

Received 17 July 2019 Accepted 20 July 2019

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; hybrid solid; caesium; rubidium; trigonal prism.

CCDC references: 1941895; 1941894

Supporting information: this article has supporting information at journals.iucr.org/e

Syntheses and structures of piperazin-1-ium ABr₂ (A = Cs or Rb): hybrid solids containing 'curtain wall' layers of face- and edge-sharing ABr₆ trigonal prisms

Kirstie A. Rickaby,^a Alexandra M. Z. Slawin^b and William T. A. Harrison^a*

^aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and ^bDepartment of Chemistry, University of St Andrews, St Andrews KY16 9ST, Scotland. *Correspondence e-mail: w.harrison@abdn.ac.uk

The isostructural title compounds, poly[piperazin-1-ium [di- μ -bromidocaesium]], {(C₄H₁₁N₂)[CsBr₂]}_n, and poly[piperazin-1-ium [di- μ -bromido-rubidium]], {(C₄H₁₁N₂)[RbBr₂]}_n, contain singly-protonated piperazin-1-ium cations and unusual ABr_6 (A = Cs or Rb) trigonal prisms. The prisms are linked into a distinctive 'curtain wall' arrangement propagating in the (010) plane by face and edge sharing. In each case, a network of N-H···N, N-H···Br and N-H···(Br,Br) hydrogen bonds consolidates the structure.

1. Chemical context

Oxide perovskites of generic formula ABO_3 , where A and B are metal ions, have been studied for decades because of their physical properties and structural variety (Tilley, 2016). The aristotype (highest-possible symmetry) for this familiar structure type is a cubic network (space group $Pm\overline{3}m$) of vertex-sharing, regular, BO₆ octahedra encapsulating the A cations in 12-coordinate cavities bounded by eight octahedra, but lower symmetry structures are very common (Woodward, 1997). More recently, 'hybrid' RMX₃ perovskites containing organic cations and MX_3 ($M = Pb, Sn \dots; X = halide ion$) octahedral networks have attracted intense interest because of their remarkable photophysical properties (Xu et al., 2019; Stylianakis et al., 2019; Zuo et al., 2019). A number of different organic cations occur in these hybrid structures, one of which is the doubly protonated $C_4H_{12}N_2^{2+}$ piperizinium (or piperazin-1,4-diium) ion as found in the $C_4H_{12}N_2 \cdot ACl_3 \cdot H_2O$ (A = K, Rb, Cs) family (Paton & Harrison, 2010) and C₄H₁₂N₂·NaI₃ (Chen et al., 2018).

OPEN ∂ ACCESS

As an extension of these studies, we now describe the title hybrid compounds, containing the singly protonated $C_4H_{11}N_2^+$ piperazin-1-ium cation, which have a generic formula of RMX_2 and totally different crystal structures to RMX_3 hybrid perovskites.

research communications

Table 1				
Selected	bond	lengths	(Å) fo	r (I).

Cs1-Br2 ⁱⁱⁱ	3.5157 (5)	Cs1-Br1	3.6228 (6)
Cs1-Br2	3.5801 (5)	Cs1-Br1 ⁱⁱⁱ	3.6392 (7)

Symmetry code: (iii) x - 1, y, z.

Table 2

Selected bond lengths (Å) for (II).

Rb1-Br2 ⁱⁱⁱ	3.4157 (8)	Rb1-Br1	3.5013 (9)
Rb1-Br2	3.4659 (8)	Rb1-Br1 ⁱⁱⁱ	3.5068 (9)

Symmetry code: (iii) x - 1, y, z.

2. Structural commentary

Compounds (I) and (II) are isostructural and crystallize in the orthorhombic space group *Pbcm*. The smaller unit-cell volume (by 5.3%) of (II) presumably reflects the smaller ionic radius (Shannon, 1976) of the Rb⁺ cation (r = 1.66 Å) compared to Cs⁺ (r = 1.81 Å). This structure description will focus on (I) and note significant differences for (II) where applicable.

The asymmetric unit of (I) consists of two methylene groups, an NH group and an NH_2^+ group; both nitrogen atoms and their attached H atoms lie on a (001) crystallographic mirror plan (at z = 1/4 for the asymmetric atoms). The structure is completed by a caesium atom [site symmetry m(001), Wyckoff site 4d] and two bromine atoms: Br1 [m(001); 4d] and Br2 (2[100]; 4c). The structure of (I) is shown in (Fig. 1).

The complete $C_4H_{11}N_2^+$ cation is generated by reflection to result in a typical (Brüning *et al.*, 2009) chair conformation for the ring: N1 and N2 deviate from the mean plane of C1/C2/ C1ⁱ/C2ⁱ [symmetry code: (i) x, y, $\frac{1}{2} - z$] by 0.656 (5) and -0.682 (4) Å, respectively. The H atom of the neutral N2– H3N group has an equatorial orientation with respect to the ring.

The caesium coordination polyhedron in (I) is completed by crystal symmetry, resulting in a distinctive CsBr₆ trigonal

Figure 1

The asymmetric unit of (I) showing 50% displacement ellipsoids expanded to show the complete organic cation and the caesium coordination polyhedron. The N-H···Br hydrogen bond is shown as a double-dashed line. The purple lines linking the bromine atoms emphasize the trigonal-prismatic shape of the CsBr₆ polyhedron. Symmetry codes: (i) $x, y, \frac{1}{2} - z$; (ii) $x - 1, y, \frac{1}{2} - z$; (iii) x - 1, y, z.

prism (Fig. 1): the prism has longitudinal (001) mirror symmetry, with the Br1 atoms and the metal atom lying on the mirror. The mean Cs–Br bond length based on four distinct Cs–Br bonds (Table 1) is 3.573 Å [mean Rb–Br bond length for (II) = 3.461 Å; Table 2]. These data may be compared with the shortest Cs–Br separation of 3.716 Å in CsBr (8-coordinate caesium chloride structure) and the shortest Rb–Br separation of 3.427 Å in RbBr (6-coordinate rocksalt structure).

In (I), the prism ends (Br1/Br2/Br2ⁱ and Br1ⁱⁱⁱ/Br2ⁱⁱ/Br2ⁱⁱⁱ; see Fig. 1 for symmetry codes) are parallel by symmetry and separated by 4.5787 (8) Å, *i.e.*, the *a* unit-cell parameter, hence there is no twisting of the end faces and the Br...Br angles vary from 56.65 (1)-61.68 (1)° [the equivalent prismend separation for (II) is 4.4675 (13) Å]. The caesium cation in (I) is not quite equidistant from the prism-ends mentioned in the previous sentence, being displaced from them by 2.3177 (6) and 2.2605 (5) Å, respectively. The equivalent data for the Rb atom in (II) are 2.2581 (9) and 2.2091 (9) Å, respectively. The bond-valence sum (BVS) for Cs1 (in valence units) using the formalism of Brese & O'Keeffe (1991) in (I) is 1.12 and the equivalent value for Rb1 in (II) is 0.95 (expected value in both cases = 1.00). This indicates that the bond valences of these cations are satisfied without notable underbonding or overbonding in these unusual coordination environments.

It may be finally noted that the bromide ions have very different coordination environments: Br1 bridges to two metal atoms $[Cs1-Br1-Cs1^{iv} = 78.17 (2) \text{ in (I)}; Rb1-Br1-Rb1^{iv} = 79.21 (3)^{\circ}$ in (II); symmetry code: (iv) x + 1, y, z] whereas Br2 has an unusual distorted square planar BrCs₄ arrangement: the cis Cs-Br2-Cs bond angles in (I) vary between 80.367 (13) and 100.865 (16)°; the five atoms are exactly coplanar by symmetry.

3. Supramolecular features

The extended structure of (I) is consolidated by hydrogen bonds (Fig. 2, Table 3. The N1-H1N \cdots N2 bond from the protonated NH₂⁺ group to the unprotonated N atom in an

Figure 2

Detail of the structure of (I) showing the hydrogen-bonding environment of the C₄H₁₁N₂⁺ cation; symmetry codes: (i) $x, y, \frac{1}{2} - z$; (ii) x + 1, y, z; (iii) $-x, -y + 1, z + \frac{1}{2}$; (iv) -x, -y + 1, -z.

Table 3 Hydrogen-bond geometry (Å, $^\circ)$ for (I).

H H \cdots A	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
(4) 1.95 (4)	2.868 (4)	179 (3)
(4) 2.45 (4)	3.284 (3)	174 (4)
(4) 3.07 (3)	3.756 (2)	130 (1)
(4) 3.07 (3)	3.756 (2)	130 (1)
	$\begin{array}{c cccc} H & H \cdots A \\ \hline (4) & 1.95 (4) \\ (4) & 2.45 (4) \\ (4) & 3.07 (3) \\ (4) & 3.07 (3) \\ \end{array}$	H $H \cdots A$ $D \cdots A$ (4)1.95 (4)2.868 (4)(4)2.45 (4)3.284 (3)(4)3.07 (3)3.756 (2)(4)3.07 (3)3.756 (2)

Symmetry codes: (ii) x + 1, y, z; (iii) $-x, -y + 1, z + \frac{1}{2}$; (iv) -x, -y + 1, -z.

 Table 4

 Hydrogen-bond geometry (Å, °) for (II).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H2N\cdots N2^{ii}$	0.91	1.92	2.825 (6)	179
$N1 - H1N \cdots Br1$	0.91	2.40	3.300 (4)	171
$N2-H3N\cdots Br2^{iii}$	0.94	3.07	3.762 (3)	131
$N2-H3N\cdots Br2^{iv}$	0.94	3.07	3.762 (3)	131

Symmetry codes: (ii) x + 1, y, z; (iii) $-x, -y + 1, z + \frac{1}{2}$; (iv) -x, -y + 1, -z.

adjacent molecule links the organic cations into [100] chains with adjacent cations related by translation symmetry and the N1-H2N···Br1 bond connects the organic cation to the inorganic network. The neutral N2-H3N moiety forms a bifurcated N-H···(Br2,Br2) hydrogen bond; the H···Br contacts are long at 3.07 (3) Å but given their apparent role in bridging the (010) CsBr₂ layers we judge them to be structurally significant. The hydrogen-bonding scheme for (II) (Table 4) is almost identical to that in (I).

The CsBr₆ prisms in (I) are linked into a striking (010) 'curtain wall' arrangement (Fig. 3) by face sharing in the [100] direction and edge sharing (*via* a pair of Br2 atoms) in the [001] direction; the Cs···Cs separation through the prism-ends is 4.5787 (8) Å (by the symmetry operations x + 1, y, z and x - 1, y, z) and the separation between metal ions in adjacent columns is 5.42014 (12) Å (symmetry operations x, $\frac{1}{2} - y$, -zand x, $\frac{1}{2} - y$, $\frac{1}{2} + z$). The equivalent data for the Rb atoms in (II) are 4.4675 (13) and 5.2338 (14) Å, respectively. When

Polyhedral view of part of an (010) layer of CsBr₆ trigonal prisms in (I).

viewed down [100], the prisms adopt a 'saw-tooth' arrangement with respect to the [010] direction, with alternating columns of prisms pointing 'up' and 'down' (Fig. 4).

4. Database survey

So far as we are aware, the $RABr_2$ topology of the title compounds is a novel one. A search of the Cambridge Structural Database (CSD, version 5.40, last update 19 May 2019; Groom *et al.*, 2016) for the mono-protonated $C_4H_{11}N_2^+$ cation returned 55 crystal structures but none of them bear a close resemblance to the title compound. As noted in the chemical context section, the doubly protonated $C_4H_{12}N_2^{2+}$ species occurs in several hybrid RMX_3 perovskites including $C_4H_{12}N_2 \cdot ACl_3 \cdot H_2O$ with A = K (CSD refcode GUYMIX), Rb (GUYMOD) and Cs (GUYMUJ) (Paton & Harrison, 2010) and $C_4H_{12}N_2 \cdot NaI_3$ (MEXMAG; Chen *et al.*, 2018).

5. Synthesis and crystallization

Compound (I) was prepared by adding 0.213 g (1.0 mmol) of CsBr and 0.086 g (1.0 mmol) of piperazine to 11.0 ml (1.1 mmol) of a 0.1 *M* HBr solution in a Petri dish to result in a clear solution. Colourless rods of (I) formed after a few days as the water evaporated. Colourless rods of (II) were prepared in the same way, with 0.165 g (1.0 mmol) of RbBr replacing the CsBr. The quantity of acid appears to be critical to the syntheses of (I) and (II): smaller amounts lead to recrystallized CsBr and RbBr and larger amounts lead to different structures containing doubly protonated $C_4H_{12}N_2^{2+}$ cations.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. The N-bonded H atoms were located in difference-Fourier maps: for (I), their positions

Figure 4

The unit-cell packing in (I) viewed down [100]. Note the 'saw-tooth' arrangement of stacks of $CsBr_6$ prisms with respect to the [001] direction.

research communications

Table 5 Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$(C_4H_{11}N_2)[CsBr_2]$	$(C_4H_{11}N_2)[RbBr_2]$
M _r	379.88	332.44
Crystal system, space group	Orthorhombic, Pbcm	Orthorhombic, Pbcm
Temperature (K)	93	93
a, b, c (Å)	4.5787 (8), 23.325 (5), 9.1828 (17)	4.4675 (13), 23.036 (7), 9.021 (3)
$V(Å^3)$	980.7 (3)	928.4 (5)
Ζ	4	4
Radiation type	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	11.86	13.87
Crystal size (mm)	$0.20 \times 0.05 \times 0.05$	$0.20 \times 0.05 \times 0.05$
Data collection		
Diffractometer	Rigaku Pilatus 200K CCD	Rigaku Pilatus 200K CCD
Absorption correction	Multi-scan (CrystalClear; Rigaku, 2013)	Multi-scan (CrystalClear; Rigaku, 2013)
T_{\min}, T_{\max}	0.639, 1.000	0.597, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	11592, 959, 917	11351, 908, 771
R _{int}	0.056	0.086
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.603	0.602
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.021, 0.055, 1.10	0.023, 0.057, 0.94
No. of reflections	959	908
No. of parameters	55	48
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.34, -0.96	0.74, -0.47

Computer programs: CrystalClear (Rigaku, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), ATOMS (Shape Software, 2005) and publcIF (Westrip, 2010).

were freely refined, for (II) they were refined as riding atoms in their as-found relative positions. The C-bound H atoms were placed geometrically (C–H = 0.99 Å) and refined as riding atoms for both structures. The constraint $U_{\rm iso}(H) =$ $1.2U_{\rm eq}(\text{carrier})$ was applied in all cases. The displacement ellipsoids for the C and N atoms in (II) refined to somewhat elongated shapes suggestive of positional disorder of the $C_4H_{11}N_2^+$ cations but attempts to model this did not lead to a significant improvement in fit.

References

- Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
- Brüning, J., Bolte, M. & Schmidt, M. U. (2009). J. Chem. Crystallogr. 39, 256–260.
- Chen, X.-G., Gao, J.-X., Hua, X.-N. & Liao, W.-Q. (2018). Acta Cryst. C74, 728–733.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Paton, L. A. & Harrison, W. T. (2010). Angew. Chem. Int. Ed. 49, 7684–7687.
- Rigaku (2013). CrystalClear. Rigaku AXS Inc., Toyko, Japan.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Shape Software (2005). ATOMS. Shape Software, Kingsport, Tennessee, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Stylianakis, M. M., Maksuov, T., Panagiotopoulos, A., Kakavelakis, G. & Petridis, K. (2019). *Materials*, **12**, article 859 (28 pages).
- Tilley, R. J. T. (2016). *Perovskites: Structure–Property Relationships*. Wiley, New York.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Woodward, P. M. (1997). Acta Cryst. B53, 32-43.
- Xu, W.-J., Kopyl, S., Kholkin, A. & Rocha, J. (2019). Coord. Chem. Rev. 387, 398–414.
- Zuo, T. T., He, X. X., Hu, P. & Jiang, H. (2019). ChemNanoMat, 5, 278–289.

supporting information

Acta Cryst. (2019). E75, 1249-1252 [https://doi.org/10.1107/S2056989019010375]

Syntheses and structures of piperazin-1-ium ABr₂ (A = Cs or Rb): hybrid solids containing `curtain wall' layers of face- and edge-sharing ABr₆ trigonal prisms

Kirstie A. Rickaby, Alexandra M. Z. Slawin and William T. A. Harrison

Computing details

For both structures, data collection: *CrystalClear* (Rigaku, 2013); cell refinement: *CrystalClear* (Rigaku, 2013); data reduction: *CrystalClear* (Rigaku, 2013); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *ATOMS* (Shape Software, 2005); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Poly[piperazin-1-ium [di-µ-bromido-caesium]] (I)

Crystal data	
$\begin{array}{l} (C_{4}H_{11}N_{2})[CsBr_{2}]\\ M_{r} = 379.88\\ \text{Orthorhombic, } Pbcm\\ a = 4.5787 \ (8) \ \text{\AA}\\ b = 23.325 \ (5) \ \text{\AA}\\ c = 9.1828 \ (17) \ \text{\AA}\\ V = 980.7 \ (3) \ \text{\AA}^{3}\\ Z = 4\\ F(000) = 696 \end{array}$	$D_{\rm x} = 2.573 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3076 reflections $\theta = 2.8-27.5^{\circ}$ $\mu = 11.86 \text{ mm}^{-1}$ T = 93 K Rod, colourless $0.20 \times 0.05 \times 0.05 \text{ mm}$
Data collection	
Rigaku Pilatus 200K CCD diffractometer Radiation source: rotating anode ω scans Absorption correction: multi-scan (CrystalClear; Rigaku, 2013) $T_{\min} = 0.639, T_{\max} = 1.000$ 11592 measured reflections	959 independent reflections 917 reflections with $I > 2\sigma(I)$ $R_{int} = 0.056$ $\theta_{max} = 25.4^{\circ}, \ \theta_{min} = 3.5^{\circ}$ $h = -5 \rightarrow 5$ $k = -28 \rightarrow 28$ $l = -11 \rightarrow 11$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.055$ S = 1.10 959 reflections 55 parameters 0 restraints Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0387P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.34$ e Å ⁻³ $\Delta\rho_{min} = -0.96$ e Å ⁻³ Extinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc ² \lambda ³ /sin(2\theta)]^{-1/4} Extinction coefficient: 0.0010 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cs1	0.02411 (5)	0.31176 (2)	0.250000	0.01125 (13)	
Br1	0.52127 (7)	0.43259 (2)	0.250000	0.01635 (15)	
Br2	0.53501 (7)	0.250000	0.000000	0.01654 (16)	
C1	-0.0049 (5)	0.56445 (11)	0.3834 (4)	0.0205 (7)	
H1A	0.120469	0.560779	0.470727	0.025*	
H1B	-0.158445	0.534633	0.388670	0.025*	
C2	-0.1448 (6)	0.62308 (9)	0.3811 (2)	0.0209 (5)	
H2A	-0.267978	0.628079	0.468749	0.025*	
H2B	0.008673	0.652975	0.382326	0.025*	
N1	0.1740 (7)	0.55578 (12)	0.250000	0.0217 (7)	
H1N	0.336 (9)	0.5788 (16)	0.250000	0.026*	
H2N	0.251 (8)	0.5231 (17)	0.250000	0.026*	
N2	-0.3243 (7)	0.62943 (11)	0.250000	0.0186 (6)	
H3N	-0.427 (7)	0.6650 (19)	0.250000	0.022*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cs1	0.01245 (18)	0.00867 (18)	0.01263 (18)	-0.00053 (6)	0.000	0.000
Brl	0.0165 (2)	0.0071 (2)	0.0255 (3)	0.00065 (10)	0.000	0.000
Br2	0.0141 (2)	0.0171 (2)	0.0185 (2)	0.000	0.000	-0.00791 (13)
C1	0.0259 (16)	0.0170 (17)	0.0187 (19)	-0.0048 (8)	-0.0058 (9)	0.0063 (10)
C2	0.0238 (15)	0.0173 (11)	0.0216 (12)	-0.0030 (10)	0.0029 (12)	-0.0062 (9)
N1	0.0218 (19)	0.0067 (14)	0.0367 (16)	0.0036 (12)	0.000	0.000
N2	0.0182 (16)	0.0104 (14)	0.0272 (14)	0.0037 (11)	0.000	0.000

Geometric parameters (Å, °)

Cs1—Br2 ⁱ	3.5157 (5)	C1—H1A	0.9900	
Cs1—Br2 ⁱⁱ	3.5157 (4)	C1—H1B	0.9900	
Cs1—Br2 ⁱⁱⁱ	3.5801 (5)	C2—N2	1.465 (3)	
Cs1—Br2	3.5801 (5)	C2—H2A	0.9900	
Cs1—Br1	3.6228 (6)	C2—H2B	0.9900	
Cs1—Br1 ⁱ	3.6392 (7)	N1—H1N	0.92 (4)	
C1—N1	1.488 (4)	N1—H2N	0.84 (4)	
C1—C2	1.510 (3)	N2—H3N	0.95 (4)	
Br2 ⁱ —Cs1—Br2 ⁱⁱ	81.534 (14)	N1—C1—C2	110.2 (2)	
Br2 ⁱ —Cs1—Br2 ⁱⁱⁱ	132.072 (12)	N1—C1—H1A	109.6	

Br2 ⁱⁱ —Cs1—Br2 ⁱⁱⁱ	80.366 (13)	C2—C1—H1A	109.6
Br2 ⁱ —Cs1—Br2	80.366 (12)	N1—C1—H1B	109.6
Br2 ⁱⁱ —Cs1—Br2	132.072 (12)	C2	109.6
Br2 ⁱⁱⁱ —Cs1—Br2	79.768 (14)	H1A—C1—H1B	108.1
Br2 ⁱ —Cs1—Br1	135.970 (7)	N2-C2-C1	110.0 (2)
Br2 ⁱⁱ —Cs1—Br1	135.970 (7)	N2—C2—H2A	109.7
Br2 ⁱⁱⁱ —Cs1—Br1	84.402 (12)	C1—C2—H2A	109.7
Br2—Cs1—Br1	84.401 (13)	N2—C2—H2B	109.7
Br2 ⁱ —Cs1—Br1 ⁱ	85.085 (12)	C1—C2—H2B	109.7
Br2 ⁱⁱ —Cs1—Br1 ⁱ	85.085 (13)	H2A—C2—H2B	108.2
Br2 ⁱⁱⁱ —Cs1—Br1 ⁱ	136.466 (7)	C1—N1—C1 ⁱⁱⁱ	110.9 (3)
Br2—Cs1—Br1 ⁱ	136.466 (7)	C1—N1—H1N	111.5 (11)
Br1—Cs1—Br1 ⁱ	78.173 (18)	C1 ⁱⁱⁱ —N1—H1N	111.5 (11)
$Cs1$ — $Br1$ — $Cs1^{iv}$	78.173 (17)	C1—N1—H2N	110.7 (13)
$Cs1^{iv}$ —Br2—Cs1 ^v	100.865 (16)	C1 ⁱⁱⁱ —N1—H2N	110.7 (13)
$Cs1^{iv}$ —Br2—Cs 1^{vi}	178.768 (8)	H1N—N1—H2N	101 (3)
$Cs1^v$ — $Br2$ — $Cs1^{vi}$	80.367 (13)	C2 ⁱⁱⁱ —N2—C2	110.5 (3)
Cs1 ^{iv} —Br2—Cs1	80.366 (13)	C2 ⁱⁱⁱ —N2—H3N	111.4 (10)
Cs1 ^v —Br2—Cs1	178.768 (8)	C2—N2—H3N	111.4 (10)
Cs1 ^{vi} —Br2—Cs1	98.402 (15)		
N1-C1-C2-N2	57.7 (3)	C1—C2—N2—C2 ⁱⁱⁱ	-60.2 (3)
C2-C1-N1-C1 ⁱⁱⁱ	-55.9 (3)		

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*-1, *y*, *-z*+1/2; (iii) *x*, *y*, *-z*+1/2; (iv) *x*+1, *y*, *z*; (v) *x*+1, *-y*+1/2, *-z*; (vi) *x*, *-y*+1/2, *-z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N1—H1 <i>N</i> ····N2 ^{iv}	0.92 (4)	1.95 (4)	2.868 (4)	179 (3)
N1—H2 <i>N</i> ···Br1	0.84 (4)	2.45 (4)	3.284 (3)	174 (4)
N2—H3N····Br2 ^{vii}	0.95 (4)	3.07 (3)	3.756 (2)	130(1)
N2—H3N····Br2 ^{viii}	0.95 (4)	3.07 (3)	3.756 (2)	130 (1)

Symmetry codes: (iv) *x*+1, *y*, *z*; (vii) –*x*, –*y*+1, *z*+1/2; (viii) –*x*, –*y*+1, –*z*.

Poly[piperazin-1-ium [di-µ-bromido-rubidium]] (II)

Crystal data

 $(C_4H_{11}N_2)$ [RbBr₂] $M_r = 332.44$ Orthorhombic, *Pbcm* a = 4.4675 (13) Å b = 23.036 (7) Å c = 9.021 (3) Å V = 928.4 (5) Å³ Z = 4F(000) = 624 $D_x = 2.378 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1939 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 13.87 \text{ mm}^{-1}$ T = 93 KRod, colourless $0.20 \times 0.05 \times 0.05 \text{ mm}$ Data collection

Rigaku Pilatus 200K CCD diffractometer Radiation source: rotating anode ω scans Absorption correction: multi-scan (CrystalClear; Rigaku, 2013) $T_{\min} = 0.597, T_{\max} = 1.000$ 11351 measured reflections	908 independent reflections 771 reflections with $I > 2\sigma(I)$ $R_{int} = 0.086$ $\theta_{max} = 25.3^{\circ}, \theta_{min} = 2.9^{\circ}$ $h = -5 \rightarrow 5$ $k = -27 \rightarrow 25$ $l = -10 \rightarrow 10$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.057$ S = 0.94 908 reflections 48 parameters 0 restraints	Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.036P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.74$ e Å ⁻³ $\Delta\rho_{min} = -0.47$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	y	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Rb1	0.02991 (9)	0.30763 (2)	0.250000	0.01411 (14)	
Br1	0.52893 (9)	0.42482 (2)	0.250000	0.01792 (15)	
Br2	0.53856 (10)	0.250000	0.000000	0.02184 (16)	
C1	0.0103 (9)	0.56211 (19)	0.3859 (5)	0.0433 (13)	
H1A	-0.150237	0.532584	0.391919	0.052*	
H1B	0.138441	0.558250	0.474894	0.052*	
C2	-0.1233 (9)	0.62095 (17)	0.3812 (4)	0.0371 (10)	
H2A	-0.247265	0.627233	0.470786	0.045*	
H2B	0.037661	0.650481	0.380468	0.045*	
N1	0.1926 (10)	0.55235 (19)	0.250000	0.0490 (17)	
H1N	0.264148	0.515363	0.250000	0.059*	
H2N	0.351831	0.577000	0.250001	0.059*	
N2	-0.3067 (9)	0.62729 (18)	0.250000	0.0358 (12)	
H3N	-0.409568	0.662828	0.250000	0.043*	

Atomic displacement parameters	$(Å^2)$)
--------------------------------	---------	---

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Rb1	0.0154 (2)	0.0163 (3)	0.0106 (2)	-0.00032 (16)	0.000	0.000
Br1	0.0178 (3)	0.0145 (3)	0.0215 (3)	0.00069 (17)	0.000	0.000
Br2	0.0161 (3)	0.0330 (3)	0.0165 (3)	0.000	0.000	-0.01151 (19)

supporting information

C1	0.050 (3)	0.045 (3)	0.035 (2)	-0.027 (2)	-0.031 (2)	0.024 (2)
C2	0.047 (2)	0.038 (2)	0.027 (2)	-0.024 (2)	0.020 (2)	-0.0183 (18)
N1	0.018 (2)	0.010 (2)	0.118 (6)	0.0018 (18)	0.000	0.000
N2	0.020 (2)	0.018 (2)	0.070 (4)	0.0028 (18)	0.000	0.000

Geometric parameters (Å, °)

Rb1—Br2 ⁱ	3.4157 (8)	C1—H1A	0.9900
Rb1—Br2 ⁱⁱ	3.4157 (8)	C1—H1B	0.9900
Rb1—Br2	3.4659 (8)	C2—N2	1.447 (5)
Rb1—Br2 ⁱⁱⁱ	3.4659 (8)	C2—H2A	0.9900
Rb1—Br1	3.5013 (9)	C2—H2B	0.9900
Rb1—Br1 ⁱ	3.5068 (9)	N1—H1N	0.9100
C1—C2	1.482 (6)	N1—H2N	0.9100
C1—N1	1.489 (5)	N2—H3N	0.9389
Br2 ⁱ —Rb1—Br2 ⁱⁱ	82.64 (3)	C2C1N1	109.6 (3)
Br2 ⁱ —Rb1—Br2	80.96 (2)	C2—C1—H1A	109.8
Br2 ⁱⁱ —Rb1—Br2	134.60 (2)	N1—C1—H1A	109.8
Br2 ⁱ —Rb1—Br2 ⁱⁱⁱ	134.60 (2)	C2—C1—H1B	109.8
Br2 ⁱⁱ —Rb1—Br2 ⁱⁱⁱ	80.96 (2)	N1—C1—H1B	109.8
Br2—Rb1—Br2 ⁱⁱⁱ	81.19 (3)	H1A—C1—H1B	108.2
Br2 ⁱ —Rb1—Br1	135.144 (12)	N2—C2—C1	110.1 (3)
Br2 ⁱⁱ —Rb1—Br1	135.143 (12)	N2—C2—H2A	109.6
Br2—Rb1—Br1	82.98 (2)	C1—C2—H2A	109.6
Br2 ⁱⁱⁱ —Rb1—Br1	82.984 (19)	N2—C2—H2B	109.6
Br2 ⁱ —Rb1—Br1 ⁱ	83.63 (2)	C1—C2—H2B	109.6
Br2 ⁱⁱ —Rb1—Br1 ⁱ	83.63 (2)	H2A—C2—H2B	108.2
Br2—Rb1—Br1 ⁱ	135.505 (12)	C1—N1—C1 ⁱⁱⁱ	110.8 (4)
Br2 ⁱⁱⁱ —Rb1—Br1 ⁱ	135.505 (13)	C1—N1—H1N	109.5
Br1—Rb1—Br1 ⁱ	79.21 (3)	C1 ⁱⁱⁱ —N1—H1N	109.5
Rb1—Br1—Rb1 ^{iv}	79.21 (3)	C1—N1—H2N	109.5
Rb1 ^{iv} —Br2—Rb1 ^v	100.02 (3)	C1 ⁱⁱⁱ —N1—H2N	109.5
Rb1 ^{iv} —Br2—Rb1 ^{vi}	179.021 (14)	H1N—N1—H2N	108.1
Rb1 ^v —Br2—Rb1 ^{vi}	80.96 (2)	C2—N2—C2 ⁱⁱⁱ	109.8 (4)
Rb1 ^{iv} —Br2—Rb1	80.96 (2)	C2—N2—H3N	111.4
Rb1 ^v —Br2—Rb1	179.021 (14)	C2 ⁱⁱⁱ —N2—H3N	111.4
Rb1 ^{vi} —Br2—Rb1	98.06 (3)		
N1—C1—C2—N2	58.4 (4)	C1—C2—N2—C2 ⁱⁱⁱ	-62.1 (5)
C2—C1—N1—C1 ⁱⁱⁱ	-55.3 (5)		

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*-1, *y*, *-z*+1/2; (iii) *x*, *y*, *-z*+1/2; (iv) *x*+1, *y*, *z*; (v) *x*+1, *-y*+1/2, *-z*; (vi) *x*, *-y*+1/2, *-z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—H2N···N2 ^{iv}	0.91	1.92	2.825 (6)	179
N1—H1 <i>N</i> ···Br1	0.91	2.40	3.300 (4)	171

			supportin	supporting information		
N2—H3 <i>N</i> ···Br2 ^{vii}	0.94	3.07	3.762 (3)	131		
N2—H3 <i>N</i> ···Br2 ^{viii}	0.94	3.07	3.762 (3)	131		

Symmetry codes: (iv) *x*+1, *y*, *z*; (vii) –*x*, –*y*+1, *z*+1/2; (viii) –*x*, –*y*+1, –*z*.