

Received 20 March 2019 Accepted 7 May 2019

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; phthalonitrile; imidazole; Hirshfeld analysis; hydrogen bonds.

CCDC reference: 1846754

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structure and Hirshfeld surface analysis of 4-[4-(1*H*-benzo[*d*]imidazol-2-yl)phenoxy]phthalonitrile dimethyl sulfoxide monosolvate

Sibel Demir Kanmazalp,^a* Pınar Şen,^b Necmi Dege,^c* Salih Zeki Yildiz,^d Namık Ozdemir^e and Irina A. Golenya^f*

^aGaziantep University, Technical Sciences, 27310, Gaziantep, Turkey, ^bCentre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown, South Africa, ^cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139 Samsun, Turkey, ^dSakarya University, Faculty of Arts and Sciences, Department of Chemistry, 54187, Sakarya, Turkey, ^eDepartment of Mathematics and Science Education, Faculty of Education, Ondokuz Mayıs University, Samsun, Turkey, and ^fTaras Shevchenko National University of Kyiv, Department of Chemistry, 64, Vladimirska Str., Kiev 01601, Ukraine. *Correspondence e-mail: sibeld@gantep.edu.tr, necmid@omu.edu.tr, igolenya@ua.fm

This work presents the synthesis and structural characterization of $[4-(1H-benzo[d])midazol-2-yl)phenoxy]phthalonitrile, a phthalonitrile derivative carrying a benzimidazole moiety. The compound crystallizes as its dimethyl sulfoxide monosolvate, <math>C_{21}H_{12}N_4O\cdot(CH_3)_2SO$. The dihedral angle between the two fused rings in the heterocyclic ring system is 2.11 (1)°, while the phenyl ring attached to the imidazole moiety is inclined by 20.7 (1)° to the latter. In the crystal structure, adjacent molecules are connected by pairs of weak intermolecular $C-H\cdot \cdot N$ hydrogen bonds into inversion dimers. $N-H\cdot \cdot O$ and $C-H\cdot \cdot O$ hydrogen bonds with $R_2^1(7)$ graph-set motifs are also formed between the organic molecule and the disordered dimethyl sulfoxide solvent [occupancy ratio of 0.623 (5):0.377 (5) for the two sites of the sulfur atom]. Hirshfeld surface analysis and fingerprint plots were used to investigate the intermolecular interactions in the crystalline state.

1. Chemical context

Benzimidazole and its derivatives are some of the oldest and chemically most-studied nitrogen-containing aromatic heterocyclic compounds (Srestha *et al.*, 2014). They have a wide range of applications in medicinal chemistry and in biological processes including as anticancer, antiulcer, antifungal and anti-inflammatory agents, and exhibit antimycobacterial and antioxidant activities (El Rashedy & Aboul-Enein, 2013; Gaba *et al.*, 2014; Kathiravan *et al.*, 2012). They are also used as ligands with fluorescent properties. The fluorescent characteristic of these compounds can be changed by substitution or derivatization of different groups at the NH position of the benzimidazole skeleton.

Phthalonitrile derivatives are some of the most widely used precursors for the preparation of phthalocyanines (Pc). The preparation of phthalocyanines is frequently carried out by a cyclotetramerization reaction of phthalonitriles. The synthesis of the latter compound family, carrying different functional groups, leads to functionalized phthalocyanines that are of great importance with respect to new molecular materials and targeted applications such as catalysis, liquid crystals, photosensitizers for photodynamic therapy (PDT), non-linear optics, nanotechnology or dye-sensitized solar cells (Torre *et* *al.*, 2004; Martínez-Díaz *et al.*, 2011). In this context, we have recently described a model study, *i.e.* the synthesis, characterization and Hirshfeld surface analysis of zinc phthalocyanines carrying benzimidazole groups through oxygen bridges to a Zn–Pc core (Sen *et al.*, 2018*b*). Here we report the synthesis, structural characterization and Hirshfeld surface analysis of a related ligand that crystallizes as its dimethyl-sulfoxide monosolvate, $C_{21}H_{12}N_4O\cdot(CH_3)_2SO$.

2. Structural commentary

The molecular components of the title compound are shown in Fig. 1. The molecular structure of the phthalonitrile derivative is constructed from three ring systems, viz. a central phenoxy ring, a terminal phthalonitrile system and a terminal benzimidazole ring. The bond lengths of the cyano groups, 1.132 (6) and 1.137 (6) Å, for C21=N4 and C20=N3, respectively, conform well with literature values (Saraçoğlu et al., 2011). The corresponding C–C \equiv N angles [179.4 (6) and 177.9 (7)°] are almost linear and are also in good agreement with literature values (Saraçoğlu et al., 2011; Sen et al., 2018a). The C-C bond lengths of the phenyl rings are in the normal range of 1.356 (5)-1.395 (6) Å, *i.e.* characteristic of a delocalized system. The dihedral angle of 2.11 (1)° between the fused C1– C6 and C5/N2/C7/N1/C6 rings in the heterocycle indicate a minute deviation from planarity, whereas the attached C8-C13 ring is inclined by 20.7 $(1)^{\circ}$ to the C5/N2/C7/N1/C6 ring plane.

3. Supramolecular features

In the crystal structure, N2-H2···O2 and C9-H9···O2 intermolecular hydrogen bonding interactions with an $R_2^1(7)$

Figure 1

The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds (Table 1) are shown as dashed lines.

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdots A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N2-H2\cdots O2$	0.86	1.94	2.794 (5)	172
$N2-H2\cdots S1A$	0.86	2.83	3.614 (4)	152
$C9-H9\cdots O2$ $C23-H23D\cdots N4^{i}$	0.93	2.40	3.175 (5)	141
	0.96	2.63	3.500 (9)	151

Symmetry code: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, z + \frac{1}{2}$.

graph-set motif are present, whereby the O2 atom acts as an acceptor in both cases (Fig. 1). There are also weak intermolecular N2-H2···S1A interactions between the the N-H group of the imidazole ring and the disordered dimethyl sulfate solvent, and a C23-H23D···N4 interaction between one of the methyl groups of the dimethyl sulfoxide solvent and

Figure 2

A view of the crystal packing of the title compound. Dashed lines denote the N2–H2···S1A, N2–H2···O2 and C23–H23D···N4 intermolecular hydrogen-bonding interactions.

Figure 3 The Hirshfeld surface of the title compound mapped with d_{norm} in the range -0.6328 to 1.3784 a.u.

one of the nitrile N atoms (Table 1, Fig. 2). These interactions lead to the formation of a three-dimensional supramolecular network.

4. Database survey

A search of the Cambridge Structural database (CSD, version 5.40, update November 2018; Groom *et al.*, 2016) for the 4-[4-(1H-benzo[d]imidazole-2yl)phenoxy]phthalonitrile moiety revealed two hits. Distinctive bond lengths (N4=C21, N3=C20, C7-N2, C5-N2) in the title structure are the same within standard uncertainties as the corresponding bond lengths in the structures of 4-[4-(1H-benzimidazol-2-yl)phenoxy]benzene-1,2-dicarbonitrile monohydrate (HIDHEK; Sen *et al.*, 2018*b*) or 4-[4-[1-(prop-2-en-1-yl)-1H-benzimidazol-2-yl]phenoxy]benzene-1,2-dicarbonitrile (RELBUI; Sen *et al.*, 2018*a*). In these structures, the C-O bond lengths vary from

A view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potentials in the range -0.0893 to 0.1930 a.u.

1.363–1.407 Å. In the title molecule, the corresponding bond lengths are 1.367 (5) and 1.406 (4) Å, respectively. In all these structures, the molecules are linked into chains by $C-H\cdots N$ hydrogen bonds.

5. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon *et al.*, 2007) were performed with *Crystal-Explorer17* (Turner *et al.*, 2017). The Hirshfeld surfaces were generated using a standard (high) surface resolution with the three-dimensional surfaces mapped over d_{norm} (Fig. 3). For the title molecule, the H···H interactions appear in the middle of the scattered points in the fingerprint plots with a contribution to the overall Hirshfeld surface of 36.1% (Fig. 4). The

Figure 4

Two-dimensional fingerprint plots with a d_{norm} view of all interactions in the title compound, and subdivided into H···H (36.1%), N···H/H···N(23.6%), C···H/H···C (15.1%), C···C/C···C (12.4%), O···H/H···O (5.0%), C···N/N···C (3.7%), C···O/O···C (1.8%) and S···H/H···S (1.6%) contacts.

Table 2	
Experimental	details.

Crystal data	
Chemical formula	$C_{21}H_{12}N_4O \cdot C_2H_6OS$
$M_{ m r}$	414.47
Crystal system, space group	Orthorhombic, $Pna2_1$
Temperature (K)	296
a, b, c (Å)	20.9154 (11), 11.4208 (6), 8.8938 (6)
$V(Å^3)$	2124.5 (2)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.18
Crystal size (mm)	$0.65 \times 0.56 \times 0.47$
Data collection	
Diffractometer	Stoe IPDS 2
Absorption correction	Integration (X-RED32; Stoe & Cie, 2002)
T_{\min}, T_{\max}	0.966, 0.977
No. of measured, independent and	15225, 4660, 2281
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.058
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.641
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.098, 0.83
No. of reflections	4660
No. of parameters	281
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm A}^{-3})$	0.20, -0.12
Absolute structure	Flack x determined using 771 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-0.02 (8)

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002), SHELXT2018 (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b), ORTEP-3 for Windows and WinGX (Farrugia, 2012), Mercury (Macrae et al., 2006) and PLATON (Spek, 2009).

contribution from the $N \cdots H/H \cdots N$ contacts, corresponding to the $C-H \cdot \cdot \cdot N$ interactions, is represented by a pair of sharp spikes characteristic of a rather strong hydrogen-bonding interaction (23.6%). The whole fingerprint region and all other interactions are displayed in Fig. 4. In particular, the $O \cdots H/H \cdots O$ contacts indicate the presence of intermolecular $C-H \cdots O$ and $N-H \cdots O$ interactions.

A view of the molecular electrostatic potential for the title compound, using the STO-3G basis set at the Hartree-Fock level of theory, is shown in Fig. 5. The $N-H \cdots N$ and C-H···N hydrogen-bond donor and acceptor groups are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.

6. Synthesis and crystallization

2-(4-Hydroxy-phenyl)-benzimidazole (1.2 g, 5.71 mmol), which was synthesized by the reaction of o-phenylenediamine 4-hydroxybenzaldehyde, and 4-nitrophthalonitrile and (0.989 g, 5.71 mmol) were dissolved in DMF (15 ml) and degassed by argon in a dual-bank vacuum-gas manifold system. After stirring for 15 min, finely ground anhydrous K₂CO₃ (0.790 g, 5.71 mmol) was added portion-wise over 2 h under stirring. The suspension solution was maintained at 333 K for 24 h. After completion of the reaction, the crude product was precipitated by pouring into ice-water. The precipitate was collected by filtration, washed with hot water, ethanol, diethyl ether and was finally dried in vacuo. The desired compound was obtained in sufficient purity. The obtained spectroscopic data are accordance with the literature (Khan et al., 2009). Single crystals for structure analysis were obtained from slow evaporation of a DMSO solution.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically and allowed to ride on their parent atoms, with C-H =0.93 Å for aromatic groups, with N-H = 0.86 Å for the imidazole moiety and with 0.96 Å for methyl groups. $U_{iso}(H)$ values were constrained to 1.2–1.5 U_{eq} of their carrier atoms. The sulfur atom of the dimethylsulfate solvent is disordered over two sites (S1A and S1B), with an occupancy ratio of 0.623 (5):0.377 (5).

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

Funding information

This study was supported by Ondokuz Mayıs University under project No. PYOFEN.1906.19.001 (contract No. PYOFEN.1906.19.001).

References

- El Rashedy, A. A. & Aboul-Enein, H. Y. (2013). Mini Rev. Med. Chem. 13, 399-407.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gaba, M., Singh, S. & Mohan, C. (2014). Eur. J. Med. Chem. 76, 494-505.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Kathiravan, M. K., Salake, A. B., Chothe, A. S., Dudhe, P. B., Watode, R. P., Mukta, M. S. & Gadhwe, S. (2012). Bioorg. Med. Chem. 20, 5678-5698.
- Khan, A. T., Parvin, T. & Choudhury, L. H. (2009). Synth. Commun. **39**, 2339–2346.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457
- Martínez-Díaz, M. V., Ince, M. & Torres, T. (2011). Monatsh. Chem. 142, 699-707.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun., pp. 3814-3816.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.
- Saraçoğlu, H., Güntepe, F., Yüksektepe, Ç. N. & Saydam, S. (2011). Mol. Cryst. Liq. Cryst. 537, 111-127.
- Sen, P., Atmaca, G. Y., Erdogmus, A., Kanmazalp, S. D., Dege, N. & Yildiz, S. Z. (2018b). J. Lumin. 194, 123-130.

research communications

- Sen, P., Kansiz, S., Dege, N., Iskenderov, T. S. & Yildiz, S. Z. (2018a). Acta Cryst. E74, 994–997.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Srestha, N., Banerjee, J. & Srivastava, S. (2014). IOSR J. Pharma 4, 28-41.
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
- Torre, G. de la, Vázquez, P., Agulló-López, F. & Torres, T. (2004). *Chem. Rev.* **104**, 3723–3750.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17.* University of Western Australia. http://hirshfeldsurface.net

supporting information

Acta Cryst. (2019). E75, 780-784 [https://doi.org/10.1107/S2056989019006510]

Crystal structure and Hirshfeld surface analysis of 4-[4-(1*H*-benzo[*d*]imidazol-2yl)phenoxy]phthalonitrile dimethyl sulfoxide monosolvate

Sibel Demir Kanmazalp, Pınar Şen, Necmi Dege, Salih Zeki Yildiz, Namık Ozdemir and Irina A. Golenya

Computing details

Data collection: *X-AREA* (Stoe & Cie, 2002); cell refinement: *X-AREA* (Stoe & Cie, 2002); data reduction: *X-RED32* (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015b); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXL2018* (Sheldrick, 2015b), *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

4-[4-(1H-Benzo[d]imidazol-2-yl)phenoxy]phthalonitrile dimethyl sulfoxide monosolvate

Crystal data

 $C_{21}H_{12}N_4O \cdot C_2H_6OS$ $M_r = 414.47$ Orthorhombic, *Pna2*₁ a = 20.9154 (11) Å b = 11.4208 (6) Å c = 8.8938 (6) Å $V = 2124.5 (2) \text{ Å}^3$ Z = 4F(000) = 864

Data collection

Stoe IPDS 2 diffractometer Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus Plane graphite monochromator Detector resolution: 6.67 pixels mm⁻¹ rotation method scans Absorption correction: integration (X-RED32; Stoe & Cie, 2002)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.098$ S = 0.834660 reflections $D_x = 1.296 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9474 reflections $\theta = 1.8-27.0^{\circ}$ $\mu = 0.18 \text{ mm}^{-1}$ T = 296 KPrism, yellow $0.65 \times 0.56 \times 0.47 \text{ mm}$

 $T_{\min} = 0.966$, $T_{\max} = 0.977$ 15225 measured reflections 4660 independent reflections 2281 reflections with $I > 2\sigma(I)$ $R_{int} = 0.058$ $\theta_{\max} = 27.1^{\circ}$, $\theta_{\min} = 2.0^{\circ}$ $h = -26 \rightarrow 22$ $k = -14 \rightarrow 14$ $l = -11 \rightarrow 11$

281 parameters1 restraintHydrogen site location: inferred from neighbouring sitesH-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0409P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.12 \text{ e} \text{ Å}^{-3}$

Special details

Absolute structure: Flack *x* determined using 771 quotients [(*I*⁺)-(*I*)]/[(*I*⁺)+(*I*)] (Parsons *et al.*, 2013)
Absolute structure parameter: -0.02 (8)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1A	0.55296 (11)	0.14556 (16)	0.7814 (2)	0.0869 (9)	0.623 (5)
S1B	0.4957 (2)	0.1452 (4)	0.7420 (4)	0.114 (2)	0.377 (5)
01	0.39958 (15)	0.4586 (3)	0.0943 (3)	0.0925 (8)	
O2	0.53727 (19)	0.1838 (3)	0.6323 (4)	0.1425 (15)	
N1	0.69349 (16)	0.3756 (2)	0.2997 (4)	0.0751 (8)	
N2	0.64212 (17)	0.2699 (2)	0.4721 (3)	0.0720 (8)	
H2	0.611036	0.236598	0.518771	0.086*	
N3	0.1249 (2)	0.4056 (4)	0.1258 (7)	0.1429 (19)	
N4	0.1428 (2)	0.5716 (5)	0.5187 (7)	0.156 (2)	
C1	0.8034 (2)	0.3391 (4)	0.4030 (6)	0.0968 (13)	
H1	0.824993	0.380986	0.329242	0.116*	
C2	0.8361 (3)	0.2860 (5)	0.5198 (7)	0.1100 (17)	
H2A	0.880352	0.293117	0.526112	0.132*	
C3	0.8032 (3)	0.2223 (5)	0.6272 (7)	0.1098 (16)	
Н3	0.826349	0.187242	0.704234	0.132*	
C4	0.7380(3)	0.2085 (4)	0.6256 (6)	0.0957 (13)	
H4	0.716824	0.165147	0.698781	0.115*	
C5	0.7054 (2)	0.2630 (3)	0.5081 (4)	0.0724 (10)	
C6	0.7375 (2)	0.3280 (3)	0.3992 (5)	0.0748 (10)	
C7	0.6375 (2)	0.3395 (3)	0.3484 (4)	0.0652 (10)	
C8	0.57530 (16)	0.3683 (3)	0.2821 (4)	0.0605 (8)	
C9	0.52110 (19)	0.3027 (3)	0.3118 (4)	0.0679 (10)	
H9	0.523936	0.237162	0.373482	0.081*	
C10	0.46302 (19)	0.3338 (3)	0.2509 (4)	0.0785 (11)	
H10	0.427035	0.288323	0.270114	0.094*	
C11	0.45811 (19)	0.4303 (4)	0.1630 (4)	0.0716 (10)	
C12	0.5104 (2)	0.4970 (4)	0.1317 (5)	0.0783 (11)	
H12	0.506725	0.562819	0.070782	0.094*	
C13	0.5690(2)	0.4659 (3)	0.1912 (4)	0.0752 (11)	
H13	0.604801	0.511332	0.169824	0.090*	
C14	0.3486 (2)	0.4793 (3)	0.1868 (5)	0.0734 (11)	
C15	0.2890 (2)	0.4466 (3)	0.1358 (5)	0.0804 (11)	
H15	0.284932	0.408992	0.043566	0.096*	
C16	0.2358 (2)	0.4694 (4)	0.2210 (6)	0.0827 (12)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C17	0.2414 (2)	0.5253 (4)	0.3584 (5)	0.0845 (12)	
C18	0.3018 (2)	0.5574 (4)	0.4094 (5)	0.0890 (12)	
H18	0.306198	0.594294	0.502000	0.107*	
C19	0.3549 (2)	0.5347 (4)	0.3231 (5)	0.0820 (11)	
H19	0.395119	0.556988	0.357067	0.098*	
C20	0.1739 (3)	0.4332 (4)	0.1682 (6)	0.1069 (17)	
C21	0.1857 (3)	0.5498 (5)	0.4466 (6)	0.1113 (17)	
C22	0.5253 (2)	0.0068 (4)	0.8099 (6)	0.1185 (17)	
H22A	0.536012	-0.018040	0.909946	0.178*	0.623 (5)
H22B	0.479713	0.005567	0.797600	0.178*	0.623 (5)
H22C	0.544633	-0.045215	0.738362	0.178*	0.623 (5)
H22D	0.497256	-0.022369	0.886737	0.178*	0.377 (5)
H22E	0.527035	-0.048198	0.728417	0.178*	0.377 (5)
H22F	0.567387	0.017228	0.850914	0.178*	0.377 (5)
C23	0.4951 (4)	0.2180 (5)	0.8988 (7)	0.151 (2)	
H23A	0.502326	0.196930	1.001908	0.227*	0.623 (5)
H23B	0.499347	0.301270	0.887593	0.227*	0.623 (5)
H23C	0.452845	0.194538	0.869547	0.227*	0.623 (5)
H23D	0.464660	0.183633	0.966396	0.227*	0.377 (5)
H23E	0.536893	0.215626	0.943443	0.227*	0.377 (5)
H23F	0.483454	0.297886	0.879270	0.227*	0.377 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
S1A	0.0892 (19)	0.1040 (13)	0.0676 (11)	-0.0240 (11)	-0.0011 (11)	0.0104 (10)
S1B	0.124 (5)	0.131 (3)	0.087 (3)	0.016 (3)	-0.017 (2)	0.002 (2)
01	0.081 (2)	0.135 (2)	0.0614 (15)	0.0085 (18)	0.0017 (16)	0.0154 (17)
O2	0.159 (4)	0.159 (3)	0.109 (3)	0.021 (3)	0.056 (3)	0.056 (2)
N1	0.068 (2)	0.0793 (19)	0.078 (2)	-0.0039 (17)	0.0160 (19)	-0.0036 (19)
N2	0.078 (2)	0.0676 (19)	0.070 (2)	-0.0024 (17)	0.0048 (19)	-0.0014 (16)
N3	0.097 (3)	0.166 (4)	0.165 (4)	-0.038 (3)	-0.028 (3)	0.051 (4)
N4	0.102 (4)	0.230 (6)	0.135 (4)	0.061 (4)	0.025 (3)	0.029 (4)
C1	0.080(3)	0.110 (3)	0.100 (3)	0.005 (3)	0.014 (3)	-0.028 (3)
C2	0.079 (3)	0.138 (5)	0.113 (4)	0.030 (3)	-0.003 (4)	-0.042 (4)
C3	0.111 (5)	0.112 (4)	0.106 (4)	0.052 (3)	-0.008(4)	-0.028 (3)
C4	0.103 (4)	0.083 (3)	0.101 (3)	0.023 (3)	-0.001 (3)	-0.010 (3)
C5	0.084 (3)	0.062 (2)	0.072 (3)	0.014 (2)	0.001 (3)	-0.011 (2)
C6	0.068 (3)	0.078 (3)	0.078 (3)	0.006 (2)	0.009 (2)	-0.019 (2)
C7	0.079 (3)	0.0538 (19)	0.063 (2)	-0.001 (2)	0.011 (2)	-0.0006 (19)
C8	0.070 (2)	0.0558 (19)	0.0556 (19)	-0.0026 (18)	0.010 (2)	-0.0016 (19)
C9	0.079 (3)	0.064 (2)	0.061 (2)	-0.009 (2)	0.008 (2)	0.0118 (18)
C10	0.075 (3)	0.085 (3)	0.076 (3)	-0.013 (2)	0.008 (2)	0.010 (2)
C11	0.071 (3)	0.087 (3)	0.057 (2)	0.007 (2)	0.006 (2)	0.010 (2)
C12	0.084 (3)	0.076 (3)	0.075 (3)	0.002 (2)	0.007 (2)	0.020 (2)
C13	0.081 (3)	0.067 (2)	0.077 (3)	-0.008 (2)	0.011 (2)	0.007 (2)
C14	0.074 (3)	0.085 (3)	0.062 (2)	0.003 (2)	-0.004 (2)	0.022 (2)
C15	0.084 (3)	0.086 (3)	0.071 (3)	-0.005 (2)	-0.013 (2)	0.020 (2)

supporting information

C16	0.067 (3)	0.087 (3)	0.094 (3)	-0.004 (2)	-0.007 (3)	0.037 (3)
C17	0.075 (3)	0.099 (3)	0.079 (3)	0.016 (2)	0.000 (3)	0.029 (3)
C18	0.088 (4)	0.106 (3)	0.073 (3)	0.021 (3)	-0.007 (3)	0.007 (3)
C19	0.073 (3)	0.103 (3)	0.071 (3)	0.004 (2)	-0.009 (2)	0.007 (2)
C20	0.085 (3)	0.117 (4)	0.119 (4)	-0.012 (3)	-0.012 (3)	0.050 (3)
C21	0.089 (4)	0.139 (4)	0.106 (4)	0.034 (3)	0.008 (3)	0.034 (3)
C22	0.150 (5)	0.096 (3)	0.110 (4)	-0.009 (3)	0.006 (3)	0.021 (3)
C23	0.231 (7)	0.101 (4)	0.122 (4)	0.003 (4)	0.046 (5)	-0.007 (4)

Geometric parameters (Å, °)

S1A—O2	1.434 (4)	C10-C11	1.356 (5)
S1A-C22	1.706 (5)	C10—H10	0.9300
S1A—C23	1.800 (6)	C11—C12	1.362 (5)
S1BO2	1.379 (5)	C12—C13	1.381 (5)
S1B—C23	1.624 (7)	C12—H12	0.9300
S1B-C22	1.801 (6)	С13—Н13	0.9300
O1—C14	1.367 (5)	C14—C19	1.374 (5)
O1—C11	1.406 (4)	C14—C15	1.378 (5)
N1—C7	1.314 (4)	C15—C16	1.372 (6)
N1—C6	1.388 (5)	C15—H15	0.9300
N2—C7	1.361 (4)	C16—C17	1.384 (6)
N2—C5	1.365 (5)	C16—C20	1.437 (7)
N2—H2	0.8600	C17—C18	1.390 (6)
N3—C20	1.137 (6)	C17—C21	1.433 (7)
N4—C21	1.132 (6)	C18—C19	1.375 (5)
C1—C6	1.384 (6)	C18—H18	0.9300
C1—C2	1.384 (7)	С19—Н19	0.9300
C1—H1	0.9300	C22—H22A	0.9600
C2—C3	1.384 (7)	C22—H22B	0.9600
C2—H2A	0.9300	C22—H22C	0.9600
C3—C4	1.372 (7)	C22—H22D	0.9600
С3—Н3	0.9300	C22—H22E	0.9600
C4—C5	1.395 (6)	C22—H22F	0.9600
C4—H4	0.9300	C23—H23A	0.9600
C5—C6	1.392 (5)	С23—Н23В	0.9600
C7—C8	1.466 (5)	С23—Н23С	0.9600
C8—C9	1.384 (5)	C23—H23D	0.9600
C8—C13	1.384 (5)	С23—Н23Е	0.9600
C9—C10	1.376 (5)	C23—H23F	0.9600
С9—Н9	0.9300		
O2—S1A—C22	110.0 (3)	C12—C13—C8	121.0 (4)
O2—S1A—C23	104.1 (3)	C12—C13—H13	119.5
C22—S1A—C23	96.5 (3)	C8—C13—H13	119.5
O2—S1B—C23	116.7 (4)	O1—C14—C19	122.5 (4)
O2—S1B—C22	107.6 (4)	O1—C14—C15	117.4 (4)
C23—S1B—C22	99.4 (3)	C19—C14—C15	120.1 (4)

G14 01 G14			1001(1)
C14—O1—C11	117.2 (3)	C16—C15—C14	120.1 (4)
C7—N1—C6	104.9 (3)	C16—C15—H15	120.0
C7—N2—C5	106.9 (3)	C14—C15—H15	120.0
C7—N2—H2	126.5	C15—C16—C17	120.3 (4)
C5—N2—H2	126.5	C15—C16—C20	119.8 (5)
C6—C1—C2	118.1 (5)	C17—C16—C20	119.9 (5)
С6—С1—Н1	120.9	C16—C17—C18	119.2 (5)
C2—C1—H1	120.9	C16—C17—C21	120.3 (5)
C1—C2—C3	120.1 (5)	C18—C17—C21	120.6 (5)
C1—C2—H2A	120.0	C19—C18—C17	120.1 (4)
C3—C2—H2A	120.0	C19—C18—H18	119.9
C4-C3-C2	123 3 (5)	C17—C18—H18	119.9
C4—C3—H3	118.4	C14-C19-C18	120.2(4)
C2_C3_H3	118.4	$C_{14} = C_{19} = H_{19}$	110.0
$C_2 = C_3 = H_3$	116.7 (5)	$C_{14} = C_{10} = H_{10}$	110.0
$C_3 = C_4 = C_3$	110.2 (5)	$N_{2} = C_{20} = C_{16}$	119.9
$C_5 = C_4 = H_4$	121.9	$N_{3} = C_{20} = C_{10}$	179.4(0)
C_{3}	121.9	N4 - C21 - C17	1/7.9(7)
N2 - C5 - C6	105.9 (4)	SIA - C22 - H22A	109.5
N2-C5-C4	132.5 (4)	SIA—C22—H22B	109.5
C6—C5—C4	121.6 (5)	H22A—C22—H22B	109.5
C1C6N1	129.8 (4)	S1A—C22—H22C	109.5
C1—C6—C5	120.7 (4)	H22A—C22—H22C	109.5
N1—C6—C5	109.4 (4)	H22B—C22—H22C	109.5
N1—C7—N2	112.8 (4)	S1B—C22—H22D	109.5
N1—C7—C8	126.0 (3)	S1B—C22—H22E	109.5
N2—C7—C8	121.2 (3)	H22D—C22—H22E	109.5
C9—C8—C13	118.0 (4)	S1B—C22—H22F	109.5
C9—C8—C7	122.0 (3)	H22D—C22—H22F	109.5
C13—C8—C7	120.0 (3)	H22E—C22—H22F	109.5
С10—С9—С8	120.6 (4)	S1A—C23—H23A	109.5
С10—С9—Н9	119.7	S1A—C23—H23B	109.5
С8—С9—Н9	119.7	H23A—C23—H23B	109.5
C11—C10—C9	120 2 (4)	S1A-C23-H23C	109.5
C11_C10_H10	119.9	$H_{23}A = C_{23} = H_{23}C$	109.5
C_{P}	110.0	H23R_C23_H23C	109.5
C_{10} C_{11} C_{12}	120.8 (4)	S1B C23 H23D	109.5
$C_{10} = C_{11} = C_{12}$	120.0(4)	SID-C23-H23D	109.5
	120.5 (4)	SIB—C23—П23Е	109.5
	118.8 (4)	H23D—C23—H23E	109.5
CII—CI2—CI3	119.4 (4)	SIB-C23-H23F	109.5
C11—C12—H12	120.3	H23D—C23—H23F	109.5
C13—C12—H12	120.3	H23E—C23—H23F	109.5
C6-C1-C2-C3	1.1 (7)	C8—C9—C10—C11	-1.2 (6)
C1—C2—C3—C4	-0.3 (7)	C9—C10—C11—C12	1.0 (6)
C2—C3—C4—C5	-0.2 (7)	C9—C10—C11—O1	176.6 (3)
C7—N2—C5—C6	-1.6 (4)	C14—O1—C11—C10	60.5 (5)
C7 - N2 - C5 - C4	177.2 (4)	C14-01-C11-C12	-123.7(4)
C_{3} C_{4} C_{5} N_{2}	-178.8(4)	C10-C11-C12-C13	-0.4 (6)
0J 0T = 0J = 142	1/0.0 (ד)	010 - 011 - 012 - 013	0.7(0)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.1 \ (6) \\ 177.1 \ (4) \\ -1.4 \ (6) \\ -178.8 \ (4) \\ -0.2 \ (4) \\ 179.9 \ (3) \\ 0.9 \ (6) \\ 1.1 \ (4) \\ -177.9 \ (3) \\ -0.9 \ (4) \\ 178.9 \ (3) \\ 1.6 \ (4) \\ -178.1 \ (3) \\ 161.5 \ (3) \\ -18.8 \ (5) \\ -20.9 \ (5) \\ 158.9 \ (3) \end{array}$	$\begin{array}{c} 01 &C11 &C12 &C13 \\ C11 &C12 &C13 &C8 \\ C9 &C8 &C13 &C12 \\ C7 &C8 &C13 &C12 \\ C11 &O1 &C14 &C19 \\ C11 &O1 &C14 &C19 \\ C11 &O1 &C14 &C15 \\ O1 &C14 &C15 &C16 \\ C19 &C14 &C15 &C16 \\ C19 &C14 &C15 &C16 \\ C19 &C14 &C15 &C16 \\ C14 &C15 &C16 &C17 \\ C14 &C15 &C16 &C17 \\ C14 &C15 &C16 &C17 \\ C14 &C15 &C18 \\ C20 &C16 &C17 &C21 \\ C20 &C16 &C17 &C21 \\ C16 &C17 &C18 &C19 \\ C21 &C17 &C18 &C19 \\ O1 &C14 &C19 &C18 \end{array}$	-176.1 (4) -0.1 (6) -0.1 (5) -177.8 (4) 36.2 (5) -146.4 (3) -177.3 (3) 0.1 (6) 0.0 (6) -178.9 (4) -0.3 (6) 178.6 (4) 179.5 (4) -1.6 (6) 0.6 (6) -179.2 (4) 177.5 (4)
N2—C7—C8—C13 C13—C8—C9—C10 C7—C8—C9—C10	158.9 (3) 0.7 (5) 178.3 (3)	O1—C14—C19—C18 C15—C14—C19—C18 C17—C18—C19—C14	177.5 (4) 0.2 (5) -0.6 (6)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	D···A	D—H···A
0.86	1.94	2.794 (5)	172
0.86	2.83	3.614 (4)	152
0.93	2.40	3.175 (5)	141
0.96	2.63	3.500 (9)	151
	<i>D</i> —H 0.86 0.86 0.93 0.96	D—H H…A 0.86 1.94 0.86 2.83 0.93 2.40 0.96 2.63	D—H H···A D···A 0.86 1.94 2.794 (5) 0.86 2.83 3.614 (4) 0.93 2.40 3.175 (5) 0.96 2.63 3.500 (9)

Symmetry code: (i) -x+1/2, y-1/2, z+1/2.