8)  | 0.0574 (8)  | 0.0384 (7)  | 0.0082 (6)   | 0.0088 (6)   | -0.0009 (5) |

Geometric parameters (Å, °)

| N1—C7              | 1.4987 (17) | С5—Н5В   | 0.9800    |
|--------------------|-------------|----------|-----------|
| N1—C6              | 1.5009 (18) | С6—Н6    | 0.9900    |
| N1—H1N             | 0.94        | С7—С8    | 1.517 (2) |
| N2—C1 <sup>i</sup> | 1.4784 (18) | С7—Н7А   | 0.9800    |
| N2—C9              | 1.4850 (16) | С7—Н7В   | 0.9800    |
| N2—H2AN            | 0.9000      | C8—C9    | 1.531 (2) |
| N2—H2BN            | 0.9000      | C8—H8A   | 0.9800    |
| C1—C2              | 1.5309 (19) | C8—H8B   | 0.9800    |
| C1—C6              | 1.5330 (18) | C9—C10   | 1.520 (2) |
| С1—Н1              | 0.9900      | С9—Н9    | 0.9900    |
| С2—С3              | 1.524 (2)   | C10—C11  | 1.517 (3) |
| C2—H2A             | 0.9800      | C10—H10A | 0.9800    |
| C2—H2B             | 0.9800      | C10—H10B | 0.9800    |
| C3—C4              | 1.524 (2)   | C11—H11A | 0.9700    |
| С3—НЗА             | 0.9800      | C11—H11B | 0.9700    |
| С3—Н3В             | 0.9800      | C11—H11C | 0.9700    |
| C4—C5              | 1.525 (2)   | N3—O3    | 1.204 (3) |
| C4—H4A             | 0.9800      | N3—O1    | 1.229 (3) |
| C4—H4B             | 0.9800      | N3—O2    | 1.241 (2) |
|                    |             |          |           |

| C5—C6                                                | 1.529 (2)           | O4—H1O                                                    | 0.937 (10)               |
|------------------------------------------------------|---------------------|-----------------------------------------------------------|--------------------------|
| С5—Н5А                                               | 0.9800              | O4—H2O                                                    | 0.941 (9)                |
|                                                      |                     |                                                           |                          |
| C7—N1—C6                                             | 115.09 (11)         | N1—C6—C1                                                  | 108.07 (11)              |
| C7—N1—H1N                                            | 114                 | C5—C6—C1                                                  | 110.95 (12)              |
| C6—N1—H1N                                            | 109                 | N1—C6—H6                                                  | 109.0                    |
| C1 <sup>i</sup> —N2—C9                               | 115.19 (10)         | С5—С6—Н6                                                  | 109.0                    |
| C1 <sup>i</sup> —N2—H2AN                             | 108.5               | С1—С6—Н6                                                  | 109.0                    |
| C9—N2—H2AN                                           | 108.5               | N1—C7—C8                                                  | 111.11 (11)              |
| C1 <sup>i</sup> —N2—H2BN                             | 108.5               | N1—C7—H7A                                                 | 109.4                    |
| C9—N2—H2BN                                           | 108.5               | С8—С7—Н7А                                                 | 109.4                    |
| H2AN—N2—H2BN                                         | 107.5               | N1—C7—H7B                                                 | 109.4                    |
| $N2^{i}$ —C1—C2                                      | 114.50 (12)         | С8—С7—Н7В                                                 | 109.4                    |
| $N2^{i}$ —C1—C6                                      | 109.65 (11)         | H7A—C7—H7B                                                | 108.0                    |
| C2-C1-C6                                             | 108.97 (11)         | C7—C8—C9                                                  | 116.55 (12)              |
| $N2^{i}$ —C1—H1                                      | 107.8               | C7—C8—H8A                                                 | 108.2                    |
| C2-C1-H1                                             | 107.8               | C9—C8—H8A                                                 | 108.2                    |
| C6-C1-H1                                             | 107.8               | C7-C8-H8B                                                 | 108.2                    |
| $C_3 - C_2 - C_1$                                    | 112 32 (12)         | C9-C8-H8B                                                 | 108.2                    |
| $C_3 - C_2 - H_2 \Delta$                             | 100 1               | H8A - C8 - H8B                                            | 107.3                    |
| C1 - C2 - H2A                                        | 109.1               | $N_2 - C_9 - C_{10}$                                      | 107.3                    |
| $C_3 - C_2 - H_2B$                                   | 109.1               | $N_2 - C_9 - C_8$                                         | 109.38(11)               |
| C1 - C2 - H2B                                        | 109.1               | $C_{10} - C_{9} - C_{8}$                                  | 109.33(11)<br>113.13(13) |
| $H_{2A} = C_2 = H_{2B}$                              | 107.0               | $N_2 C_0 H_0$                                             | 107.7                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 107.9<br>110.74(13) | $\begin{array}{ccc} 12 & -0 & -119 \\ \hline \end{array}$ | 107.7                    |
| C4 = C3 = C2                                         | 110.74 (15)         | $C_{10}$ $C_{20}$ $H_{0}$                                 | 107.7                    |
| $C_4 = C_5 = H_2 A$                                  | 109.5               | $C_{0}$                                                   | 107.7                    |
| $C_2 = C_3 = H_3 A$                                  | 109.5               | $C_{11} = C_{10} = C_{10}$                                | 115.80 (17)              |
| С2 С2 Ц2Р                                            | 109.5               |                                                           | 108.8                    |
| $C_2 = C_3 = H_3 B$                                  | 109.5               | $C_{9}$ $C_{10}$ $H_{10}$ $H_{10}$                        | 108.8                    |
| H3A - C3 - H3B                                       | 108.1               |                                                           | 108.8                    |
| $C_3 - C_4 - C_5$                                    | 110.87 (12)         |                                                           | 108.8                    |
| C3—C4—H4A                                            | 109.5               | HI0A—CI0—HI0B                                             | 107.7                    |
| C5—C4—H4A                                            | 109.5               | Clo—Cll—HllA                                              | 109.5                    |
| C3—C4—H4B                                            | 109.5               | Cl0—Cl1—HIIB                                              | 109.5                    |
| C5—C4—H4B                                            | 109.5               | HIIA—CII—HIIB                                             | 109.5                    |
| H4A—C4—H4B                                           | 108.1               | C10—C11—H11C                                              | 109.5                    |
| C4—C5—C6                                             | 110.41 (12)         | H11A—C11—H11C                                             | 109.5                    |
| C4—C5—H5A                                            | 109.6               | H11B—C11—H11C                                             | 109.5                    |
| С6—С5—Н5А                                            | 109.6               | O3—N3—O1                                                  | 123.1 (3)                |
| C4—C5—H5B                                            | 109.6               | O3—N3—O2                                                  | 117.4 (2)                |
| C6—C5—H5B                                            | 109.6               | O1—N3—O2                                                  | 119.23 (19)              |
| H5A—C5—H5B                                           | 108.1               | H1O—O4—H2O                                                | 109.8 (18)               |
| N1—C6—C5                                             | 110.75 (11)         |                                                           |                          |
| N2 <sup>i</sup> —C1—C2—C3                            | 179.62 (12)         | N2 <sup>i</sup> —C1—C6—C5                                 | 176.50 (11)              |
| C6—C1—C2—C3                                          | 56.43 (16)          | C2-C1-C6-C5                                               | -57.46 (15)              |
| C1—C2—C3—C4                                          | -55.92 (17)         | C6—N1—C7—C8                                               | 174.85 (12)              |
| C2—C3—C4—C5                                          | 55.43 (18)          | N1—C7—C8—C9                                               | -71.31 (16)              |

| $C_{3}$ $C_{4}$ $C_{5}$ $C_{6}$ | -57.05(17)   | $C1^{i}$ N2 $C9$ $C10$      | -61.66(16)  |
|---------------------------------|--------------|-----------------------------|-------------|
| $C_{7}$ N1 $C_{6}$ $C_{5}$      | 57.05(17)    | $C_1 = N_2 = C_2 = C_1 C_2$ | 17272(11)   |
| C7—N1—C0—C3                     | 04.03 (13)   | $CI = N_2 = C_3 = C_3$      | 1/2.72(11)  |
| C/NIC6CI                        | -174.25(12)  | C7—C8—C9—N2                 | 68.87 (16)  |
| C4—C5—C6—N1                     | 178.64 (11)  | C7—C8—C9—C10                | -55.60 (17) |
| C4—C5—C6—C1                     | 58.63 (16)   | N2-C9-C10-C11               | 174.71 (16) |
| N2 <sup>i</sup> —C1—C6—N1       | 54.91 (14)   | C8—C9—C10—C11               | -61.8 (2)   |
| C2-C1-C6-N1                     | -179.05 (12) |                             |             |

Symmetry code: (i) -x+1, -y+1, -z+1.

| Hvdrogen-bond  | geometry | (Å.  | <i>o</i> ) |
|----------------|----------|------|------------|
| ilyarozen oona | geomeny  | (11) |            |

| D—H···A                            | <i>D</i> —Н | H···A    | $D \cdots A$ | D—H···A |
|------------------------------------|-------------|----------|--------------|---------|
| N2—H2AN…N1                         | 0.90        | 2.40     | 2.9703 (18)  | 121     |
| N2—H2AN····N1 <sup>i</sup>         | 0.90        | 2.41     | 2.8141 (17)  | 107     |
| N1—H1 <i>N</i> ···O4               | 0.94        | 1.84     | 2.7493 (19)  | 163     |
| N2—H2 <i>AN</i> ···N1              | 0.90        | 2.40     | 2.9703 (18)  | 121     |
| N2—H2 <i>BN</i> ····O1             | 0.90        | 2.27     | 3.031 (2)    | 142     |
| 04—H1 <i>0</i> …O1                 | 0.94 (1)    | 2.57 (2) | 3.169 (3)    | 122 (2) |
| O4—H1 <i>O</i> ···O2               | 0.94 (1)    | 1.84 (1) | 2.768 (2)    | 174 (2) |
| O4—H2 <i>O</i> ···O2 <sup>ii</sup> | 0.94 (1)    | 2.04 (1) | 2.914 (2)    | 155 (2) |
| O4—H2 <i>O</i> ···O3 <sup>ii</sup> | 0.94 (1)    | 2.31 (2) | 3.120 (4)    | 144 (2) |
|                                    |             |          |              |         |

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, -y+3/2, z-1/2.