

CRYSTALLOGRAPHIC COMMUNICATIONS

Received 17 April 2019 Accepted 24 May 2019

Edited by M. Weil, Vienna University of Technology, Austria

**Keywords:** crystal structure; ferric porphyrin; dimer; polymorphism; twinning.

CCDC reference: 1918323

**Supporting information**: this article has supporting information at journals.iucr.org/e



OPEN 3 ACCESS

# **Crystal structure of a polymorph of μ-oxidobis**[(5,10,15,20-tetraphenylporphyrinato)iron(III)]

## Morten K. Peters,<sup>a</sup> Christian Näther<sup>b</sup> and Rainer Herges<sup>a</sup>\*

<sup>a</sup>Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität Kiel, Otto-Hahn-Platz 4, D-24098 Kiel, Germany, <sup>b</sup>Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Str. 2, D-24118 Kiel, Germany, and . \*Correspondence e-mail: rherges@oc.uni-kiel.de

The title compound,  $[Fe_2(C_{44}H_{28}N_4O)_2O]$ , was obtained as a by-product during the synthesis of Fe<sup>III</sup> tetraphenylporphyrin perchlorate. It crystallizes as a new polymorphic modification in addition to the orthorhombic form previously reported [Hoffman *et al.* (1972). *J. Am. Chem. Soc.* **94**, 3620–3626; Swepston & Ibers (1985) *Acta Cryst.* **C41**, 671–673; Kooijmann *et al.* (2007). Private Communication (refcode 667666). CCDC, Cambridge, England]. In its crystal structure, the two crystallographically independent Fe<sup>III</sup> cations are coordinated in a square-planar environment by the four N atoms of a tetraphenylporphyrin ligand. The Fe<sup>III</sup>-tetraphenylporphyrine units are linked by a  $\mu_2$ -oxido ligand into a dimer with an Fe–O–Fe angle close to linearity. The final coordination sphere for each Fe<sup>III</sup> atom is square-pyramidal with the  $\mu_2$ -oxido ligand in the apical position. The crystal under investigation consisted of two domains in a ratio of 0.691 (3): 0.309 (3).

### 1. Chemical context

Porphyrins have a wide range of applications. For example, they are useful in photodynamic therapy (PDT) (Ethirajan *et al.*, 2011; Bonnett, 1995; Peters *et al.*, 2018*a*), as powerful catalysts in reduction processes in nature and in technologically important reactions (Li & Zamble, 2009; Peters & Herges, 2018; Gosden *et al.*, 1978), or as responsive contrast agents in functional magnetic resonance imaging (*f*MRI) (Venkataramani *et al.*, 2011; Dommaschk *et al.*, 2015; Peters *et al.*, 2018*b*).

In a previous publication, we have reported the first lightcontrolled molecular spin switch based on Fe<sup>III</sup> tetraphenylporphyrin perchlorate (FeTPPClO<sub>4</sub>) (Shankar et al., 2018). The starting material FeTPPClO<sub>4</sub> exists in the admixed-spin state (S = 3/2, 5/2). However, in a solution of acetone/dimethyl sulfoxide, a high-spin (S = 5/2) complex is formed (Shankar et al., 2018). The low-spin (S = 1/2) state can be induced by a photoswitchable azopyridine ligand and can be reversibly switched to the high-spin state by exposure to light (Shankar et al., 2018; Peters et al., 2019). This system is reversible by using dimethyl sulfoxide and is neither oxygen nor water sensitive, and no fatigue was observed after more than 1000 switching cycles (Shankar et al., 2018). Unfortunately, without dimethyl sulfoxide, the switching is not reversible and a by-product is formed as indicated from the shift of the pyrrol protons observed in an NMR experiment. The amount of this byproduct increases with increasing reaction time. To identify the nature of this by-product, we tried to obtain single crystals

after very long reaction times, but without any success. If, however, 4-methylimidazole is used instead of a azopyridine ligand, dark red-coloured crystals of the same by-product were obtained. The crystals were subjected to single-crystal X-ray diffraction analysis, revealing that a dimer has formed where two Fe<sup>III</sup> cations are bridged by a  $\mu_2$ -oxido ligand. The source of oxygen is still unknown but it is likely that it possibly originates from from water or hygroscopic 4-methylimidazole. It is noted that a crystal structure of this compound has already been reported (Strauss et al., 1987) but this form crystallizes in the orthorhombic space group Aba2 (Hoffman et al., 1972; Swepston & Ibers, 1985; Kooijmann et al. 2007). Therefore, the new polymorph of the title compound was further investigated, and its crystal structure is reported in this communication.



### 2. Structural commentary

In the crystal structure of the triclinic polymorph of the title compound, the two crystallographically independent Fe<sup>III</sup> cations are each coordinated by the four N atoms of tetraphenylporphyrin ligands in a square-planar environment (Figs. 1 and 2). These complexes are linked into dimers via a  $\mu_2$ oxido O atom, leading to a final square-pyramidal coordination for each of the Fe<sup>III</sup> cations (Fig. 2), with  $\tau_5$  values (Addison et al., 1984) of 0.04 (Fe1) and 0.01 (Fe2), indicating only slight deviations from the ideal geometry for which  $\tau_5 = 0$ . For Fe1 the Fe-N bond lengths are very similar, whereas for Fe2 they are slightly different (Table 1). There are also small differences in the Fe-O distances, which shows that the bridge is not symmetrical [the Fe-O-Fe angle is 177.71  $(18)^{\circ}$ ]. This is in contrast to the orthorhombic form where both Fe-O distances are identical because of symmetry restrictions as this complex is located on a twofold rotation axis (Hoffman et al., 1972; Swepston & Ibers, 1985; Kooijmann et al. 2007). Nevertheless, the orthorhombic form likewise shows a small distortion of the coordination polyhedron around Fe<sup>III</sup>, and in both modifications the Fe<sup>III</sup>

 Table 1

 Selected geometric parameters (Å, °).

| 6          | •           | ,           |             |
|------------|-------------|-------------|-------------|
| Fe1-O1     | 1.766 (3)   | O1-Fe2      | 1.757 (3)   |
| Fe1-N3     | 2.069 (3)   | Fe2-N51     | 2.078 (3)   |
| Fe1-N2     | 2.078 (3)   | Fe2-N53     | 2.080 (3)   |
| Fe1-N1     | 2.079 (3)   | Fe2-N54     | 2.084 (3)   |
| Fe1-N4     | 2.084 (3)   | Fe2-N52     | 2.091 (3)   |
| O1-Fe1-N3  | 103.31 (13) | O1-Fe2-N51  | 103.46 (13) |
| O1-Fe1-N2  | 102.11 (13) | O1-Fe2-N53  | 104.50 (13) |
| N3-Fe1-N2  | 87.38 (13)  | N51-Fe2-N53 | 152.04 (13) |
| O1-Fe1-N1  | 103.37 (13) | O1-Fe2-N54  | 103.78 (13) |
| N2-Fe1-N1  | 87.14 (13)  | N51-Fe2-N54 | 86.63 (13)  |
| O1-Fe1-N4  | 102.12 (13) | N53-Fe2-N54 | 86.85 (13)  |
| N3-Fe1-N4  | 87.27 (13)  | O1-Fe2-N52  | 103.63 (13) |
| N2-Fe1-N4  | 155.77 (13) | N51-Fe2-N52 | 86.99 (13)  |
| N1-Fe1-N4  | 87.10 (13)  | N53-Fe2-N52 | 86.40 (13)  |
| Fe2-O1-Fe1 | 177.71 (18) | N54-Fe2-N52 | 152.59 (13) |
|            |             |             |             |

cations are shifted out of the porphyrine plane in direction towards the O atoms [0.366 (1) Å for Fe1 and 0.399 (1) Å for Fe2 in the monoclinic structure of the title compound; Fig. 2]. The porphyrine ring planes in the title compound are rotated by 28.5 (5)° against each other, whereas in the orthorhombic form they exhibit an almost staggered arrangement of the Fe-N bonds, close to  $D_{4d}$  symmetry.

## 3. Supramolecular features

In the crystal structure of the title compound, the dimers are arranged in columns that elongate parallel to the *b* axis (Fig. 3). There are no hydrogen bonds between the dimers, and there is also no hint of significant  $\pi$ - $\pi$  interactions. Therefore, the packing appears to be dominated by non-directed van der





Molecular structure of the title compound with atom labelling and displacement ellipsoids drawn at the 50% probability level. The H atoms are omitted for clarity; the disorder of one of the phenyl rings is shown with full and open bonds.

# research communications



Figure 2

Top and side view of the molecular structure of the title compound showing the coordination around the Fe<sup>III</sup> atoms. The disorder of one of the phenyl rings is omitted for clarity.

Waals interactions. It is noted that the packing of the dimers is completely different in the two polymorphic forms. In the orthorhombic form, the dimers are also arranged in columns but neighbouring columns are shifted relative to each other; for comparison of the two polymorphs, see Figs. 3 and 4. The density of the triclinic polymorph is slightly higher than that of the orthorhombic form, indicating that the former most probably represents the thermodynamic stable form at absolute zero.

#### 4. Database survey

According to a search in the Cambridge Structural Database (CSD, version 5.40, updated Feb. 2019; Groom *et al.*, 2016), 1010 structures with iron porphyrins have been reported. Similar  $\mu_2$ -oxido-bridged iron porphyrins are known. For example, ( $\mu_2$ -oxido)-bis(5,10,15,20-tetraphenylporphyrinato)iron(III) with C<sub>70</sub> fullerene (Konarev *et al.*, 2010) and C<sub>60</sub> fullerene (Litvinov *et al.*, 2003, 2004). Other  $\mu_2$ -oxido iron porphyrins include 5,10,15,20-tetra-*p*-tolylporphyrinato)-iron(III) (Li *et al.*, 1999), 5,10,15,20-tetrakis(pentafluoro-





phenyl)porphinatoiron(III) (Gold *et al.*, 1988), tetrakis(2,6difluorophenyl)porphyrinato)iron(III) (Karlin *et al.*, 1994), 5,10,15,20-tetrakis(4-bromophenyl)porphyrinato)iron(III) (Hou *et al.*, 2015) and 5,10,15,20-tetrakis(4-chlorophenyl)porphyrinato)iron(III) (Jiao *et al.*, 1997). As already noted, an orthorhombic polymorph of the title compound has previously been structurally characterized (Hoffman *et al.*, 1972; Swepston & Ibers, 1985; Kooijmann *et al.*, 2007).

### 5. Synthesis and crystallization

FeTPPClO<sub>4</sub> was synthesized as reported (Shankar *et al.*, 2018). The layering technique was used for crystallization. The lower layer consisted of FeTPPClO<sub>4</sub> dissolved in dichloromethane to which 50  $\mu$ l 4-methylimidazole were added, and *n*-heptane was used as the upper antisolvent.





### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

All crystals consisted of more than one domain, but the structure could be solved in space group  $P\overline{1}$  neglecting the presence of two domains. However, these refinement runs led to poor reliability factors and several electron density maxima were observed that could not be resolved. The TwinRotMat option in *PLATON* (Spek, 2009) suggested a twofold rotation axis as twin element with the matrix ( $\overline{1} \ 0 \ 0, 0 \ \overline{1} \ 0, -0.389$ ,  $-0.663 \ 1$ ). Several data sets in HKLF-5 format were generated using different sizes of the integration box in *X-AREA* (Stoe, 2008) and different overlap criteria in *PLATON* (Spek, 2009) until the best data set was obtained. The final refinement using this data set led to a ratio of the two domains of 0.691 (3): 0.309 (3) and acceptable reliability factors.

The C-H hydrogen atoms were located in a difference Fourier map but were positioned with idealized geometry and refined with with  $U_{iso}(H) = 1.2U_{eq}(C)$  using a riding model with C-H = 0.95 Å. One of the phenyl rings is disordered over two orientations (ratio 0.55:0.45) and was refined using a split model with restraints for the bond lengths (DFIX).

#### Acknowledgements

We thank Professor Dr. Wolfgang Bensch for access to his experimental facility.

#### **Funding information**

The authors gratefully acknowledge financial support by the Deutsche Forschungsgesellschaft within the Sonderforschungsbereich 677.

#### References

- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Bonnett, R. (1995). Chem. Soc. Rev. 24, 19-33.
- Brandenburg, K. (2014). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Dommaschk, M., Peters, M., Gutzeit, F., Schütt, C., Näther, C., Sönnichsen, F. D., Tiwari, S., Riedel, C., Boretius, S. & Herges, R. (2015). J. Am. Chem. Soc. 137, 7552–7555.
- Ethirajan, M., Chen, Y., Joshi, P. & Pandey, R. K. (2011). *Chem. Soc. Rev.* **40**, 340–362.
- Gold, A., Jayaraj, K., Doppelt, P., Fischer, J. & Weiss, R. (1988). Inorg. Chim. Acta, 150, 177–181.
- Gosden, C., Healy, K. P. & Pletcher, D. (1978). J. Chem. Soc. Dalton Trans. pp. 972–976.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hoffman, A. U., Collins, D. M., Day, V. W., Fleischer, E. B., Srivastava, T. S. & Hoard, J. L. (1972). J. Am. Chem. Soc. 94, 3620–3626.
- Hou, Y., Zhu, Y., Sun, J., Zhang, X., Tian, Y. & Jiang, J. (2015). *CrystEngComm*, **17**, 4699–4704.
- Jiao, X.-D., Huang, J.-W., Ji, L., Luo, B.-S. & Chen, L.-R. (1997). J. Inorg. Biochem. 65, 229–233.
- Karlin, K. D., Nanthakumar, A., Fox, S., Murthy, N. N., Ravi, N., Huynh, B. H., Orosz, R. D. & Day, E. P. (1994). J. Am. Chem. Soc. 116, 4753–4763.
- Konarev, D. V., Khasanov, S. S. & Lyubovskaya, R. N. (2010). J. Porphyrins Phthalocyanines, 14, 293–297.

| Table  | 2      |          |
|--------|--------|----------|
| Experi | mental | details. |

| Crystal data                                                                 |                                          |
|------------------------------------------------------------------------------|------------------------------------------|
| Chemical formula                                                             | $[Fe_2(C_{44}H_{28}N_4O)_2O]$            |
| M <sub>r</sub>                                                               | 1353.10                                  |
| Crystal system, space group                                                  | Triclinic, P1                            |
| Temperature (K)                                                              | 170                                      |
| a, b, c (Å)                                                                  | 14.4477 (4), 14.5325 (4),<br>17.9076 (5) |
| $\alpha, \beta, \gamma$ (°)                                                  | 71.266 (2), 75.725 (2), 70.506 (2)       |
| $V(Å^3)$                                                                     | 3315.42 (17)                             |
| Z                                                                            | 2                                        |
| Radiation type                                                               | Μο Κα                                    |
| $\mu \text{ (mm}^{-1})$                                                      | 0.50                                     |
| Crystal size (mm)                                                            | $0.3 \times 0.2 \times 0.15$             |
| Data collection                                                              |                                          |
| Diffractometer                                                               | Stoe IPDS2                               |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections     | 14436, 14436, 12017                      |
| $(\sin \theta / \lambda)_{\max} (\dot{A}^{-1})$                              | 0.639                                    |
| Refinement                                                                   |                                          |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                          | 0.075, 0.214, 1.05                       |
| No. of reflections                                                           | 14436                                    |
| No. of parameters                                                            | 938                                      |
| No. of restraints                                                            | 12                                       |
| H-atom treatment                                                             | H-atom parameters constrained            |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ | 0.52, -0.67                              |

Computer programs: X-AREA (Stoe, 2008), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), XP in SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2014) and publCIF (Westrip, 2010).

- Kooijmann, H., Spek, A. L., van Strijdonck, G. & Nolte, R. J. M. (2007). Private Communication (refcode 667666). CCDC, Cambridge, England.
- Li, A.-R., Wei, H.-H. & Gang, L.-L. (1999). Inorg. Chim. Acta, 290, 51–56.
- Li, Y. & Zamble, D. B. (2009). Chem. Rev. 109, 4617-4643.
- Litvinov, A. L., Konarev, D. V., Kovalevsky, A. Y., Lapshin, A. N., Yudanova, E. I., Coppens, P. & Lyubovskaya, R. N. (2004). *Fullerenes, Nanotubes, Carbon Nanostruct.* 12, 215–219.
- Litvinov, A. L., Konarev, D. V., Kovalevsky, A. Y., Lapshin, A. N., Yudanova, E. I., Drichko, N. V., Coppens, P. & Lyubovskaya, R. N. (2003). *Eur. J. Inorg. Chem.* pp. 3914–3917.
- Peters, M. K., Hamer, S., Jäkel, T., Röhricht, F., Sönnichsen, F. D., von Essen, C., Lahtinen, M., Naether, C., Rissanen, K. & Herges, R. (2019). *Inorg. Chem.* DOI: https://10.1021/acs.inorgchem.9b00349
- Peters, M. K. & Herges, R. (2018). Inorg. Chem. 57, 3177-3182.
- Peters, M. K., Näther, C. & Herges, R. (2018b). Acta Cryst. E74, 1013– 1016.
- Peters, M. K., Röhricht, F., Näther, C. & Herges, R. (2018a). Org. Lett. 20, 7879–7883.
- Shankar, S., Peters, M., Steinborn, K., Krahwinkel, B., Sönnichsen, F. D., Grote, D., Sander, W., Lohmiller, T., Rüdiger, O. & Herges, R. (2018). *Nat. Commun.* 9, 1–12.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
- Strauss, S. H., Pawlik, M. J., Skowyra, J., Kennedy, J. R., Anderson, O. P., Spartalian, K. & Dye, J. L. (1987). *Inorg. Chem.* 26, 724– 730.
- Swepston, P. N. & Ibers, J. A. (1985). Acta Cryst. C41, 671-673.
- Venkataramani, S., Jana, U., Dommaschk, M., Sönnichsen, F. D., Tuczek, F. & Herges, R. (2011). Science, 331, 445–448.
   Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Acta Cryst. (2019). E75, 930-933 [https://doi.org/10.1107/S2056989019007576]

Crystal structure of a polymorph of *µ*-oxido-bis[(5,10,15,20-tetraphenyl-porphyrinato)iron(III)]

# Morten K. Peters, Christian Näther and Rainer Herges

**Computing details** 

Data collection: *X-AREA* (Stoe & Cie, 2008); cell refinement: *X-AREA* (Stoe & Cie, 2008); data reduction: *X-AREA* (Stoe & Cie, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015*b*); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008) and *DIAMOND* (Brandenburg, 2014); software used to prepare material for publication: *publCIF* (Westrip, 2010).

µ-Oxido-bis[(5,10,15,20-tetraphenylporphyrinato)iron(III)]

Crystal data  $[Fe_2(C_{44}H_{28}N_4)O]$ Z = 2 $M_r = 1353.10$ F(000) = 1400Triclinic,  $P\overline{1}$  $D_{\rm x} = 1.355 {\rm Mg} {\rm m}^{-3}$ Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å a = 14.4477 (4) Å *b* = 14.5325 (4) Å Cell parameters from 37885 reflections *c* = 17.9076 (5) Å  $\theta = 1.2 - 27.0^{\circ}$  $\alpha = 71.266 \ (2)^{\circ}$  $\mu = 0.50 \text{ mm}^{-1}$  $\beta = 75.725 \ (2)^{\circ}$ T = 170 K $\gamma = 70.506 \ (2)^{\circ}$ Block, dark red  $V = 3315.42 (17) Å^3$  $0.3 \times 0.2 \times 0.15 \text{ mm}$ Data collection Stoe IPDS-2 12017 reflections with  $I > 2\sigma(I)$ diffractometer  $\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 1.2^{\circ}$  $h = -18 \rightarrow 18$  $\omega$  scans 14436 measured reflections  $k = -18 \rightarrow 18$ 14436 independent reflections  $l = -15 \rightarrow 22$ Refinement Refinement on  $F^2$ Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites  $R[F^2 > 2\sigma(F^2)] = 0.075$ H-atom parameters constrained  $wR(F^2) = 0.214$  $w = 1/[\sigma^2(F_o^2) + (0.0892P)^2 + 3.7143P]$ S = 1.05where  $P = (F_0^2 + 2F_c^2)/3$ 14436 reflections  $(\Delta/\sigma)_{\rm max} < 0.001$ 938 parameters  $\Delta \rho_{\rm max} = 0.52 \ {\rm e} \ {\rm \AA}^{-3}$  $\Delta \rho_{\rm min} = -0.67 \ {\rm e} \ {\rm \AA}^{-3}$ 12 restraints

## Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin

|     | X           | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|-------------|--------------|--------------|-----------------------------|-----------|
| Fe1 | 0.57714 (4) | 0.35357 (4)  | 0.13707 (3)  | 0.04270 (15)                |           |
| 01  | 0.5511 (2)  | 0.3176 (2)   | 0.24234 (16) | 0.0487 (6)                  |           |
| N1  | 0.7312 (2)  | 0.3020 (3)   | 0.1133 (2)   | 0.0475 (7)                  |           |
| N2  | 0.5944 (2)  | 0.4969 (2)   | 0.1144 (2)   | 0.0457 (7)                  |           |
| N3  | 0.4378 (2)  | 0.4242 (2)   | 0.1037 (2)   | 0.0462 (7)                  |           |
| N4  | 0.5732 (2)  | 0.2275 (3)   | 0.1077 (2)   | 0.0451 (7)                  |           |
| C1  | 0.7471 (3)  | 0.1258 (3)   | 0.1179 (3)   | 0.0514 (9)                  |           |
| C2  | 0.7848 (3)  | 0.2041 (3)   | 0.1138 (3)   | 0.0500 (9)                  |           |
| C3  | 0.8882 (3)  | 0.1932 (4)   | 0.1092 (3)   | 0.0564 (10)                 |           |
| H3  | 0.9412      | 0.1335       | 0.1074       | 0.068*                      |           |
| C4  | 0.8964 (3)  | 0.2839 (3)   | 0.1079 (3)   | 0.0530 (10)                 |           |
| H4  | 0.9561      | 0.2999       | 0.1047       | 0.064*                      |           |
| C5  | 0.7978 (3)  | 0.3512 (3)   | 0.1123 (2)   | 0.0468 (8)                  |           |
| C6  | 0.7743 (3)  | 0.4499 (3)   | 0.1189 (2)   | 0.0467 (8)                  |           |
| C7  | 0.6788 (3)  | 0.5167 (3)   | 0.1221 (2)   | 0.0476 (9)                  |           |
| C8  | 0.6514 (3)  | 0.6133 (3)   | 0.1381 (3)   | 0.0511 (9)                  |           |
| H8  | 0.6953      | 0.6448       | 0.1456       | 0.061*                      |           |
| C9  | 0.5522 (3)  | 0.6520 (3)   | 0.1408 (3)   | 0.0524 (9)                  |           |
| H9  | 0.5131      | 0.7146       | 0.1517       | 0.063*                      |           |
| C10 | 0.5168 (3)  | 0.5798 (3)   | 0.1240 (2)   | 0.0469 (8)                  |           |
| C11 | 0.4176 (3)  | 0.5938 (3)   | 0.1179 (2)   | 0.0471 (8)                  |           |
| C12 | 0.3838 (3)  | 0.5233 (3)   | 0.1026 (2)   | 0.0468 (8)                  |           |
| C13 | 0.2858 (3)  | 0.5409 (3)   | 0.0863 (3)   | 0.0501 (9)                  |           |
| H13 | 0.2346      | 0.6029       | 0.0812       | 0.060*                      |           |
| C14 | 0.2801 (3)  | 0.4530 (3)   | 0.0796 (3)   | 0.0499 (9)                  |           |
| H14 | 0.2243      | 0.4420       | 0.0684       | 0.060*                      |           |
| C15 | 0.3739 (3)  | 0.3796 (3)   | 0.0924 (2)   | 0.0457 (8)                  |           |
| C16 | 0.3958 (3)  | 0.2770 (3)   | 0.0950 (2)   | 0.0472 (8)                  |           |
| C17 | 0.4880 (3)  | 0.2063 (3)   | 0.1043 (2)   | 0.0457 (8)                  |           |
| C18 | 0.5099 (3)  | 0.1001 (3)   | 0.1115 (3)   | 0.0531 (10)                 |           |
| H18 | 0.4645      | 0.0655       | 0.1116       | 0.064*                      |           |
| C19 | 0.6082 (3)  | 0.0583 (3)   | 0.1181 (3)   | 0.0539 (10)                 |           |
| H19 | 0.6441      | -0.0108      | 0.1234       | 0.065*                      |           |
| C20 | 0.6472 (3)  | 0.1382 (3)   | 0.1157 (2)   | 0.0474 (9)                  |           |
| C21 | 0.8180 (3)  | 0.0232 (3)   | 0.1272 (3)   | 0.0550 (10)                 |           |
| C22 | 0.8500 (9)  | -0.0263 (8)  | 0.2022 (7)   | 0.062 (3)                   | 0.55      |
| H22 | 0.8255      | 0.0073       | 0.2437       | 0.074*                      | 0.55      |
| C23 | 0.9166 (11) | -0.1232 (11) | 0.2173 (11)  | 0.072 (4)                   | 0.55      |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| H23  | 0.9402      | -0.1528      | 0.2671      | 0.086*      | 0.55 |
|------|-------------|--------------|-------------|-------------|------|
| C24  | 0.9477 (14) | -0.1756 (13) | 0.1589 (9)  | 0.056 (4)   | 0.55 |
| H24  | 0.9860      | -0.2444      | 0.1697      | 0.067*      | 0.55 |
| C25  | 0.9211 (10) | -0.1244 (8)  | 0.0851 (8)  | 0.070 (3)   | 0.55 |
| H25  | 0.9487      | -0.1560      | 0.0426      | 0.084*      | 0.55 |
| C26  | 0.8556 (11) | -0.0283 (9)  | 0.0701 (9)  | 0.070 (4)   | 0.55 |
| H26  | 0.8365      | 0.0023       | 0.0187      | 0.084*      | 0.55 |
| C22′ | 0.8218 (11) | -0.0500(10)  | 0.1954 (10) | 0.083 (6)   | 0.45 |
| H22′ | 0.7743      | -0.0383      | 0.2410      | 0.100*      | 0.45 |
| C23′ | 0.8935 (13) | -0.1424 (13) | 0.2014 (14) | 0.086 (6)   | 0.45 |
| H23′ | 0.8945      | -0.1940      | 0.2501      | 0.103*      | 0.45 |
| C24′ | 0.9640 (16) | -0.1580 (15) | 0.1345 (12) | 0.057 (5)   | 0.44 |
| H24′ | 1.0189      | -0.2169      | 0.1403      | 0.068*      | 0.44 |
| C25′ | 0.9566 (12) | -0.0911 (11) | 0.0608 (11) | 0.083 (5)   | 0.45 |
| H25′ | 0.9997      | -0.1071      | 0.0145      | 0.099*      | 0.45 |
| C26′ | 0.8833 (11) | 0.0018 (12)  | 0.0560 (10) | 0.072 (5)   | 0.45 |
| H26′ | 0.8767      | 0.0504       | 0.0060      | 0.086*      | 0.45 |
| C27  | 0.8573 (3)  | 0.4845 (3)   | 0.1267 (2)  | 0.0477 (9)  |      |
| C28  | 0.8822 (3)  | 0.5697 (4)   | 0.0720 (3)  | 0.0572(10)  |      |
| H28  | 0.8467      | 0.6063       | 0.0285      | 0.069*      |      |
| C29  | 0.9591 (4)  | 0.6004 (4)   | 0.0815(3)   | 0.0664(12)  |      |
| H29  | 0.9755      | 0.6583       | 0.0443      | 0.080*      |      |
| C30  | 1.0118 (4)  | 0.5479 (4)   | 0.1443 (3)  | 0.0661 (12) |      |
| H30  | 1.0642      | 0.5696       | 0.1502      | 0.079*      |      |
| C31  | 0.9882(3)   | 0.4648 (4)   | 0.1977(3)   | 0.0623 (11) |      |
| H31  | 1.0245      | 0.4286       | 0.2408      | 0.075*      |      |
| C32  | 0.9117 (3)  | 0.4325 (3)   | 0.1899 (3)  | 0.0535(10)  |      |
| H32  | 0.8961      | 0.3746       | 0.2278      | 0.064*      |      |
| C33  | 0.3424 (3)  | 0.6881 (3)   | 0.1312 (2)  | 0.0474 (8)  |      |
| C34  | 0.2621 (3)  | 0.6829 (4)   | 0.1923 (3)  | 0.0542 (10) |      |
| H34  | 0.2551      | 0.6186       | 0.2241      | 0.065*      |      |
| C35  | 0.1920 (3)  | 0.7693 (4)   | 0.2082(3)   | 0.0624 (11) |      |
| H35  | 0.1380      | 0.7638       | 0.2506      | 0.075*      |      |
| C36  | 0.2010 (4)  | 0.8631 (4)   | 0.1621 (3)  | 0.0630 (12) |      |
| H36  | 0.1523      | 0.9224       | 0.1721      | 0.076*      |      |
| C37  | 0.2809 (4)  | 0.8711 (4)   | 0.1012 (3)  | 0.0616 (11) |      |
| H37  | 0.2877      | 0.9358       | 0.0702      | 0.074*      |      |
| C38  | 0.3512 (3)  | 0.7838 (3)   | 0.0856(3)   | 0.0523 (9)  |      |
| H38  | 0.4056      | 0.7895       | 0.0436      | 0.063*      |      |
| C39  | 0.3128 (3)  | 0.2391 (3)   | 0.0918 (3)  | 0.0518 (9)  |      |
| C40  | 0.3189 (3)  | 0.1953(3)    | 0.0312(3)   | 0.0556 (10) |      |
| H40  | 0.3754      | 0.1914       | -0.0095     | 0.067*      |      |
| C41  | 0.2431 (4)  | 0.1574 (4)   | 0.0301 (4)  | 0.0671 (13) |      |
| H41  | 0.2475      | 0.1283       | -0.0117     | 0.080*      |      |
| C42  | 0.1617 (4)  | 0.1616 (4)   | 0.0890 (4)  | 0.0697 (14) |      |
| H42  | 0.1103      | 0.1350       | 0.0882      | 0.084*      |      |
| C43  | 0.1544 (3)  | 0.2043 (4)   | 0.1492 (4)  | 0.0663 (13) |      |
| H43  | 0.0981      | 0.2066       | 0.1900      | 0.080*      |      |
|      | ·           |              |             |             |      |

| C44         | 0.2295 (3)             | 0.2445 (3)            | 0.1507 (3)             | 0.0576 (11)         |
|-------------|------------------------|-----------------------|------------------------|---------------------|
| H44         | 0.2234                 | 0.2752                | 0.1918                 | 0.069*              |
| Fe2         | 0.52632 (4)            | 0.28620 (4)           | 0.34713 (3)            | 0.04271 (15)        |
| N51         | 0.5793 (2)             | 0.1295 (2)            | 0.3793 (2)             | 0.0457 (7)          |
| N52         | 0.6548 (2)             | 0.2886 (2)            | 0.3796 (2)             | 0.0462 (7)          |
| N53         | 0.4596 (2)             | 0.4245 (2)            | 0.3749 (2)             | 0.0447 (7)          |
| N54         | 0.3845 (2)             | 0.2660 (2)            | 0.3737 (2)             | 0.0463 (7)          |
| C51         | 0.4304 (3)             | 0.0883 (3)            | 0.3684 (2)             | 0.0480 (9)          |
| C52         | 0.5318 (3)             | 0.0641 (3)            | 0.3736 (3)             | 0.0478 (9)          |
| C53         | 0.6006 (3)             | -0.0334(3)            | 0.3762 (3)             | 0.0553 (10)         |
| H53         | 0.5866                 | -0.0913               | 0.3729                 | 0.066*              |
| C54         | 0.6895 (3)             | -0.0286(3)            | 0.3842 (3)             | 0.0572 (10)         |
| H54         | 0.7490                 | -0.0825               | 0.3888                 | 0.069*              |
| C55         | 0.6769 (3)             | 0.0734(3)             | 0.3846(2)              | 0.0476 (9)          |
| C56         | 0.7525 (3)             | 0.1104(3)             | 0.3891(3)              | 0.0483 (9)          |
| C57         | 0.7402(3)              | 0.2102(3)             | 0.3889(3)              | 0.0479 (9)          |
| C58         | 0.8165(3)              | 0.2458(3)             | 0.3997(3)              | 0.0536(10)          |
| H58         | 0.8822                 | 0.2067                | 0.4082                 | 0.064*              |
| C59         | 0.0022                 | 0.3451(3)             | 0.3956(3)              | 0.0527(9)           |
| H59         | 0.8101                 | 0 3890                | 0.4005                 | 0.063*              |
| C60         | 0.6761(3)              | 0.3724(3)             | 0.3825(2)              | 0.003<br>0.0472(8)  |
| C61         | 0.6104 (3)             | 0.4692(3)             | 0.3748(2)              | 0.0467(8)           |
| C62         | 0.5093(3)              | 0.4929(3)             | 0.3700(2)              | 0.0459(8)           |
| C63         | 0.3093(3)<br>0.4407(3) | 0.5919(3)             | 0.3654(3)              | 0.0514(9)           |
| H63         | 0.4565                 | 0.6524                | 0.3599                 | 0.062*              |
| C64         | 0.3489(3)              | 0.5321<br>0.5822 (3)  | 0.3702(3)              | 0.002<br>0.0524 (9) |
| H64         | 0.2881                 | 0.6344                | 0.3697                 | 0.063*              |
| C65         | 0.3610(3)              | 0.4776(3)             | 0.3763(2)              | 0.0475(9)           |
| C66         | 0.2824(3)              | 0.4377(3)             | 0.3705(2)<br>0.3825(2) | 0.0474(8)           |
| C67         | 0.2021(3)<br>0.2946(3) | 0.3389(3)             | 0.3802(2)              | 0.0485(9)           |
| C68         | 0.2310(3)              | 0.2987(3)             | 0.3842(3)              | 0.0548(10)          |
| H68         | 0.1459                 | 0.3327                | 0.3905                 | 0.066*              |
| C69         | 0.1459<br>0.2568 (3)   | 0.3327<br>0.2030(3)   | 0.3773(3)              | 0.000               |
| H69         | 0.2208 (3)             | 0.1578                | 0.3768                 | 0.0551 (10)         |
| C70         | 0.2224<br>0.3625 (3)   | 0.1819(3)             | 0.3709(2)              | 0.000               |
| C71         | 0.3029(3)              | 0.1015(3)             | 0.3709(2)<br>0.3583(3) | 0.0406 (0)          |
| C72         | 0.3930(3)              | -0.0815(3)            | 0.3365(3)<br>0.4165(3) | 0.0470(9)           |
| С72<br>H72  | 0.4194                 | -0.0947               | 0.4644                 | 0.0550 ())          |
| C73         | 0.4194<br>0.3592 (4)   | -0.1533(3)            | 0.4041(3)              | 0.004               |
| U73         | 0.3603                 | -0.2154               | 0.4041 (3)             | 0.0571(11)          |
| 1175<br>C74 | 0.3003                 | -0.1344(3)            | 0.4457                 | 0.071               |
| U74         | 0.3231 (4)             | -0.1344(3)<br>-0.1837 | 0.3332(3)              | 0.0013 (11)         |
| 1174<br>C75 | 0.2330                 | -0.0441(4)            | 0.3273                 | $0.074^{\circ}$     |
| U75         | 0.3203 (4)             | -0.0441(4)            | 0.2770 (3)             | 0.0029 (11)         |
| 1173<br>C76 | 0.2930                 | 0.0311<br>0.0272 (2)  | 0.2292                 | $0.070^{\circ}$     |
| U76         | 0.3332(3)              | 0.0273 (3)            | 0.2099(3)              | 0.0500 (10)         |
| C77         | 0.3327                 | 0.0090                | 0.2300                 | 0.000               |
| C79         | 0.0333(3)              | 0.0361(3)             | 0.3974(3)              | 0.0331(10)          |
| U/0         | 0.9330 (4)             | 0.04/1(0)             | 0.3309 (4)             | 0.0883 (19)         |

| H78 | 0.9244      | 0.0994      | 0.2889     | 0.106*      |
|-----|-------------|-------------|------------|-------------|
| C79 | 1.0274 (5)  | -0.0199 (7) | 0.3459 (5) | 0.106 (3)   |
| H79 | 1.0821      | -0.0123     | 0.3046     | 0.128*      |
| C80 | 1.0409 (5)  | -0.0974 (5) | 0.4149 (5) | 0.093 (2)   |
| H80 | 1.1044      | -0.1444     | 0.4210     | 0.112*      |
| C81 | 0.9637 (5)  | -0.1051 (5) | 0.4726 (5) | 0.113 (3)   |
| H81 | 0.9722      | -0.1580     | 0.5203     | 0.135*      |
| C82 | 0.8705 (4)  | -0.0369 (5) | 0.4640 (4) | 0.094 (2)   |
| H82 | 0.8171      | -0.0436     | 0.5068     | 0.112*      |
| C83 | 0.6503 (3)  | 0.5529 (3)  | 0.3715 (2) | 0.0471 (8)  |
| C84 | 0.6136 (3)  | 0.6077 (3)  | 0.4290 (3) | 0.0511 (9)  |
| H84 | 0.5627      | 0.5912      | 0.4716     | 0.061*      |
| C85 | 0.6509 (4)  | 0.6860 (3)  | 0.4243 (3) | 0.0562 (10) |
| H85 | 0.6255      | 0.7230      | 0.4637     | 0.067*      |
| C86 | 0.7252 (3)  | 0.7106 (4)  | 0.3624 (3) | 0.0600 (11) |
| H86 | 0.7501      | 0.7648      | 0.3590     | 0.072*      |
| C87 | 0.7629 (3)  | 0.6564 (4)  | 0.3057 (3) | 0.0595 (11) |
| H87 | 0.8137      | 0.6733      | 0.2632     | 0.071*      |
| C88 | 0.7266 (3)  | 0.5774 (3)  | 0.3108 (3) | 0.0526 (9)  |
| H88 | 0.7541      | 0.5392      | 0.2725     | 0.063*      |
| C89 | 0.1794 (3)  | 0.5053 (3)  | 0.3934 (3) | 0.0500 (9)  |
| C90 | 0.1151 (3)  | 0.5333 (3)  | 0.3388 (3) | 0.0565 (10) |
| H90 | 0.1363      | 0.5081      | 0.2927     | 0.068*      |
| C91 | 0.0208 (3)  | 0.5973 (4)  | 0.3505 (4) | 0.0682 (13) |
| H91 | -0.0226     | 0.6151      | 0.3128     | 0.082*      |
| C92 | -0.0109 (4) | 0.6354 (4)  | 0.4164 (4) | 0.0737 (15) |
| H92 | -0.0755     | 0.6804      | 0.4237     | 0.088*      |
| C93 | 0.0514 (4)  | 0.6079 (4)  | 0.4721 (4) | 0.0698 (13) |
| H93 | 0.0295      | 0.6334      | 0.5180     | 0.084*      |
| C94 | 0.1463 (3)  | 0.5429 (4)  | 0.4607 (3) | 0.0579 (10) |
| H94 | 0.1889      | 0.5239      | 0.4992     | 0.069*      |
|     |             |             |            |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Fe1 | 0.0391 (3)  | 0.0422 (3)  | 0.0472 (3)  | -0.0118 (2)  | -0.0078 (2)  | -0.0109 (2)  |
| 01  | 0.0467 (14) | 0.0497 (15) | 0.0506 (15) | -0.0151 (12) | -0.0077 (12) | -0.0125 (12) |
| N1  | 0.0419 (17) | 0.0441 (17) | 0.0568 (19) | -0.0140 (14) | -0.0066 (14) | -0.0122 (14) |
| N2  | 0.0400 (16) | 0.0437 (17) | 0.0533 (18) | -0.0132 (13) | -0.0103 (13) | -0.0086 (14) |
| N3  | 0.0444 (17) | 0.0423 (17) | 0.0532 (18) | -0.0125 (14) | -0.0095 (14) | -0.0121 (14) |
| N4  | 0.0382 (16) | 0.0463 (17) | 0.0516 (18) | -0.0115 (13) | -0.0086 (13) | -0.0130 (14) |
| C1  | 0.042 (2)   | 0.048 (2)   | 0.063 (2)   | -0.0116 (17) | -0.0065 (17) | -0.0141 (18) |
| C2  | 0.041 (2)   | 0.047 (2)   | 0.061 (2)   | -0.0091 (16) | -0.0062 (17) | -0.0180 (18) |
| C3  | 0.042 (2)   | 0.053 (2)   | 0.075 (3)   | -0.0097 (18) | -0.0085 (19) | -0.021 (2)   |
| C4  | 0.0385 (19) | 0.055 (2)   | 0.068 (3)   | -0.0123 (17) | -0.0089 (18) | -0.020(2)    |
| C5  | 0.0386 (19) | 0.049 (2)   | 0.054 (2)   | -0.0155 (16) | -0.0059 (16) | -0.0141 (17) |
| C6  | 0.044 (2)   | 0.045 (2)   | 0.052 (2)   | -0.0150 (16) | -0.0079 (16) | -0.0113 (16) |
| C7  | 0.044 (2)   | 0.045 (2)   | 0.054 (2)   | -0.0142 (16) | -0.0100 (16) | -0.0096 (17) |
|     |             |             |             |              |              |              |

| C8          | 0.048 (2)            | 0.048 (2)            | 0.061 (2)              | -0.0150 (17) | -0.0130 (18) | -0.0151 (18) |
|-------------|----------------------|----------------------|------------------------|--------------|--------------|--------------|
| C9          | 0.048 (2)            | 0.046 (2)            | 0.065 (3)              | -0.0123 (17) | -0.0116 (19) | -0.0160 (19) |
| C10         | 0.045 (2)            | 0.044 (2)            | 0.053 (2)              | -0.0143 (16) | -0.0103 (16) | -0.0086 (16) |
| C11         | 0.046 (2)            | 0.046 (2)            | 0.050 (2)              | -0.0136 (17) | -0.0099 (16) | -0.0100 (16) |
| C12         | 0.0430 (19)          | 0.044 (2)            | 0.053 (2)              | -0.0103 (16) | -0.0119 (16) | -0.0113 (17) |
| C13         | 0.043 (2)            | 0.047 (2)            | 0.060 (2)              | -0.0101 (17) | -0.0133 (17) | -0.0124 (18) |
| C14         | 0.043 (2)            | 0.053 (2)            | 0.057 (2)              | -0.0130(17)  | -0.0131 (17) | -0.0151 (18) |
| C15         | 0.0389 (18)          | 0.047 (2)            | 0.051 (2)              | -0.0123(16)  | -0.0090(15)  | -0.0110 (16) |
| C16         | 0.0419 (19)          | 0.046 (2)            | 0.055 (2)              | -0.0155 (16) | -0.0089(16)  | -0.0098(17)  |
| C17         | 0.0424 (19)          | 0.046 (2)            | 0.052 (2)              | -0.0133(16)  | -0.0082(16)  | -0.0163(17)  |
| C18         | 0.045(2)             | 0.049(2)             | 0.068(3)               | -0.0155(17)  | -0.0087(18)  | -0.0149(19)  |
| C19         | 0.048(2)             | 0.043(2)             | 0.071(3)               | -0.0125(17)  | -0.0098(19)  | -0.0156(19)  |
| C20         | 0.045(2)             | 0.043(2)             | 0.054(2)               | -0.0123(16)  | -0.0052(16)  | -0.0137(16)  |
| C21         | 0.040(2)             | 0.049(2)             | 0.031(2)<br>0.078(3)   | -0.0121(17)  | -0.0098(19)  | -0.017(2)    |
| C22         | 0.065(7)             | 0.040(5)             | 0.069(6)               | -0.013(4)    | -0.001(5)    | -0.009(4)    |
| C23         | 0.002(9)             | 0.018(2)<br>0.058(7) | 0.009(0)               | -0.003(6)    | -0.024(6)    | -0.014(6)    |
| C24         | 0.072(9)             | 0.035(5)             | 0.078(9)               | -0.018(5)    | -0.011(7)    | -0.008(6)    |
| C25         | 0.088 (9)            | 0.049 (6)            | 0.075(9)               | -0.004(5)    | -0.033(7)    | -0.033(5)    |
| C26         | 0.000(9)<br>0.083(9) | 0.049(0)             | 0.085 (8)              | -0.007(5)    | -0.038(6)    | -0.034(6)    |
| C22'        | 0.009(9)             | 0.037(7)             | 0.000(0)<br>0.122(13)  | -0.020(6)    | 0.030(0)     | -0.005(7)    |
| C22<br>C23' | 0.060 (9)            | 0.041(7)<br>0.049(8) | 0.122(13)<br>0.114(18) | -0.020(0)    | -0.002(10)   | 0.005(7)     |
| C24'        | 0.032(6)             | 0.044(10)            | 0.093(14)              | -0.013(6)    | -0.002(10)   | -0.015(9)    |
| C25'        | 0.052(0)             | 0.077(11)            | 0.093(14)              | -0.008(7)    | -0.022(9)    | -0.057(10)   |
| C26'        | 0.000(9)             | 0.066(10)            | 0.089(10)              | 0.007(7)     | -0.037(8)    | -0.041(8)    |
| C27         | 0.0413(19)           | 0.000(10)            | 0.009(10)              | -0.0143(16)  | -0.0057(16)  | -0.0157(17)  |
| C28         | 0.056(2)             | 0.050(2)<br>0.055(2) | 0.051(2)<br>0.065(3)   | -0.022(2)    | -0.013(2)    | -0.013(2)    |
| C29         | 0.050(2)<br>0.065(3) | 0.055(2)<br>0.065(3) | 0.009(3)               | -0.032(2)    | -0.003(2)    | -0.023(2)    |
| C30         | 0.003(3)<br>0.048(2) | 0.003(3)             | 0.079(3)               | -0.024(2)    | -0.007(2)    | -0.033(3)    |
| C31         | 0.051(2)             | 0.064(3)             | 0.078(3)               | -0.009(2)    | -0.020(2)    | -0.028(2)    |
| C32         | 0.001(2)<br>0.045(2) | 0.054(2)             | 0.070(3)               | -0.0136(18)  | -0.0110(18)  | -0.017(2)    |
| C33         | 0.0425(19)           | 0.047(2)             | 0.053(2)               | -0.0088(16)  | -0.0129(16)  | -0.0144(17)  |
| C34         | 0.047(2)             | 0.056(2)             | 0.059(2)               | -0.0151(19)  | -0.0067(18)  | -0.0150(19)  |
| C35         | 0.047(2)             | 0.050(2)<br>0.069(3) | 0.072(3)               | -0.009(2)    | -0.009(2)    | -0.027(2)    |
| C36         | 0.058(3)             | 0.055(3)             | 0.072(3)               | -0.002(2)    | -0.016(2)    | -0.026(2)    |
| C37         | 0.072(3)             | 0.045(2)             | 0.068(3)               | -0.011(2)    | -0.021(2)    | -0.013(2)    |
| C38         | 0.056(2)             | 0.046(2)             | 0.053(2)               | -0.0129(18)  | -0.0086(18)  | -0.0117(17)  |
| C39         | 0.045(2)             | 0.045(2)             | 0.066(3)               | -0.0146(17)  | -0.0162(18)  | -0.0076(18)  |
| C40         | 0.012(2)<br>0.052(2) | 0.019(2)<br>0.050(2) | 0.069(3)               | -0.0177(19)  | -0.017(2)    | -0.012(2)    |
| C41         | 0.052(2)<br>0.060(3) | 0.050(2)             | 0.009(3)               | -0.016(2)    | -0.031(3)    | -0.017(2)    |
| C42         | 0.000(3)<br>0.055(3) | 0.020(2)<br>0.048(2) | 0.109 (4)              | -0.018(2)    | -0.027(3)    | -0.009(3)    |
| C43         | 0.000(2)             | 0.061(3)             | 0.092(4)               | -0.016(2)    | -0.011(2)    | -0.010(3)    |
| C44         | 0.043(2)             | 0.054(2)             | 0.072(3)               | -0.0133(18)  | -0.0118(19)  | -0.010(2)    |
| Fe2         | 0.0415(3)            | 0.0400(3)            | 0.0470(3)              | -0.0110(2)   | -0.0083(2)   | -0.0113(2)   |
| N51         | 0.0442(17)           | 0.0418(17)           | 0.0522(18)             | -0.0120(13)  | -0.0107(14)  | -0.0112(14)  |
| N52         | 0.0434(17)           | 0.0402 (17)          | 0.0537 (18)            | -0.0081(13)  | -0.0094(14)  | -0.0128(14)  |
| N53         | 0.0430 (16)          | 0.0405 (16)          | 0.0513 (17)            | -0.0103(13)  | -0.0085(13)  | -0.0135(13)  |
| N54         | 0.0447 (17)          | 0.0420 (17)          | 0.0517 (18)            | -0.0118(14)  | -0.0066 (14) | -0.0127(14)  |
| C51         | 0.048 (2)            | 0.044 (2)            | 0.053 (2)              | -0.0151 (17) | -0.0072(17)  | -0.0126(17)  |
|             | ·····                |                      | ···· (=)               |              | ···· (-·)    |              |

| C52 | 0.046 (2)   | 0.043 (2)   | 0.055 (2) | -0.0117 (16) | -0.0063 (17) | -0.0149 (17) |
|-----|-------------|-------------|-----------|--------------|--------------|--------------|
| C53 | 0.054 (2)   | 0.044 (2)   | 0.069 (3) | -0.0117 (18) | -0.008 (2)   | -0.0197 (19) |
| C54 | 0.048 (2)   | 0.044 (2)   | 0.079 (3) | -0.0064 (18) | -0.013 (2)   | -0.020 (2)   |
| C55 | 0.044 (2)   | 0.0409 (19) | 0.055 (2) | -0.0064 (16) | -0.0122 (17) | -0.0111 (16) |
| C56 | 0.045 (2)   | 0.042 (2)   | 0.054 (2) | -0.0068 (16) | -0.0108 (17) | -0.0121 (17) |
| C57 | 0.044 (2)   | 0.042 (2)   | 0.056 (2) | -0.0096 (16) | -0.0117 (17) | -0.0114 (17) |
| C58 | 0.046 (2)   | 0.052 (2)   | 0.067 (3) | -0.0111 (18) | -0.0182 (19) | -0.017 (2)   |
| C59 | 0.048 (2)   | 0.047 (2)   | 0.067 (3) | -0.0108 (17) | -0.0152 (19) | -0.0172 (19) |
| C60 | 0.048 (2)   | 0.0411 (19) | 0.055 (2) | -0.0115 (16) | -0.0121 (17) | -0.0129 (16) |
| C61 | 0.045 (2)   | 0.045 (2)   | 0.052 (2) | -0.0121 (16) | -0.0095 (16) | -0.0150 (17) |
| C62 | 0.047 (2)   | 0.0420 (19) | 0.053 (2) | -0.0146 (16) | -0.0119 (16) | -0.0121 (16) |
| C63 | 0.050 (2)   | 0.040 (2)   | 0.065 (3) | -0.0111 (17) | -0.0121 (19) | -0.0128 (18) |
| C64 | 0.043 (2)   | 0.045 (2)   | 0.069 (3) | -0.0081 (17) | -0.0130 (18) | -0.0157 (19) |
| C65 | 0.043 (2)   | 0.045 (2)   | 0.053 (2) | -0.0070 (16) | -0.0104 (16) | -0.0142 (17) |
| C66 | 0.044 (2)   | 0.046 (2)   | 0.052 (2) | -0.0115 (17) | -0.0095 (16) | -0.0134 (17) |
| C67 | 0.044 (2)   | 0.045 (2)   | 0.054 (2) | -0.0101 (16) | -0.0059 (16) | -0.0137 (17) |
| C68 | 0.044 (2)   | 0.048 (2)   | 0.072 (3) | -0.0116 (17) | -0.0057 (19) | -0.019 (2)   |
| C69 | 0.046 (2)   | 0.048 (2)   | 0.076 (3) | -0.0191 (18) | -0.0074 (19) | -0.017 (2)   |
| C70 | 0.043 (2)   | 0.0414 (19) | 0.057 (2) | -0.0135 (16) | -0.0060 (16) | -0.0136 (16) |
| C71 | 0.046 (2)   | 0.0394 (19) | 0.057 (2) | -0.0128 (16) | -0.0069 (17) | -0.0118 (16) |
| C72 | 0.057 (2)   | 0.047 (2)   | 0.055 (2) | -0.0181 (19) | -0.0052 (18) | -0.0125 (18) |
| C73 | 0.065 (3)   | 0.045 (2)   | 0.069 (3) | -0.022 (2)   | -0.003 (2)   | -0.014 (2)   |
| C74 | 0.058 (3)   | 0.048 (2)   | 0.085 (3) | -0.020 (2)   | -0.011 (2)   | -0.020 (2)   |
| C75 | 0.067 (3)   | 0.058 (3)   | 0.074 (3) | -0.019 (2)   | -0.023 (2)   | -0.019 (2)   |
| C76 | 0.061 (3)   | 0.047 (2)   | 0.065 (3) | -0.020 (2)   | -0.017 (2)   | -0.0085 (19) |
| C77 | 0.049 (2)   | 0.048 (2)   | 0.071 (3) | -0.0086 (18) | -0.017 (2)   | -0.019 (2)   |
| C78 | 0.060 (3)   | 0.110 (5)   | 0.073 (3) | 0.003 (3)    | -0.010 (3)   | -0.024 (3)   |
| C79 | 0.052 (3)   | 0.142 (7)   | 0.102 (5) | 0.010 (4)    | -0.002 (3)   | -0.047 (5)   |
| C80 | 0.059 (3)   | 0.073 (4)   | 0.134 (6) | 0.010 (3)    | -0.028 (4)   | -0.030 (4)   |
| C81 | 0.057 (3)   | 0.084 (4)   | 0.146 (7) | -0.003 (3)   | -0.027 (4)   | 0.028 (4)    |
| C82 | 0.051 (3)   | 0.080 (4)   | 0.108 (5) | -0.005 (3)   | -0.015 (3)   | 0.020 (3)    |
| C83 | 0.045 (2)   | 0.044 (2)   | 0.054 (2) | -0.0108 (16) | -0.0116 (17) | -0.0153 (17) |
| C84 | 0.053 (2)   | 0.047 (2)   | 0.053 (2) | -0.0129 (18) | -0.0118 (18) | -0.0126 (17) |
| C85 | 0.062 (3)   | 0.049 (2)   | 0.065 (3) | -0.014 (2)   | -0.018 (2)   | -0.019 (2)   |
| C86 | 0.054 (2)   | 0.050 (2)   | 0.084 (3) | -0.0174 (19) | -0.018 (2)   | -0.020 (2)   |
| C87 | 0.047 (2)   | 0.055 (2)   | 0.080 (3) | -0.0195 (19) | -0.008 (2)   | -0.018 (2)   |
| C88 | 0.046 (2)   | 0.052 (2)   | 0.062 (2) | -0.0142 (18) | -0.0060 (18) | -0.0202 (19) |
| C89 | 0.0382 (19) | 0.044 (2)   | 0.068 (3) | -0.0117 (16) | -0.0070 (17) | -0.0141 (18) |
| C90 | 0.049 (2)   | 0.052 (2)   | 0.070 (3) | -0.0145 (19) | -0.013 (2)   | -0.015 (2)   |
| C91 | 0.045 (2)   | 0.059 (3)   | 0.096 (4) | -0.010 (2)   | -0.021 (2)   | -0.011 (3)   |
| C92 | 0.043 (2)   | 0.062 (3)   | 0.107 (4) | -0.004 (2)   | -0.009 (3)   | -0.024 (3)   |
| C93 | 0.053 (3)   | 0.061 (3)   | 0.095 (4) | -0.008 (2)   | -0.006 (2)   | -0.033 (3)   |
| C94 | 0.045 (2)   | 0.056 (2)   | 0.075 (3) | -0.0114 (19) | -0.007 (2)   | -0.026 (2)   |

# Geometric parameters (Å, °)

| <br>Fe1—O1 | 1.766 (3) | C41—H41 | 0.9500    |
|------------|-----------|---------|-----------|
| Fe1—N3     | 2.069 (3) | C42—C43 | 1.374 (8) |

| Fe1—N2               | 2 078 (3)            | C42—H42           | 0.9500               |
|----------------------|----------------------|-------------------|----------------------|
| Fe1—N1               | 2.079 (3)            | C43—C44           | 1 402 (6)            |
| Fe1—N4               | 2,084 (3)            | C43—H43           | 0.9500               |
| $\Omega_1$ —Fe?      | 1 757 (3)            | C44—H44           | 0.9500               |
| N1                   | 1.757(5)<br>1.370(5) | Fe2—N51           | 2.078(3)             |
| N1-C2                | 1.370(5)             | Fe2N53            | 2.070(3)             |
| N2C10                | 1.372(5)<br>1.370(5) | Fe2 = N53         | 2.000(3)<br>2.084(3) |
| N2 C7                | 1 301 (5)            | $F_{e2} = N52$    | 2.00+(3)<br>2.001(3) |
| N3 C15               | 1.376 (5)            | N51 C55           | 1.382(5)             |
| N3 C12               | 1.376 (5)            | N51 C52           | 1.302(5)<br>1.384(5) |
| N4 C20               | 1.380(5)             | N52 C60           | 1.30+(5)<br>1.371(5) |
| N4 C17               | 1.370(3)<br>1 384(5) | N52 C57           | 1.371(5)<br>1.374(5) |
| $\Gamma_{1} = C_{1}$ | 1.304(5)<br>1.202(6) | N52 C65           | 1.374(3)<br>1.272(5) |
| $C_1 = C_2$          | 1.393 (0)            | N53 C62           | 1.373(3)<br>1.370(5) |
| $C_1 = C_{20}$       | 1.405 (6)            | N54 C70           | 1.379(3)<br>1.290(5) |
| $C_1 = C_2$          | 1.463(0)<br>1.423(6) | N54 C67           | 1.300(3)<br>1.291(5) |
| $C_2 = C_3$          | 1.435(0)<br>1.254(6) | $N_{34} = C_{0}$  | 1.301(3)<br>1.202(6) |
| $C_3 = U_2$          | 1.334 (0)            | $C_{21} = C_{10}$ | 1.393 (0)            |
| C3—H3                | 0.9500               | C51-C52           | 1.40/(6)             |
|                      | 1.454 (0)            | C51—C71           | 1.494 (5)            |
| C4—H4                | 0.9500               | C52—C53           | 1.428 (6)            |
| C5—C6                | 1.397 (6)            | C53—C54           | 1.355 (6)            |
|                      | 1.396 (6)            | С53—Н53           | 0.9500               |
| C6-C27               | 1.497 (5)            | C54—C55           | 1.432 (6)            |
| С7—С8                | 1.429 (6)            | С54—Н54           | 0.9500               |
| C8—C9                | 1.348 (6)            | C55—C56           | 1.398 (6)            |
| С8—Н8                | 0.9500               | C56—C57           | 1.399 (6)            |
| C9—C10               | 1.445 (6)            | C56—C77           | 1.494 (6)            |
| С9—Н9                | 0.9500               | C57—C58           | 1.440 (6)            |
| C10—C11              | 1.405 (6)            | C58—C59           | 1.347 (6)            |
| C11—C12              | 1.395 (6)            | C58—H58           | 0.9500               |
| C11—C33              | 1.485 (6)            | C59—C60           | 1.436 (6)            |
| C12—C13              | 1.437 (6)            | С59—Н59           | 0.9500               |
| C13—C14              | 1.352 (6)            | C60—C61           | 1.396 (6)            |
| C13—H13              | 0.9500               | C61—C62           | 1.402 (6)            |
| C14—C15              | 1.435 (5)            | C61—C83           | 1.491 (6)            |
| C14—H14              | 0.9500               | C62—C63           | 1.440 (6)            |
| C15—C16              | 1.405 (6)            | C63—C64           | 1.359 (6)            |
| C16—C17              | 1.394 (6)            | С63—Н63           | 0.9500               |
| C16—C39              | 1.496 (5)            | C64—C65           | 1.442 (6)            |
| C17—C18              | 1.437 (6)            | С64—Н64           | 0.9500               |
| C18—C19              | 1.364 (6)            | C65—C66           | 1.404 (6)            |
| C18—H18              | 0.9500               | C66—C67           | 1.401 (6)            |
| C19—C20              | 1.435 (6)            | C66—C89           | 1.491 (5)            |
| C19—H19              | 0.9500               | C67—C68           | 1.433 (6)            |
| C21—C22′             | 1.337 (14)           | C68—C69           | 1.351 (6)            |
| C21—C26              | 1.357 (13)           | C68—H68           | 0.9500               |
| C21—C22              | 1.415 (11)           | C69—C70           | 1.436 (6)            |
| C21—C26′             | 1.441 (15)           | С69—Н69           | 0.9500               |

| C22—C23                              | 1.400 (14)  | C71—C76           | 1.377 (6)            |
|--------------------------------------|-------------|-------------------|----------------------|
| С22—Н22                              | 0.9500      | C71—C72           | 1.393 (6)            |
| C23—C24                              | 1.389 (15)  | C72—C73           | 1.400 (6)            |
| С23—Н23                              | 0.9500      | C72—H72           | 0.9500               |
| C24—C25                              | 1.369 (15)  | C73—C74           | 1.368 (7)            |
| C24—H24                              | 0.9500      | C73—H73           | 0.9500               |
| $C_{25}$ $C_{26}$                    | 1 387 (14)  | C74-C75           | 1.385(7)             |
| С25—Н25                              | 0.9500      | C74—H74           | 0.9500               |
| C26—H26                              | 0.9500      | C75—C76           | 1 392 (6)            |
| $C^{22'}$ $C^{23'}$                  | 1 386 (16)  | C75—H75           | 0.9500               |
| C22'-H22'                            | 0.9500      | C76—H76           | 0.9500               |
| C23'-C24'                            | 1 394 (17)  | C77—C82           | 1.342(7)             |
| C23'_H23'                            | 0.9500      | C77 - C78         | 1.312(7)<br>1 388(8) |
| $C_{24} - C_{25}$                    | 1 370 (16)  | C78-C79           | 1 392 (8)            |
| $C_{24'}$ H24'                       | 0.9500      | C78—H78           | 0.9500               |
| $C_{24} = 1124$<br>$C_{25} = C_{26}$ | 1403(15)    | C79-C80           | 1.383(10)            |
| C25'—H25'                            | 0.9500      | C79—H79           | 0.9500               |
| C26'_H26'                            | 0.9500      | $C_{80}$ $C_{81}$ | 1.329(10)            |
| $C_{20} = 1120$                      | 1 402 (6)   | C80—H80           | 0.9500               |
| $C_{27}$ $C_{32}$                    | 1.402 (6)   | C81-C82           | 1 390 (8)            |
| $C_{28}$ $C_{29}$                    | 1 391 (6)   | C81—H81           | 0.9500               |
| C28—H28                              | 0.9500      | C82—H82           | 0.9500               |
| $C_{29}$ $C_{30}$                    | 1 383 (8)   | C83-C88           | 1 394 (6)            |
| C29—H29                              | 0.9500      | $C_{83}$ $C_{84}$ | 1 397 (6)            |
| $C_{30}$ $C_{31}$                    | 1.365(7)    | C84-C85           | 1.397 (6)            |
| $C_{30}$ H30                         | 0.9500      | C84—H84           | 0.9500               |
| $C_{31} - C_{32}$                    | 1 388 (6)   | C85-C86           | 1.388(7)             |
| C31—H31                              | 0.9500      | C85—H85           | 0.9500               |
| C32—H32                              | 0.9500      | C86—C87           | 1,380(7)             |
| C33—C34                              | 1.389(6)    | C86—H86           | 0.9500               |
| C33—C38                              | 1.398 (6)   | C87—C88           | 1.382 (6)            |
| C34—C35                              | 1.385 (6)   | C87—H87           | 0.9500               |
| C34—H34                              | 0.9500      | C88—H88           | 0.9500               |
| C35—C36                              | 1.378 (7)   | C89—C90           | 1.388 (6)            |
| С35—Н35                              | 0.9500      | C89—C94           | 1.395 (6)            |
| C36—C37                              | 1.387 (7)   | C90—C91           | 1.380 (6)            |
| С36—Н36                              | 0.9500      | C90—H90           | 0.9500               |
| C37—C38                              | 1.395 (6)   | C91—C92           | 1.376 (8)            |
| С37—Н37                              | 0.9500      | C91—H91           | 0.9500               |
| С38—Н38                              | 0.9500      | C92—C93           | 1.383 (8)            |
| C39—C44                              | 1.389 (6)   | C92—H92           | 0.9500               |
| C39—C40                              | 1.397 (6)   | C93—C94           | 1.391 (6)            |
| C40—C41                              | 1.387 (6)   | C93—H93           | 0.9500               |
| C40—H40                              | 0.9500      | C94—H94           | 0.9500               |
| C41—C42                              | 1.371 (8)   |                   | -                    |
|                                      | × /         |                   |                      |
| O1—Fe1—N3                            | 103.31 (13) | C41—C42—C43       | 120.1 (5)            |
| O1—Fe1—N2                            | 102.11 (13) | C41—C42—H42       | 119.9                |
|                                      |             |                   |                      |

| N3—Fe1—N2                 | 87.38 (13)           | C43—C42—H42                | 119.9                    |
|---------------------------|----------------------|----------------------------|--------------------------|
| 01—Fe1—N1                 | 103.37 (13)          | C42—C43—C44                | 120.4 (5)                |
| N3—Fe1—N1                 | 153.32 (14)          | C42—C43—H43                | 119.8                    |
| N2—Fe1—N1                 | 87.14 (13)           | C44—C43—H43                | 119.8                    |
| 01—Fe1—N4                 | 102.12(13)           | $C_{39}$ $C_{44}$ $C_{43}$ | 119.7 (5)                |
| N3—Fe1—N4                 | 87 27 (13)           | C39—C44—H44                | 120.2                    |
| N2—Fe1—N4                 | 15577(13)            | C43 - C44 - H44            | 120.2                    |
| N1—Fe1—N4                 | 87 10 (13)           | $\Omega_1$ —Fe2—N51        | 103 46 (13)              |
| $Fe^2 = \Omega 1 = Fe^1$  | 177 71 (18)          | $01_{Ee}^{2}$ N51          | 103.40(13)<br>104.50(13) |
| $C_5 \text{ N1} C_2$      | 106.6 (3)            | $N51 E_{P2} N53$           | 152.04(13)               |
| $C_5 = N_1 = C_2$         | 126.6 (3)            | 01  Fe 2  N54              | 102.04(13)<br>103.78(13) |
| $C_2 = N_1 = F_{e_1}$     | 120.0(3)<br>125.4(3) | $N51 = F_{2} = N54$        | 86.63 (13)               |
| $C_2 = N_1 = PC_1$        | 125.4(5)<br>106.2(3) | $N53 = F_{0}2 = N54$       | 86.85 (13)               |
| $C_{10} = N_2 = C_7$      | 100.2(3)<br>123.3(3) | $n_{33} - r_{22} - n_{34}$ | 103 63 (13)              |
| $C_{10}$ $N_{2}$ $E_{c1}$ | 125.5(5)<br>125.1(2) | $N51 E_2 N52$              | 103.03(13)               |
| $C_{1} = N_{2} = C_{12}$  | 123.1(3)<br>106.1(2) | N51 - Fe2 - N52            | 86.99 (13)               |
| C15 - N3 - C12            | 100.1(3)             | N55 - Fe2 - N52            | 80.40 (13)               |
| C15-N3-Fei                | 127.4 (3)            | N54—Fe2—N52                | 152.59 (13)              |
| C12—N3—Fel                | 125.6 (3)            | C55—N51—C52                | 105.7 (3)                |
| C20—N4—C17                | 106.8 (3)            | C55—N51—Fe2                | 126.5 (3)                |
| C20—N4—Fel                | 124.3 (3)            | C52—N51—Fe2                | 124.8 (3)                |
| C17—N4—Fel                | 125.4 (3)            | C60—N52—C57                | 106.7 (3)                |
| C2—C1—C20                 | 124.0 (4)            | C60—N52—Fe2                | 126.3 (3)                |
| C2—C1—C21                 | 116.8 (4)            | C57—N52—Fe2                | 126.2 (3)                |
| C20—C1—C21                | 119.2 (4)            | C65—N53—C62                | 106.1 (3)                |
| N1—C2—C1                  | 126.6 (4)            | C65—N53—Fe2                | 126.3 (3)                |
| N1—C2—C3                  | 109.5 (4)            | C62—N53—Fe2                | 124.7 (3)                |
| C1—C2—C3                  | 123.9 (4)            | C70—N54—C67                | 106.0 (3)                |
| C4—C3—C2                  | 107.2 (4)            | C70—N54—Fe2                | 125.3 (3)                |
| С4—С3—Н3                  | 126.4                | C67—N54—Fe2                | 127.4 (3)                |
| С2—С3—Н3                  | 126.4                | C70—C51—C52                | 124.2 (4)                |
| C3—C4—C5                  | 107.0 (4)            | C70—C51—C71                | 117.5 (4)                |
| C3—C4—H4                  | 126.5                | C52—C51—C71                | 118.2 (4)                |
| С5—С4—Н4                  | 126.5                | N51—C52—C51                | 125.6 (4)                |
| N1—C5—C6                  | 126.0 (4)            | N51—C52—C53                | 109.8 (4)                |
| N1—C5—C4                  | 109.6 (4)            | C51—C52—C53                | 124.6 (4)                |
| C6—C5—C4                  | 124.3 (4)            | C54—C53—C52                | 107.6 (4)                |
| C7—C6—C5                  | 124.9 (4)            | С54—С53—Н53                | 126.2                    |
| C7—C6—C27                 | 117.9 (4)            | С52—С53—Н53                | 126.2                    |
| C5—C6—C27                 | 117.2 (4)            | C53—C54—C55                | 106.9 (4)                |
| N2—C7—C6                  | 125.0 (4)            | С53—С54—Н54                | 126.5                    |
| N2-C7-C8                  | 109.3 (4)            | С55—С54—Н54                | 126.5                    |
| C6—C7—C8                  | 125.6 (4)            | N51—C55—C56                | 125.2 (4)                |
| C9—C8—C7                  | 107.9 (4)            | N51—C55—C54                | 110.0 (4)                |
| C9—C8—H8                  | 126.1                | C56—C55—C54                | 124.8 (4)                |
| C7—C8—H8                  | 126.1                | C55—C56—C57                | 124.8 (4)                |
| C8 - C9 - C10             | 106.9 (4)            | C55—C56—C77                | 118.0 (4)                |
| C8—C9—H9                  | 126.6                | C57—C56—C77                | 117 2 (4)                |
| С10—С9—Н9                 | 126.6                | N52—C57—C56                | 1262(1)                  |
|                           | 120.0                |                            | 120.2 (7)                |

| N2—C10—C11    | 125.5 (4)  | N52—C57—C58 | 109.4 (4) |
|---------------|------------|-------------|-----------|
| N2—C10—C9     | 109.8 (3)  | C56—C57—C58 | 124.3 (4) |
| C11—C10—C9    | 124.7 (4)  | C59—C58—C57 | 107.0 (4) |
| C12—C11—C10   | 124.4 (4)  | С59—С58—Н58 | 126.5     |
| C12—C11—C33   | 117.1 (4)  | С57—С58—Н58 | 126.5     |
| C10—C11—C33   | 118.4 (4)  | C58—C59—C60 | 107.6 (4) |
| N3—C12—C11    | 125.4 (4)  | С58—С59—Н59 | 126.2     |
| N3—C12—C13    | 109.4 (4)  | С60—С59—Н59 | 126.2     |
| C11—C12—C13   | 125.2 (4)  | N52—C60—C61 | 125.8 (4) |
| C14—C13—C12   | 107.3 (4)  | N52—C60—C59 | 109.3 (3) |
| C14—C13—H13   | 126.3      | C61—C60—C59 | 124.9 (4) |
| C12—C13—H13   | 126.3      | C60—C61—C62 | 124.3 (4) |
| C13—C14—C15   | 107.3 (4)  | C60—C61—C83 | 117.8 (4) |
| C13—C14—H14   | 126.3      | C62—C61—C83 | 117.9 (4) |
| C15—C14—H14   | 126.3      | N53—C62—C61 | 125.5 (4) |
| N3—C15—C16    | 125.3 (4)  | N53—C62—C63 | 110.0 (3) |
| N3—C15—C14    | 109.8 (3)  | C61—C62—C63 | 124.3 (4) |
| C16—C15—C14   | 124.9 (4)  | C64—C63—C62 | 106.8 (4) |
| C17—C16—C15   | 125.0 (4)  | С64—С63—Н63 | 126.6     |
| C17—C16—C39   | 117.3 (4)  | С62—С63—Н63 | 126.6     |
| C15—C16—C39   | 117.7 (4)  | C63—C64—C65 | 107.1 (4) |
| N4—C17—C16    | 125.3 (4)  | С63—С64—Н64 | 126.4     |
| N4—C17—C18    | 109.2 (3)  | С65—С64—Н64 | 126.4     |
| C16—C17—C18   | 125.5 (4)  | N53—C65—C66 | 126.0 (4) |
| C19—C18—C17   | 107.1 (4)  | N53—C65—C64 | 109.9 (4) |
| C19—C18—H18   | 126.4      | C66—C65—C64 | 124.1 (4) |
| С17—С18—Н18   | 126.4      | C67—C66—C65 | 124.4 (4) |
| C18—C19—C20   | 107.2 (4)  | C67—C66—C89 | 118.3 (4) |
| С18—С19—Н19   | 126.4      | C65—C66—C89 | 117.4 (4) |
| С20—С19—Н19   | 126.4      | N54—C67—C66 | 125.3 (4) |
| N4—C20—C1     | 126.0 (4)  | N54—C67—C68 | 110.0 (4) |
| N4—C20—C19    | 109.7 (4)  | C66—C67—C68 | 124.6 (4) |
| C1—C20—C19    | 124.3 (4)  | C69—C68—C67 | 106.8 (4) |
| C26—C21—C22   | 116.4 (9)  | С69—С68—Н68 | 126.6     |
| C22'—C21—C26' | 119.0 (10) | С67—С68—Н68 | 126.6     |
| C22′—C21—C1   | 124.5 (8)  | C68—C69—C70 | 107.8 (4) |
| C26—C21—C1    | 126.1 (7)  | С68—С69—Н69 | 126.1     |
| C22—C21—C1    | 117.5 (6)  | С70—С69—Н69 | 126.1     |
| C26′—C21—C1   | 116.5 (8)  | N54—C70—C51 | 125.9 (4) |
| C23—C22—C21   | 122.0 (11) | N54—C70—C69 | 109.3 (3) |
| С23—С22—Н22   | 119.0      | C51—C70—C69 | 124.7 (4) |
| С21—С22—Н22   | 119.0      | C76—C71—C72 | 118.9 (4) |
| C24—C23—C22   | 119.5 (15) | C76—C71—C51 | 119.2 (4) |
| С24—С23—Н23   | 120.3      | C72—C71—C51 | 121.8 (4) |
| С22—С23—Н23   | 120.3      | C71—C72—C73 | 119.7 (4) |
| C25—C24—C23   | 117.4 (16) | С71—С72—Н72 | 120.1     |
| C25—C24—H24   | 121.3      | С73—С72—Н72 | 120.1     |
| C23—C24—H24   | 121.3      | C74—C73—C72 | 120.3 (4) |
|               |            |             | × /       |

| C24—C25—C26                                                                                                                   | 122.6 (13)          | С74—С73—Н73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.9             |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| С24—С25—Н25                                                                                                                   | 118.7               | С72—С73—Н73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.9             |
| C26—C25—H25                                                                                                                   | 118.7               | C73—C74—C75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.8 (4)         |
| C21—C26—C25                                                                                                                   | 121.6 (12)          | С73—С74—Н74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.6             |
| C21—C26—H26                                                                                                                   | 119.2               | C75—C74—H74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.6             |
| $C_{25}$ $C_{26}$ $H_{26}$                                                                                                    | 119.2               | C74 - C75 - C76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 119.0<br>118.7(5) |
| $C_{23} C_{20} H_{20}$                                                                                                        | 119.2<br>121 7 (15) | C74 C75 H75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.7             |
| $C_{21} = C_{22} = C_{23}$                                                                                                    | 110.1               | C76 C75 H75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.7             |
| $C_{21} = C_{22} = H_{22}$                                                                                                    | 119.1               | $C_{10} - C_{13} - H_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.7             |
| $C_{23} = C_{22} = H_{22}$                                                                                                    | 119.1               | C/1 - C/0 - C/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 121.7 (4)         |
| $C_{22} = C_{23} = C_{24}$                                                                                                    | 118.6 (19)          | C/I_C/6_H/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.2             |
| С22′—С23′—Н23′                                                                                                                | 120.7               | С/5—С/6—Н/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.2             |
| C24'—C23'—H23'                                                                                                                | 120.7               | C82—C77—C78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 117.3 (5)         |
| C25'—C24'—C23'                                                                                                                | 122 (2)             | C82—C77—C56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 121.6 (5)         |
| C25'—C24'—H24'                                                                                                                | 119.0               | C78—C77—C56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 121.2 (5)         |
| C23'—C24'—H24'                                                                                                                | 119.0               | С77—С78—С79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.5 (6)         |
| C24'—C25'—C26'                                                                                                                | 117.7 (18)          | С77—С78—Н78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.7             |
| C24'—C25'—H25'                                                                                                                | 121.1               | С79—С78—Н78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.7             |
| C26'—C25'—H25'                                                                                                                | 121.1               | C80—C79—C78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.1 (6)         |
| C25'—C26'—C21                                                                                                                 | 119.9 (15)          | С80—С79—Н79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.0             |
| C25'—C26'—H26'                                                                                                                | 120.1               | С78—С79—Н79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.0             |
| $C_{21} - C_{26} - H_{26}$                                                                                                    | 120.1               | C81 - C80 - C79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 118 9 (6)         |
| $C_{32}$ $C_{27}$ $C_{28}$                                                                                                    | 118.2(4)            | $C_{81}$ $C_{80}$ $H_{80}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.6             |
| $C_{32} = C_{27} = C_{20}$                                                                                                    | 120.4(4)            | C79 $C80$ $H80$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.0             |
| $C_{32} - C_{27} - C_{6}$                                                                                                     | 120.4(4)            | $C_{10}^{20} = C_{10}^{20} = C_{10}^{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.0             |
| (28 - (27 - (0 - (27 - (0 - (27 - (0 - (27 - (0 - (27 - (0 - (27 - (0 - (27 - (0 - (27 - (0 - (0 - (0 - (0 - (0 - (0 - (0 - ( | 121.4 (4)           | $C_{80} = C_{81} = C_{82}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.8 (0)         |
| C29—C28—C27                                                                                                                   | 119.9 (4)           | C80—C81—H81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.6             |
| C29—C28—H28                                                                                                                   | 120.0               | C82—C81—H81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.6             |
| C27—C28—H28                                                                                                                   | 120.0               | C77—C82—C81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 122.4 (6)         |
| C30—C29—C28                                                                                                                   | 120.9 (5)           | С77—С82—Н82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118.8             |
| С30—С29—Н29                                                                                                                   | 119.6               | C81—C82—H82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118.8             |
| С28—С29—Н29                                                                                                                   | 119.6               | C88—C83—C84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118.5 (4)         |
| C31—C30—C29                                                                                                                   | 119.6 (4)           | C88—C83—C61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.3 (4)         |
| С31—С30—Н30                                                                                                                   | 120.2               | C84—C83—C61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 121.3 (4)         |
| С29—С30—Н30                                                                                                                   | 120.2               | C85—C84—C83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.4 (4)         |
| C30—C31—C32                                                                                                                   | 120.8 (5)           | С85—С84—Н84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.8             |
| С30—С31—Н31                                                                                                                   | 119.6               | С83—С84—Н84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.8             |
| C32—C31—H31                                                                                                                   | 119.6               | C84—C85—C86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.1 (4)         |
| $C_{31} - C_{32} - C_{27}$                                                                                                    | 120 5 (4)           | C84—C85—H85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.9             |
| $C_{31} = C_{32} = H_{32}$                                                                                                    | 119.7               | C86-C85-H85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.9             |
| $C_{27}$ $C_{32}$ $H_{32}$                                                                                                    | 110.7               | $C_{87}$ $C_{86}$ $C_{85}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.1(4)          |
| $C_2 / - C_{32} - M_{32}$                                                                                                     | 119.7               | $C_{87} = C_{80} = C_{85}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.1 (4)         |
| $C_{34} = C_{33} = C_{38}$                                                                                                    | 110.0 (4)           | $C_0 = C_0 $ | 120.0             |
| C34—C33—C11                                                                                                                   | 119.9 (4)           | C85—C86—H86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.0             |
| C38—C33—C11                                                                                                                   | 122.1 (4)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 119.8 (4)         |
| C35—C34—C33                                                                                                                   | 121.7 (4)           | C86—C87—H87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.1             |
| C35—C34—H34                                                                                                                   | 119.2               | С88—С87—Н87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.1             |
| C33—C34—H34                                                                                                                   | 119.2               | C87—C88—C83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 121.1 (4)         |
| C36—C35—C34                                                                                                                   | 119.7 (5)           | C87—C88—H88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.5             |
| С36—С35—Н35                                                                                                                   | 120.2               | C83—C88—H88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.5             |
| С34—С35—Н35                                                                                                                   | 120.2               | С90—С89—С94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118.5 (4)         |

| C35—C36—C37 | 120.2 (4) | C90—C89—C66 | 122.6 (4) |
|-------------|-----------|-------------|-----------|
| С35—С36—Н36 | 119.9     | C94—C89—C66 | 118.9 (4) |
| С37—С36—Н36 | 119.9     | C91—C90—C89 | 120.8 (5) |
| C36—C37—C38 | 119.8 (4) | С91—С90—Н90 | 119.6     |
| С36—С37—Н37 | 120.1     | С89—С90—Н90 | 119.6     |
| С38—С37—Н37 | 120.1     | C92—C91—C90 | 120.5 (5) |
| C37—C38—C33 | 120.7 (4) | С92—С91—Н91 | 119.8     |
| С37—С38—Н38 | 119.7     | С90—С91—Н91 | 119.8     |
| С33—С38—Н38 | 119.7     | C91—C92—C93 | 119.8 (5) |
| C44—C39—C40 | 119.0 (4) | С91—С92—Н92 | 120.1     |
| C44—C39—C16 | 120.3 (4) | С93—С92—Н92 | 120.1     |
| C40—C39—C16 | 120.7 (4) | С92—С93—С94 | 119.9 (5) |
| C41—C40—C39 | 120.4 (5) | С92—С93—Н93 | 120.1     |
| C41—C40—H40 | 119.8     | С94—С93—Н93 | 120.1     |
| C39—C40—H40 | 119.8     | C93—C94—C89 | 120.6 (5) |
| C42—C41—C40 | 120.4 (5) | С93—С94—Н94 | 119.7     |
| C42—C41—H41 | 119.8     | С89—С94—Н94 | 119.7     |
| C40—C41—H41 | 119.8     |             |           |
|             |           |             |           |