

Received 18 March 2019 Accepted 2 May 2019

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: chalcone; crystal structure; hydrogen bond; Hirshfeld surface analysis.

CCDC reference: 1913649

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN O ACCESS

Crystal structure and Hirshfeld surface analysis of (*E*)-2-(2,4,6-trimethylbenzylidene)-3,4-dihydronaphthalen-1(2*H*)-one

Cemile Baydere,^a* Merve Taşçı,^b Necmi Dege,^a* Mustafa Arslan,^b Yusuf Atalay^b and Irina A. Golenya^c*

^aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139-Samsun, Turkey, ^bSakarya University, Faculty of Arts & Sciences, Chemistry Department, Sakarya, Turkey, and ^cTaras Shevchenko National University of Kyiv, Department of Chemistry, 64, Vladimirska Str., 01601, Kiev, Ukraine. *Correspondence e-mail: cemle28baydere@hotmail.com, necmid@omu.edu.tr, igolenya@ua.fm

A novel chalcone, $C_{20}H_{20}O$, derived from benzylidenetetralone, was synthesized *via* Claissen–Schmidt condensation between tetralone and 2,4,6-trimethylbenzaldehyde. In the crystal, molecules are linked by $C-H\cdots O$ hydrogen bonds, producing $R_2^2(20)$ and $R_2^4(12)$ ring motifs. In addition, weak $C-H\cdots \pi$ and π -stacking interactions are observed. The intermolecular interactions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most important contributions for the crystal packing are from $H\cdots H$ (66.0%), $H\cdots C/C\cdots H$ (22.3%), $H\cdots O/O\cdots H$ (9.3%), and $C\cdots C$ (2.4%) interactions. Shape-index plots show $\pi-\pi$ stacking interactions and the curvedness plots show flat surface patches characteristic of planar stacking.

1. Chemical context

Chalcone (systematic name 1,3-diphenyl-2-propene-1-one) is an aromatic ketone that represents the central core for various derivatives with interesting properties, known as chalcones (Kostanecki & Tambor, 1899). For example, chalcones are found in fruits, vegetables, spices, tea or soy, and find applications as pharmaceuticals (Di Carlo et al., 1999). Chalcones are also major intermediates in the synthesis of natural products and are widely used in synthetic and pharmaceutical chemistry (Dhar, 1981; Ansari et al., 2005) because they have antitumor (Modzelewska et al., 2006), antifungal (López et al., 2001), anti-inflammatory (Lee et al., 2006), anti-bacterial (Batovska et al., 2009) or antitubercular properties (Lin et al., 2002). In general, chalcones consist of two aromatic rings that are linked by a three-carbon α,β -unsaturated carbonyl system, leading to a completely delocalized π -electron system. Recently, chalcones have also been used in the field of materials science as non-linear optical devices (Raghavendra et al., 2017). As part of our studies in this area, we report herein the synthesis, crystal structure and Hirshfeld surface analysis of a new chalcone.

Figure 1

The molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

2. Structural commentary

In the title molecule (Fig. 1), the cyclohexanone ring (C1/C2,C7/C8,C9/C10) has an envelope conformation with the flap atom C9 deviating by 0.280 (3) Å from the least-squares plane through the ring. The cyclohexanone ring is nearly co-planar with the benzene ring (C2–C7) being fused at a dihedral angle of 4.70 (18)°, but is inclined to the other benzene ring (C12–C17) by 74.95 (13)°. Torsion angles involving the methylene group C10=C11 are $83.3 (5)^{\circ}$ (C17–C12–C11–C10), 129.8 (4)° (C11–C10–C9–C8) and 27.7 (6)° (O1–C1–C10–C11).

3. Supramolecular features

The main intermolecular interactions in the crystal structure of the title compound are of type $C-H\cdots O$, $C-H\cdots \pi$

Figure 2

A view along the *a* axis of the title structure. Blue dashed lines denote the C-H···O hydrogen bonds which form $R_2^2(20)$ and $R_2^4(12)$ ring motifs. C-H··· π interactions are shown as green dashes lines.

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).

Cg2 is the centroid of the C2-C7 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C16-H16\cdots O1^{i}$	0.93	2.69	3.493 (5)	145
$C20-H20C\cdots O1^{ii}$	0.96	2.60	3.535 (5)	165
$C9-H9A\cdots Cg2^{iii}$	0.97	2.90	3.865 (6)	175
Symmetry codes: (-x + 1, -y, -z + 1.	i) $x + 1, y - 1$	– 1, z; (ii)	-x - 1, -y - 1	, -z - 2; (iii)

(Table 1) and π - π . Interactions between a methyl group and the carbonyl O atom (C20-H20 $C \cdots O1^{ii}$) as well as between an aromatic H atom and the carbonyl atom (C16-H16 $\cdots O1^{i}$) lead to $R_2^2(20)$ and $R_2^4(12)$ motifs (Fig. 2), linking adjacent molecules parallel to (001) (Table 2, Fig. 2). A weak C9-H9 $A \cdots Cg2^{iii}$ (Cg2 is the centroid of the C2-C7 benzene ring) interaction is also present (Fig. 2), along with weak aromatic π -stacking interactions [Cg2 \cdots Cg2(-2 - x, -y, -1 - z) = 3.887 (3) Å] that consolidate the three-dimensional packing.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update November 2018; Groom et al., 2016) using (E)-2-(4-methylbenzylidene)-3,4-dihydronaphthalen-1(2H)-one as the main skeleton revealed the presence of four structures containing the chalcone moiety with different substituents that are similar to the title compound: (E)-4-[(1-oxo-3,4-dihydronaphthalen-2(1*H*)-ylidene)methyl]benzonitrile (OEVMAI: Baddeley et al., 2017); (E)-4-[(5-methoxy-1-oxo-3,4-dihydronaphthalen-2(1H)-ylidene)methyl]benzonitrile (QEVMEM; Baddeley et al., 2017); (E)-4-[(6-methoxy-1-oxo-3,4-dihydronaphthalen-2(1*H*)-ylidene)methyl]benzonitrile (QEVMIQ; Baddeley et al., 2017); 1'-(4-bromophenyl)-4'-{4-[(1-0x0-3,4dihydronaphthalen-2(1H)-ylidene) methyl]phenyl}-3'',4''-dihydro-1"H,2H-dispiro(acenaphthylene-1,2'-pyrrolidine-3',2"naphthalene)-1",2-dione (VUZXOE; Saravanan et al., 2010). QEVMAI and VUZXOE both crystallize in space group $P\overline{1}$, while QEVMEM and QEVMIQ crystallize in space group $P2_1/c$. In the structures of QEVMAI, QEVMEM and QEVMIQ, the dihedral angles between the phenyl groups are 45.66 (5), 55.06 (7) and 69.78 (5)°, respectively. In the structure of VUZXOE, the central benzene ring makes a dihedral angle of 42.71 $(7)^{\circ}$ with the bromophenyl ring.

5. Hirshfeld surface analysis

A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon *et al.*, 2007) were performed with *Crystal-Explorer17* (Turner *et al.*, 2017), using standard surface resolution with the three-dimensional d_{norm} surfaces plotted over a fixed colour scale of -0.0870 (red) to 1.2944 (blue) a.u.. The three-dimensional d_{norm} surface of the title molecule is illustrated in Fig. 3*a* and 4. The pale-red spots symbolize short contacts and negative d_{norm} values on the surface correspond

research communications

Figure 3

(a) d_{norm} mapped on Hirshfeld surfaces for visualizing the intermolecular interactions; (b) shape-index map and (c) curvedness map of the title compound.

to the C-H···O interactions described above (Table 1). The overall two-dimensional fingerprint plot is illustrated in Fig. 5*a*. The Hirshfeld surfaces mapped over d_{norm} are shown for the H···H, H···C/ C···H, H···O/O···H, C···C contacts (McKinnon *et al.*, 2007), and the two-dimensional fingerprint

Figure 4

 d_{norm} mapped on Hirshfeld surfaces for visualizing the intermolecular interactions.

plots are shown in Fig. 5b and 5c, respectively, associated with their relative contributions to the Hirshfeld surface. The largest contribution to the overall crystal packing is from H···H interactions (66.0%); H···H contacts are shown in the middle region 1.10 Å < $(d_i + d_e) < 1.18$ Å. H···C/C···H contacts contribute 22.3% to the Hirshfeld surface, resulting in two pairs of characteristic wings in the fingerprint plot. The pair of tips appears at 1.10 Å < $(d_i + d_e) < 1.65$ Å. H···O/O···H contacts make a 9.3% contribution to the Hirshfeld surface. The contacts are represented by a pair of sharp spikes in the region 1.05 Å < $(d_i + d_e) < 1.4$ Å in the fingerprint plot. The C···C contacts are a measure of π - π stacking interactions and contribute 2.4% to the Hirshfeld surface. They appear as an arrow-shaped distribution at 1.80 Å < $(d_i + d_e) < 2.0$ Å.

(a) The overall two-dimensional fingerprint plot and (b) Hirshfeld surface representations with the function d_{norm} plotted onto the surface for (i) $H \cdots H$, (ii) $H \cdots C/C \cdots H$, (iii) $H \cdots O/O \cdots H$ and (iv) $C \cdots C$ interactions. (c) The two-dimensional fingerprint plots for the title compound, delineated into (i) $H \cdots H$, (ii) $H \cdots C/C \cdots H$, (iii) $H \cdots O/O \cdots H$, (iv) $C \cdots C$ interactions.

Table 2Experimental details.	
Crystal data	
Chemical formula	$C_{20}H_{20}O$
Mr	276.36
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	293
a, b, c (Å)	8.728 (2), 8.757 (2), 12.094 (3)
$\alpha, \beta, \gamma(\circ)$	77.768 (19), 80.822 (19),
	61.929 (18)
$V(Å^3)$	795.2 (4)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.07
Crystal size (mm)	$0.64 \times 0.51 \times 0.33$
Data collection	
Diffractometer	Stoe IPDS 2
Absorption correction	Integration (X-RED32; Stoe & Cie 2002)
T_{\min}, T_{\max}	0.956, 0.982
No. of measured, independent and	8143, 2726, 1102
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.088
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.595
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.061, 0.155, 0.91
No. of reflections	2726
No. of parameters	194
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.25, -0.14

Computer programs: X-AREA and X-RED (Stoe & Cie, 2002), SHELXT2017 (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b), Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

The shape-index map of the title molecule (Fig. 3b) was generated in the ranges -1 to 1 Å. The convex blue regions symbolize hydrogen-donor groups and concave red regions symbolize hydrogen-acceptor groups. $\pi-\pi$ interactions on the shape-index map are indicated by adjacent red and blue triangles. As can be seen in Fig. 3b, there are $\pi-\pi$ interactions present between adjacent molecules in the title complex.

The curvedness map of the title compound (Fig. 3c) was generated in the range -4 to 0.4 Å. The large green regions represent a relatively flat (*i.e.* planar) surface area, while the blue regions demonstrate areas of curvature. The presence of π - π stacking interactions is also evident as flat regions around the rings on the Hirshfeld surface plotted over curvedness.

6. Synthesis and crystallization

2,4,6-Trimethylbenzylidenetetralone was prepared according to a literature protocol (Kumar *et al.*, 2017). 10 ml of a NaOH solution $(40\%_{wt})$ was slowly added to a mixture of tetralone (1 mmol) and 2,4,6-trimethylbenzaldehyde (1 mmol) in ethanol (10 ml) at room temperature and stirred overnight. Then ice-cold water was added to the reaction mixture. The resulting precipitate was filtered off and dried *in vacuo*. The compound was purified by crystallization from ethanol, resulting in colourless prismatic crystals.

Yield 85%, m.p. 358 K; IR (ν , cm⁻¹): 3060 (C–H, aromatic), 2920 (C–H, aliphatic), 1670 (C=O), 1620 (C=C, aromatic); ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 7.9 (1H, d,

=C-H), 7.58 (1H, s, =C-H), 7.50 (1H, t, =C-H), 7.38 (1H, t, =C-H), 7.30 (1H, d, =C-H), 6.82 (2H, s, =C-H), 2.8 (2H, t, -CH₂), 2.4 (2H, t, -CH₂), 2.2 (3H, s, -CH₃), 2.02 (6H, s, 2 CH₃); ¹³C NMR (75 MHz, DMSO- d_6 , δ , ppm): 186.9, 144.5, 138.0, 137.2, 135.9, 135.6, 134.2, 133.5, 132.4, 129.3, 128.6, 128.0, 127.6, 28.9, 27.4, 21.3, 20.5. Analysis calculated for C₂₀H₂₀O: C, 86.92%; H, 7.29%; O, 5.79%. Found: C, 86.99%; H, 7.35%; O, 5.90%.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were fixed geometrically and treated as riding, with C-H = 0.97 Å for methyl groups, 0.96 Å for methylene groups, 0.93 Å for aromatic hydrogen atoms and 0.98 Å for methine groups, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$ or $1.5U_{\rm eq}({\rm C}-{\rm methyl})$.

Funding information

This study was supported by Ondokuz Mayıs University under project No. PYO·FEN.1906.19.001.

References

- Ansari, F. L., Nazir, S., Noureen, H. & Mirza, B. (2005). Chem. Biodivers. 2, 1656–1664.
- Baddeley, T. C., Gomes, L. R., Low, J. N., Turner, A. B., Wardell, J. L. & Watson, G. J. R. (2017). Z. Kristallogr. 232, 317–333.
- Batovska, D., Parushev, S., Stamboliyska, B., Tsvetkova, I., Ninova, M. & Najdenski, H. (2009). *Eur. J. Med. Chem.* 44, 2211–2218.
- Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: Wiley.
- Di Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). *Life Sci.* **65**, 337–353.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Kostanecki, S. V. & Tambor, J. (1899). Ber. Dtsch. Chem. Ges. 32, 1921–1926.
- Kumar, B., Smita, K. & Flores, L. C. (2017). Arabian J. Chem. 10, S2335–S2342.
- Lee, S. H., Seo, G. S., Kim, Y., Jin, X. Y., Kim, H. D. & Sohn, D. H. (2006). Eur. J. Pharmacol. 532, 178–186.
- Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). *Bioorg. Med. Chem.* 10, 2795–2802.
- López, S. N., Castelli, M. V., Zacchino, S. A., Dom\?ínguez, J. N., Lobo, G., Charris-Charris, J., Cortés, J. C. G., Ribas, J. C., Devia, C., Rodr\?íguez, A. M. & Enriz, R. D. (2001). *Bioorg. Med. Chem.* 9, 1999–2013.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Modzelewska, A., Pettit, C., Achanta, G., Davidson, N. E., Huang, P. & Khan, S. R. (2006). *Bioorg. Med. Chem.* 14, 3491–3495.
- Raghavendra, S., Chidan Kumar, C. S., Shetty, T. C. S., Lakshminarayana, B. N., Quah, C. K., Chandraju, S., Ananthnag, G. S., Gonsalves, R. A. & Dharmaprakash, S. M. (2017). *Results Phys.* 7, 2550–2556.

Saravanan, B., Rajesh, R., Raghunathan, R., Chakkaravarthi, G. & Manivannan, V. (2010). Acta Cryst. E66, 02801.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

- Spackman, M. A. & Jayatilaka, D. (2009). *CrystEngComm*, **11**, 19–32.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17. University of Western Australia.* http://hirshfeldsurface.net
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2019). E75, 746-750 [https://doi.org/10.1107/S2056989019006182]

Crystal structure and Hirshfeld surface analysis of (*E*)-2-(2,4,6-trimethylbenzylidene)-3,4-dihydronaphthalen-1(2*H*)-one

Cemile Baydere, Merve Taşçı, Necmi Dege, Mustafa Arslan, Yusuf Atalay and Irina A. Golenya

Computing details

Data collection: *X-AREA* (Stoe & Cie, 2002); cell refinement: *X-AREA* (Stoe & Cie, 2002); data reduction: *X-RED* (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017 (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015b); molecular graphics: *Mercury* (Macrae *et al.*, 2008) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 2012), *SHELXL2018* (Sheldrick, 2015b), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

(E)-2-(2,4,6-Trimethylbenzylidene)-3,4-dihydronaphthalen-1(2H)-one

Crystal data

 $\begin{array}{l} C_{20}H_{20}O\\ M_r = 276.36\\ Triclinic, P\overline{1}\\ a = 8.728 \ (2) \ \text{\AA}\\ b = 8.757 \ (2) \ \text{\AA}\\ c = 12.094 \ (3) \ \text{\AA}\\ a = 77.768 \ (19)^{\circ}\\ \beta = 80.822 \ (19)^{\circ}\\ \gamma = 61.929 \ (18)^{\circ}\\ V = 795.2 \ (4) \ \text{\AA}^{3} \end{array}$

Data collection

Stoe IPDS 2 diffractometer Detector resolution: 6.67 pixels mm⁻¹ rotation method scans Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{min} = 0.956$, $T_{max} = 0.982$ 8143 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.155$ S = 0.912726 reflections 194 parameters 0 restraints Z = 2 F(000) = 296 $D_x = 1.154 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 12610 reflections $\theta = 2.7-30.2^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K Prism, colorless $0.64 \times 0.51 \times 0.33 \text{ mm}$

2726 independent reflections 1102 reflections with $I > 2\sigma(I)$ $R_{int} = 0.088$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -10 \rightarrow 10$ $k = -10 \rightarrow 10$ $l = -14 \rightarrow 14$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0601P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.25$ e Å⁻³ $\Delta\rho_{min} = -0.14$ e Å⁻³

Extinction correction: SHELXL2018 (Sheldrick, 2015b), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.016 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}*/U_{ m eq}$
01	-1.0524 (3)	-0.2385 (4)	-0.7862 (2)	0.0977 (9)
C12	-0.4930 (4)	-0.5186 (5)	-0.8354 (3)	0.0635 (9)
C2	-1.0387 (4)	-0.2214 (4)	-0.5971 (3)	0.0639 (9)
C17	-0.4278 (4)	-0.6907 (5)	-0.8516 (3)	0.0705 (10)
C1	-0.9638 (4)	-0.2867 (5)	-0.7056 (3)	0.0715 (10)
C10	-0.7746 (4)	-0.4083 (4)	-0.7133 (3)	0.0695 (10)
C13	-0.3805 (5)	-0.4437 (5)	-0.8456 (3)	0.0744 (10)
C11	-0.6837 (4)	-0.4120 (4)	-0.8119 (3)	0.0736 (11)
H11	-0.745928	-0.339613	-0.873942	0.088*
C15	-0.1364 (4)	-0.7151 (5)	-0.8870 (3)	0.0711 (10)
C7	-0.9379 (4)	-0.2800 (5)	-0.5040 (3)	0.0743 (10)
C16	-0.2502 (5)	-0.7860 (5)	-0.8766 (3)	0.0762 (11)
H16	-0.206551	-0.902035	-0.886559	0.091*
C14	-0.2038 (5)	-0.5443 (5)	-0.8704 (3)	0.0798 (11)
H14	-0.128920	-0.494447	-0.875919	0.096*
C3	-1.2113 (4)	-0.0905 (5)	-0.5883 (3)	0.0792 (11)
H3	-1.280000	-0.051417	-0.649452	0.095*
С9	-0.7027 (5)	-0.5193 (6)	-0.6044 (3)	0.1051 (15)
H9A	-0.745452	-0.606334	-0.583241	0.126*
H9B	-0.576855	-0.580756	-0.615353	0.126*
C8	-0.7503 (4)	-0.4167 (5)	-0.5111 (3)	0.0951 (13)
H8A	-0.676588	-0.358974	-0.520287	0.114*
H8B	-0.726257	-0.496759	-0.439895	0.114*
C4	-1.2801 (5)	-0.0192 (5)	-0.4895 (4)	0.0909 (13)
H4	-1.394381	0.067973	-0.484398	0.109*
C6	-1.0115 (5)	-0.2062 (6)	-0.4058 (3)	0.0942 (13)
H6	-0.945571	-0.244732	-0.343260	0.113*
C5	-1.1799 (6)	-0.0771 (6)	-0.4000 (4)	0.0988 (14)
Н5	-1.226312	-0.028553	-0.333787	0.119*
C20	0.0576 (4)	-0.8225 (6)	-0.9157 (3)	0.1039 (15)
H20A	0.094884	-0.940932	-0.877619	0.156*
H20B	0.121224	-0.772547	-0.891430	0.156*
H20C	0.078722	-0.821651	-0.996162	0.156*
C18	-0.5449 (5)	-0.7765 (5)	-0.8436 (4)	0.1077 (15)
H18A	-0.589023	-0.792507	-0.766309	0.162*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H18B	-0.479794	-0.888378	-0.868695	0.162*
H18C	-0.640231	-0.703345	-0.890605	0.162*
C19	-0.4477 (5)	-0.2554 (5)	-0.8281 (4)	0.1150 (16)
H19A	-0.531484	-0.178397	-0.882365	0.173*
H19B	-0.352349	-0.226633	-0.838182	0.173*
H19C	-0.501571	-0.241994	-0.752796	0.173*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0782 (16)	0.112 (2)	0.088 (2)	-0.0233 (15)	-0.0269 (14)	-0.0175 (16)
C12	0.069 (2)	0.057 (2)	0.060(2)	-0.0271 (19)	-0.0034 (16)	-0.0044 (18)
C2	0.061 (2)	0.066 (2)	0.066 (2)	-0.0311 (19)	-0.0055 (18)	-0.0045 (19)
C17	0.079 (2)	0.061 (3)	0.073 (3)	-0.032 (2)	-0.0094 (18)	-0.0086 (19)
C1	0.073 (2)	0.071 (3)	0.069 (3)	-0.031 (2)	-0.019 (2)	-0.001 (2)
C10	0.062 (2)	0.070 (3)	0.062 (2)	-0.0218 (19)	-0.0091 (18)	0.0017 (19)
C13	0.082 (3)	0.058 (3)	0.081 (3)	-0.032 (2)	0.0010 (19)	-0.014 (2)
C11	0.072 (2)	0.072 (3)	0.072 (3)	-0.029 (2)	-0.0174 (19)	-0.001 (2)
C15	0.077 (2)	0.070 (3)	0.058 (2)	-0.026 (2)	-0.0030 (18)	-0.012 (2)
C7	0.071 (2)	0.084 (3)	0.067 (2)	-0.037 (2)	-0.005 (2)	-0.006 (2)
C16	0.095 (3)	0.059 (3)	0.069 (2)	-0.028 (2)	-0.010 (2)	-0.0122 (19)
C14	0.082 (3)	0.081 (3)	0.085 (3)	-0.045 (2)	0.0018 (19)	-0.015 (2)
C3	0.069 (2)	0.077 (3)	0.091 (3)	-0.032 (2)	-0.013 (2)	-0.008(2)
C9	0.092 (3)	0.101 (3)	0.079 (3)	-0.013 (2)	-0.015 (2)	0.003 (3)
C8	0.080 (3)	0.099 (3)	0.081 (3)	-0.018 (2)	-0.024 (2)	-0.003 (3)
C4	0.076 (3)	0.085 (3)	0.102 (3)	-0.030 (2)	0.008 (3)	-0.022 (3)
C6	0.095 (3)	0.109 (3)	0.072 (3)	-0.040 (3)	-0.010 (2)	-0.012 (3)
C5	0.101 (3)	0.107 (4)	0.085 (3)	-0.045 (3)	0.008 (3)	-0.025 (3)
C20	0.076 (3)	0.113 (4)	0.098 (3)	-0.020 (2)	0.003 (2)	-0.030 (3)
C18	0.114 (3)	0.093 (3)	0.141 (4)	-0.065 (3)	-0.010 (3)	-0.023 (3)
C19	0.107 (3)	0.073 (3)	0.172 (5)	-0.044 (2)	0.007 (3)	-0.038 (3)

Geometric parameters (Å, °)

01—C1	1.218 (4)	C3—C4	1.383 (5)
C12—C17	1.384 (4)	С3—Н3	0.9300
C12—C13	1.393 (4)	C9—C8	1.477 (5)
C12—C11	1.491 (4)	С9—Н9А	0.9700
С2—С7	1.396 (5)	C9—H9B	0.9700
C2—C3	1.404 (4)	C8—H8A	0.9700
C2—C1	1.473 (4)	C8—H8B	0.9700
C17—C16	1.390 (4)	C4—C5	1.359 (5)
C17—C18	1.510 (5)	C4—H4	0.9300
C1-C10	1.486 (4)	C6—C5	1.371 (5)
C10-C11	1.319 (4)	С6—Н6	0.9300
С10—С9	1.490 (5)	С5—Н5	0.9300
C13—C14	1.389 (4)	C20—H20A	0.9600
C13—C19	1.519 (5)	C20—H20B	0.9600

supporting information

C11—H11	0.9300	C20—H20C	0.9600
C15—C14	1.373 (5)	C18—H18A	0.9600
C15—C16	1.377 (5)	C18—H18B	0.9600
C15—C20	1.524 (4)	C18—H18C	0.9600
C7—C6	1.390 (5)	C19—H19A	0.9600
C7—C8	1.508 (5)	C19—H19B	0.9600
C16—H16	0.9300	С19—Н19С	0.9600
C14—H14	0.9300		
C17—C12—C13	119.7 (3)	С10—С9—Н9А	109.0
C17—C12—C11	120.0 (3)	С8—С9—Н9В	109.0
C13—C12—C11	120.3 (3)	С10—С9—Н9В	109.0
C7—C2—C3	119.0 (3)	Н9А—С9—Н9В	107.8
C7—C2—C1	121.2 (3)	C9—C8—C7	114.6 (4)
C3—C2—C1	119.8 (4)	С9—С8—Н8А	108.6
C12—C17—C16	119.0 (3)	С7—С8—Н8А	108.6
C12—C17—C18	121.7(3)	C9—C8—H8B	108.6
C16-C17-C18	1193(4)	C7—C8—H8B	108.6
01-C1-C2	121.3 (3)	H8A—C8—H8B	107.6
01 - C1 - C10	121.8(3)	$C_{5}-C_{4}-C_{3}$	1196(4)
C_{2} C_{1} C_{10}	1169(4)	C5-C4-H4	120.2
$C_{11} - C_{10} - C_{1}$	1199(3)	C3—C4—H4	120.2
$C_{11} - C_{10} - C_{9}$	1250(3)	C_{5} C_{6} C_{7}	120.2 120.9(4)
C1 - C10 - C9	125.0(3) 115.1(3)	C5-C6-H6	119.6
C_{14} C_{13} C_{12}	119.3 (3)	C7_C6_H6	119.6
C14 - C13 - C12	119.3(3) 119.7(4)	$C_{4} - C_{5} - C_{6}$	117.0 121.0(4)
$C_{12} = C_{13} = C_{19}$	112.7(4)	C4 $C5$ $H5$	110.5
C10-C11-C12	127.7(3)	С4—С5—Н5	119.5
$C_{10} = C_{11} = C_{12}$	116.2	$C_{15} = C_{20} = H_{20A}$	100 5
C_{12} C_{11} H_{11}	116.2	$C_{15} = C_{20} = H_{20R}$	109.5
$C_{12} = C_{11} = C_{16}$	117.6 (3)	$H_{20A} = C_{20} = H_{20B}$	109.5
$C_{14} = C_{15} = C_{10}$	117.0(3) 121.2(4)	1120A - C20 - 1120B	109.5
$C_{14} = C_{15} = C_{20}$	121.2(4) 121.2(4)	H_{20}^{-11}	109.5
$C_{10} = C_{13} = C_{20}$	121.2(4)	H20R C20 H20C	109.5
$C_0 - C_7 - C_2$	110.9(3)	$H_{20} = C_{20} = H_{20} C_{12}$	109.5
$C_0 - C_7 - C_8$	120.4(4)	C17 = C18 = H18A	109.5
$C_2 - C_7 - C_8$	120.0(3)	110 10 100 100	109.5
C15 - C16 - U16	122.4 (4)	П18А—С16—П18В	109.5
С13—С16—Н16	110.0		109.5
C17 - C10 - H10	118.8	H18A - C18 - H18C	109.5
C15 - C14 - C13	122.0 (4)	H18B - C18 - H18C	109.5
C13—C14—H14	119.0	C13—C19—H19A	109.5
C13—C14—H14	119.0	СІЗ—СІ9—НІ9В	109.5
C4 - C3 - C2	120.6 (4)	HI9A—CI9—HI9B	109.5
C4-C3-H3	119./	U13-U19-H19U	109.5
C2-C3-H3	119.7	HI9A—CI9—HI9C	109.5
C8—C9—C10	112.8 (4)	нт9В—С19—Н19С	109.5
С8—С9—Н9А	109.0		

C13—C12—C17—C16	0.7 (5)	C3-C2-C7-C8	-178.2 (3)
C11—C12—C17—C16	178.2 (3)	C1-C2-C7-C8	-2.0 (5)
C13—C12—C17—C18	-178.9 (3)	C14-C15-C16-C17	0.8 (5)
C11—C12—C17—C18	-1.3 (5)	C20-C15-C16-C17	-179.4 (3)
C7—C2—C1—O1	178.4 (4)	C12-C17-C16-C15	-0.7 (5)
C_{3} C_{2} C_{1} C_{1	-3.8 (5) 172.5 (3) 27.7 (6)	C16—C17—C16—C15 C16—C15—C14—C13 C20—C15—C14—C13 C12—C13—C14—C15	-1.0 (5) 179.2 (3) 1.0 (5)
C2-C1-C10-C11	-150.1 (3)	C19—C13—C14—C15	-179.9 (4)
O1-C1-C10-C9	-152.2 (4)	C7—C2—C3—C4	0.7 (5)
C2-C1-C10-C9	30.0 (5)	C1—C2—C3—C4	-175.6 (3)
C17—C12—C13—C14	-0.8 (5)	C11—C10—C9—C8	129.8 (4)
C11—C12—C13—C14	-178.4 (3)	C1—C10—C9—C8	-50.3 (5)
C17—C12—C13—C19	-179.9 (4)	C10—C9—C8—C7	43.9 (5)
C11—C12—C13—C19	2.6 (5)	C6—C7—C8—C9	163.5 (4)
C1C10C11C12 C9C10C11C12 C17C12C11C10 C13C12C11C10	177.2 (3) -2.9 (7) 83.3 (5) -99.2 (5)	C2-C7-C8-C9 C2-C3-C4-C5 C2-C7-C6-C5 C8-C7-C6-C5 C2-C7-C6-C5	-18.7(6) -0.4(6) -0.3(6) 177.5(4) 0.2(7)
C1—C2—C7—C6	-0.4 (5)	C3-C4-C5-C6	-0.3 (7)
	175.9 (3)	C7-C6-C5-C4	0.7 (7)

Hydrogen-bond geometry (Å, °)

*Cg*2 is the centroid of the C2–C7 ring.

D—H···A	D—H	H···A	D···A	D—H··· A	
C16—H16…O1 ⁱ	0.93	2.69	3.493 (5)	145	
C20—H20C…O1 ⁱⁱ	0.96	2.60	3.535 (5)	165	
C9—H9 <i>A</i> … <i>Cg</i> 2 ⁱⁱⁱ	0.97	2.90	3.865 (6)	175	

Symmetry codes: (i) *x*+1, *y*-1, *z*; (ii) -*x*-1, -*y*-1, -*z*-2; (iii) -*x*+1, -*y*, -*z*+1.