

Received 26 June 2019 Accepted 21 October 2019

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia

Keywords: crystal structure; monoaquatrifluoridoboron; boron trifluoride monohydrate; dioxane solvate; super acid; hydrogen bonding; chain structure.

CCDC reference: 1960541

Supporting information: this article has supporting information at journals.iucr.org/e

Peter Barthen* and Walter Frank*

Institut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany. *Correspondence e-mail: peter.barthen@hhu.de , wfrank@hhu.de

Highly Brønsted-acidic boron trifluoride monohydrate, a widely used 'super acid-catalyst', is a colourless fuming liquid that releases BF_3 at room temperature. Compared to the liquid components, i.e. boron trifluoride monohydrate and 1,4-dioxane, their 1:1 adduct, BF₃H₂O·C₄H₈O₂, is a solid with pronounced thermal stability (m.p. 401-403 K). The crystal structure of the long-time-stable easy-to-handle and weighable compound is reported along with new preparative aspects and the results of ¹H, ¹¹B, ¹³C and ¹⁹F spectroscopic investigations, particularly documenting its high Brønsted acidity in acetonitrile solution. The remarkable stability of solid BF₃H₂O· C_4 H₈O₂ is attributed to the chain structure established by O-H···O hydrogen bonds of exceptional strength $\{O_2 \cdots H_1 - O_1 [O_1 \cdots O_n = 2.534 (3) \text{ Å}\}$ and $O_1 - H_1 \cdots O_3^{i} [2.539 (3) \text{ Å}]$ in the concatenating unit >O2 \cdots H1-O1-H2 \cdots O3ⁱ<}, taking into account the molecular (non-ionic) character of the structural moieties. Indirectly, this structural feature documents the outstanding acidification of the H₂O molecule bound to BF₃ and reflects the super acid nature of BF₃H₂O. In detail, the $C_2^2(7)$ zigzag chain system of hydrogen bonding in the title structure is characterized by the double hydrogen-bond donor and double ($\kappa O.\kappa O'$) hydrogen-bond acceptor functionality of the aqua ligand and dioxane molecule, respectively, the almost equal strength of both hydrogen bonds, the approximately linear arrangement of the dioxane O atoms and the two neighbouring water O atoms. Furthermore, the approximately planar arrangement of B, F and O atoms in sheets perpendicular to the c axis of the orthorhombic unit cell is a characteristic structural feature.

1. Chemical context

Solutions of boron trifluoride in water have been under investigation for more than 200 years (Gay-Lussac & Thenard, 1809; Davy, 1812; Berzelius, 1824). Meerwein (1933) was able to isolate the BF₃ dihydrate and, after addition of one further equivalent of BF₃ at low temperature, the BF₃ monohydrate also. Both hydrates were examined in detail (Klinkenberg & Ketelaar, 1935; McGrath et al., 1944; Greenwood & Martin, 1951; Wamser, 1951; Pawlenko, 1959) and while the dihydrate was shown to be distillable without decomposition under reduced pressure, boron trifluoride monohydrate releases BF3 above its melting point of 279.2 K. At room temperature, it is a colourless fuming liquid with a density of 1.8 g ml^{-1} . To examine the acidity of the monohydrate, reactions with ethers, alcohols and carboxylic acids etc. were performed by Meerwein & Pannwitz (1934). They obtained $BF_3H_2O \cdot C_4H_8O_2$, which they called the dioxane salt of boron trifluoride monohydrate, by adding BF₃H₂O to a solution of 1,4-dioxane in petroleum naphta. $BF_3H_2O \cdot C_4H_8O_2$ (1) precipitates as

 Table 1

 Selected bond lengths (Å).

Values for BF₃H₂O·C₄H₈O₂, BF₃H₂O (Mootz & Steffen, 1981*b*) and BF₃H₂O·H₂O (Mootz & Steffen, 1981*c*) in the left, middle and right columns, respectively; in square brackets are the corresponding bond valences and the valence sums calculated using the Brown formalism { r_0 [B-O(F)] = 1.371 (1.281), B = 0.37; Brown & Altermatt, 1985}; in braces are the values corrected for libration (Schomaker & Trueblood, 1968).

B1-O1	1.473 (4) [0.76] {1.528 (4) [0.65]}	1.532 (6) [0.64]	1.512 (2) [0.68
B1-F1	1.361 (4) [0.81] {1.409 (4) [0.71]}	1.383 (5) [0.76]	1.377 (2) [0.77
B1-F2	1.332 (4) [0.87] {1.396 (4) [0.73]}	1.399 (5) [0.73]	1.382 (2) [0.76
B1-F3	1.333 (4) [0.87] {1.410 (4) [0.71]}	1.382 (5) [0.76]	1.390 (2) [0.74
Σs(B-O,F)	[3.31] {[2.80]}	[2.89]	[2.96]

needle-shaped crystals which melt at 401-403 K with decomposition (Meerwein & Pannwitz, 1934). Unexpectedly, the experiment described in §6 resulted in the same product. The primordial idea of this experiment was to prepare an anhydrous solution of HBF₄ from HBF₄/H₂O (1:1 w:w) by distilling off water as the 1,4-dioxane/water azeotrope with coincident replacement of water by an excess of 1,4-dioxane. The dioxane adduct 1 starts to precipitate after a short period of time if a small amount of water remains in the resulting liquid. The formation of **1** in a 'HBF₄ solution' impressively illustrates how efficiently BF₃ is stabilized by water and dioxane. The reactions and equilibria of HBF4-, BF3-, H2O- and HFcontaining systems have been examined in detail (Pawlenko, 1968; Gascard & Mascherpa, 1973; Christe et al., 1975; Mootz & Steffen, 1981a; Yeo & Ford, 2006; Dubey et al., 2007) and it remains amazing that BF₃H₂O, unlike the other boron trihalide/water mixtures, releases the strong Lewis-acid (BF₃) unhydrolysed. Investigations by Greenwood & Martin (1951) showed that BF₃H₂O is highly ionized in the liquid state and that the Hammett acidity of H[BF₃OH] is $H_0 = -11.4$. By NMR spectroscopic determination of the thermodynamic acidity function from ¹³C chemical-shift changes of the signals of unsaturated ketones at infinite dilution in the acid under investigation, Farcasui & Ghenciu (1992) found boron trifluoride monohydrate to be super acidic, with $H_0 < -14$. The

Diagram of the asymmetric unit of the crystal structure of compound $\mathbf{1}$, displaying the atom-labelling scheme. Anisotropic displacement ellipsoids are drawn at the 40% probability level and the radii of H atoms are chosen arbitrarily. The direction of hydrogen bonding is given by dashed lines.

applications of this super acid are numerous, *e.g.* as a highly effective catalyst for several Friedel–Craft reactions (Yoneda *et al.*, 1969; Oyama *et al.*, 1978; Liu *et al.*, 2003; Prakash *et al.*, 2016, and references therein). The long-time-stable and easy-to-handle solid **1** provides the 'super acid BF₃H₂O' in a safe and efficient way.

Although Meerwein & Pannwitz (1934) isolated compound 1 (m.p. 401-403 K) and a solid, in which BF₃H₂O is stabilized by 1,8-cineole (m.p. 344–346 K) more than 80 years ago, the crystal structures of these compounds are still unknown and the reasons for the unexpected high thermal stability, especially of the dioxane adduct, are still unknown. Generally, there are very rare examples of crystal structures with BF₃H₂O moieties bound to O-donor molecules. The crystal structure of boron trifluoride monohydrate itself has been reported by Mootz & Steffen (1981b), after redetermination of the crystal structure of the dihydrate in the same year (Mootz & Steffen, 1981c; Bang & Carpenter, 1964). Stabilization of the mono- and dihydrate with 18-crown-6 (Bott et al., 1991; Feinberg et al., 1993; Simonov et al., 1995) or of BF₃H₂O with dicyclohexane-18-crown-6 (Fonar et al., 1997) led to three further crystal structures containing the BF₃H₂O moiety and, as the most recent example, stabilization with triphenylphosphane oxide (Chekhlov, 2005) gave a crystalline 1:2 adduct of BF_3H_2O and $(C_6H_5)_3PO$.

2. Structural commentary

Compound 1 was found to crystallize in the orthorhombic space group Pbca with eight formula units in the unit cell and all components in general positions. Fig. 1 shows the asymmetric unit of the crystal structure, which contains aquatrifluoridoboron and 1,4-dioxane molecular moieties. The dioxane moiety is free of any kind of conformational disorder often recognized in the case of saturated six-membered ring species. Bond lengths, angles and torsion angles defining the chair conformation are in excellent agreement with the expectations for a 'fully ordered' dioxane molecule, e.g. found in the structure of uncomplexed 1,4-dioxane at 153 K (Buschmann et al., 1986). Compared to the mean equivalent isotropic displacement parameter (U_{eq}) of the C and O atoms in the 1,4-dioxane moiety [= 0.0427 (6) Å²], the mean U_{eq} value of B1, O1 and F1 to F3 in the aquatrifluoridoboron moiety $[0.0867 (8) Å^2]$ is dramatically higher and correction for libration is needed prior to comparison with the geometries of BF₃H₂O moieties in related compounds. In Table 1, the uncorrected and corrected (Schomaker & Trueblood, 1968; RG = 0.0241) B-O and B-F bond lengths of 1 are given in comparison to the bond lengths of BF₃H₂O (Mootz & Steffen, 1981c) and BF₃H₂O·H₂O (Mootz & Steffen, 1981b). After

 Table 2

 Hydrogen-bond geometry (Å, °).

$D = \Pi \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O1-H1\cdots O2\\ O1-H2\cdots O3^{i} \end{array}$	0.82 (5)	1.72 (5)	2.534 (3)	175 (5)
	0.82 (5)	1.72 (5)	2.539 (3)	170 (5)

Symmetry code: (i) $-x + \frac{3}{2}, y - \frac{1}{2}, z$.

correction, the values of **1** agree well with those of the hydrates and those in almost undistorted BF₄⁻ as found in Li[BF₄] at 200 K [1.387 (3)–1.391 (3) Å; Matsumoto *et al.*, 2006] or in H₅O₂[BF₄] [1.381 (2)–1.399 (2) Å; Mootz & Steffen, 1981a]. The bond-valence sum of B1 is as expected taking into account the 'uncorrected' nature of the r_0 values used (Brown & Altermatt, 1985). Interestingly, for all compounds mentioned in Table 1, the B-F bond perpendicular to the plane of the aqua ligand (1: B1-F3; BF_3H_2O : B1-F2; $BF_3H_2O \cdot H_2O: B1-F3$) is slightly but significantly longer than the other two B-F bonds, probably attributable to a small destabilizing interaction with the oxygen lone pair. The F-B-O angles in all three compounds [1: 105.6(3)- $109.8(3)^{\circ}$; BF₃H₂O: 105.9 (4)–108.1 (4)°; BF₃H₂O·H₂O: 106.3 (1)– $109.8 (1)^{\circ}$ are smaller than the F-B-F angles [1: 109.9 (3)-112.1 (3)°; $BF_{3}H_{2}O$: 111.2 (4)–113.0 (4)°; $BF_{3}H_{2}O \cdot H_{2}O$: 109.8 (1)–114.0 (1) $^{\circ}$]. This fits to the observation (Table 1) that the B–O bond in the BF_3H_2O moiety is relatively weaker than the B-F bonds and the planar geometry of BF_3 is preserved in the aqua complex to some extent. Furthermore, for all three compounds, the O-B-F angle including the F atom that is approximately in plane with the aqua ligand [1: $O1-B1-F1 = 105.6 (3)^{\circ}; BF_{3}H_{2}O: O-B-F3 = 105.9 (4)^{\circ};$ $BF_{3}H_{2}O \cdot H_{2}O: O1 - B - F2 = 106.3 (1)^{\circ}$ is significantly smaller than the other O-B-F angles. This observation may be attributed to an attractive $F \cdots H$ interaction within the moiety.

Although both BF_3H_2O and 1,4-dioxane are liquids at room temperature, adduct 1 is a solid with a remarkably high

Figure 2

The zigzag chain of hydrogen-bonded moieties in the crystal of **1** [view direction [001]; 30% probability ellipsoids; symmetry codes: (A) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, z; (B) x, y + 1, z]. Features indicative for the mode of concatenation of the characteristic building blocks by hydrogen bonding are: (i) double hydrogen-bond donor and double ($\kappa O, \kappa O'$) hydrogen-bond acceptor functionality of the aqua ligand and dioxane moiety, respectively; (ii) almost equal strength of both hydrogen bonds; (iii) an approximately linear arrangement of the dioxane O atoms and the two neighbouring water O atoms (*e.g.* O1, O3A, O2A and O1A); (iv) an approximately planar arrangement of B1, F1, O1, O2 and O3.

melting point (401-403 K), mainly resulting from the concatenation of the molecular components via $O-H \cdots O$ hydrogen bonding, as shown in Fig. 2. The high stability might be correlated to the exceptional strength of both $O2 \cdots H1 - O1$ [$O \cdots O = 2.534$ (3) Å] and $O1 - H1 \cdots O3^{i}$ [2.539 (3) Å] in the concatenating $>O2 \cdots H1 - O1 - O1$ $H2 \cdots O3^{i}$ vnit. Indirectly, this structural feature documents the outstanding acidification of the H₂O molecule bound to BF₃ and reflects the super acid nature of BF₃H₂O. Further details of the hydrogen bonding are given in Table 2. To the best of our knowledge, there is no example of a water ligand bonded to a nonmetal or a metal with the ligand engaged in a hydrogen bond of similar strength ($O \cdot \cdot \cdot O < 2.60$ Å) to an O atom of a dioxane molecule. In the adduct 18-crown-6.BF₃H₂O (m.p. 345 K), mentioned in §1, the aqua ligand is hydrogen bonded to two O-donor atoms and the O···O distances are 2.76 and 2.80 Å (Feinberg et al., 1993). In the structure of BF₃H₂O·H₂O, the nonligating water molecule plays a similar role as bridging species as the dioxane molecule in 1. The $O \cdots O$ distances in the characteristic $\cdots H - O H \cdots O(H_2) \cdots H - O - H \cdots$ unit are 2.631 and 2.643 Å (Mootz & Steffen, 1981c), i.e. as compared to the very strong Brønsted acids fluorosulfuric acid $[O \cdots O = 2.643 (1) \text{ Å}]$ or trifluoromethanesulfonic acid $[O \cdot \cdot \cdot O = 2.640 (4) \text{ Å}]$ (Bartmann & Mootz, 1990), for example, the hydrogen bonding is of the same strength in the dihydrate and much stronger in the adduct 1.

Packing diagram of 1 (view direction [010]) documenting the arrangement of the zigzag chains to flat sheets perpendicular to the *c* axis. Inspection of the intermolecular distances gives no evidence for interactions stronger than van der Waals forces between the chains.

3. Supramolecular features

As mentioned before, in the solid of **1** the aqua ligand of the BF_3H_2O moiety acts as a hydrogen-bond donor in two directions, establishing a $C_2^2(7)$ graph set (Etter, 1990) (Fig. 2). The propagation vector of the zigzag chain is parallel to the *b* axis of the unit cell. Note the almost equal strength of both hydrogen bonds. Fig. 3 shows the arrangement of the chains in the solid due to van der Waals interactions.

4. Database survey

A search of the Cambridge Structural Database (CSD; Version 5.40, November 2018 update; Groom et al., 2016) for the BF₃H₂O moiety yielded six structures: the crown ether adducts 18-crown-6 monoaquatrifluoridoboron toluene semisolvate (CSD refcode SIXFOU; Bott et al. 1991), 18-crown-6 bis(monoaquatrifluoridoboron) dihydrate (LEKYIJ; Feinberg et al. 1993, Simonov et al., 1995) and dicyclohexano-18-crown-6 bis(monoaquatrifluoridoboron) (NIYGAD; Fonar et al., 1997); the phosphane oxide adduct monoaquatrifluoridoboron bis(triphenylphosphane oxide) (XATWAR: Chekhlov, 2005): two transition-metal coordination compounds [CIGVUJ10 (Van Rijn et al., 1987) and UKAJIA (Orain et al., 2010)], containing cocrystallized monoaquatrifluoridoboron moieties. As mentioned above, in addition to these reports on compounds having organic components, there is the report of Mootz & Steffen (1981b) on the inorganic parent compound BF₃H₂O and there are two reports on the dihydrate BF₃H₂O·H₂O (Mootz & Steffen, 1981*c*; Bang & Carpenter, 1964).

5. NMR spectroscopy

NMR studies of $BF_3H_2O \cdot C_4H_8O_2$ have not been published so far. Ford & Richards (1956) have shown by low-temperature NMR investigations that, in the solid state, BF3H2O and BF₃H₂O·H₂O are not ionized. Diehl (1958) reported the ¹⁹F NMR spectra of BF₃H₂O in aqueous solution. He observed separate broad resonances which he attributed to HBF₃OH, HBF_4 , $HBF_2(OH)_2$ and $HBF(OH)_3$ in concentrated solutions at 243 K with coalescence of the peaks at higher temperatures. Gillespie & Hartman (1967) have shown by low-temperature (193 K) ¹H and ¹⁹F NMR spetroscopy that BF₃H₂O is formed in dilute solutions in acetone containing both water and BF₃. They found two major peaks in the ¹⁹F NMR spectrum and assigned the low-field peak (-146.05 ppm) to the 1:1 complex of BF₃ with acetone and the high-field peak (-146.59 ppm) to BF_3H_2O in acetone. The corresponding ¹H NMR signals were detected by Gillespie & Hartmann at 12.42 ppm as multipletts. In our experiments, in the presence of CD₃CN and 1,4dioxane and at a significantly higher temperature (297 K), the protons were detected as a broad singlet at 9.41 ppm. Gottlieb et al. (1997) indicated that the influence of temperature on the NMR shift overcompensates the influence of the solvent if the basicity of the solvents is similar. Apart from this effect, the high acidity of the oxygen-bonded ¹H nuclei in the title compound is depicted by a shift of more than 7 ppm to higher frequencies (H₂O in CD₃CN: *s*, 2.13 ppm; Fulmer *et al.* 2010). The chemical shifts of the NMR signals belonging to 1,4-dioxane are close to those of the uncomplexed compound (C₄H₈O₂ in CD₃CN: ¹H: *s*, 3.60 ppm; ¹³C: 68.5 ppm; Fulmer *et al.*, 2010). Due to the comparable donor numbers (Gutmann, 1976) of acetonitrile (NMR solvent) and 1,4-dioxane, it can be concluded that the acidity of BF₃H₂O is not critically reduced by 1,4-dioxane with respect to its application as a super acid-catalyst.

The NMR sample was investigated in a 5 mm precision glass NMR tube (Wilmad 507) at 297 K in the deuterium-locked mode on a Bruker Avance III 400 MHz spectrometer operating at 400.17, 376.54, 128.23 or 100.62 MHz for ¹H, ¹⁹F, ¹¹B and ¹³C nuclei, respectively. The ¹H NMR and ¹³C chemical shifts were referenced with respect to tetramethylsilane vielding the chemical shift for CD₃CN (contains CD₂HCN) as 1.96 ppm and CD₃CN as 118.7 ppm. The ¹⁹F chemical shifts were referenced with respect to CFCl₃ (0 ppm) as external standard. The ¹¹B chemical shifts were referenced with respect to $BF_3(C_2H_5)_2O(0 \text{ ppm})$ as external standard. 68 mg of ground crystals were dissolved in 0.5 ml CD₃CN to prepare the NMR sample: ¹H NMR: 3.71 (s, 8H, C₄H₈O₂), 9.41 (s, 2H, **H**₂O). ¹⁹F NMR: $-148.10 (s, {}^{11}\text{BF}_3), -148.04 (s, {}^{10}\text{BF}_3). {}^{11}\text{B}$ NMR: -0.1 (s, ¹¹**B**F₃). ¹³C NMR: 68.0 [t, ¹J_(CH) = 189 Hz, $C_4H_8O_2$].

6. Synthesis and crystallization

All preparations and sample manipulations were carried out in tetrafluoroethylene hexafluoropropylene block copolymer (FEP) vessels. Tetrafluoroboric acid solution (50 wt% in water; Fluka Chemicals) was probed for its content of [BF₃OH]⁻ by ¹⁹F NMR spectroscopy. Depending on the quantity of these anions, hydrofluoric acid (48 wt% in water, Sigma-Aldrich) was added. In a typical experiment, to 131.4 g (1.24 mol) of HBF₄/H₂O, 4.53 g (0.11 mol) HF/H₂O was added at 273 K. The mixture was stirred for 15 min, before 430 g of 1,4-dioxane was added at the same temperature. Subsequently, the reaction mixture was heated and the 1,4-dioxane-water azeotrope was distilled off under normal pressure until the boiling point (361 K) began to change. 368 g of azeotrope was removed by the distillation and the residue was a pale-brown solution. This solution was stored in a sealed FEP flask under an atmosphere of dry argon (Argon 5.0). After 1 h, the formation of colourless crystals of 1 started and was allowed to continue for 9 d. The crystals were isolated under an argon atmosphere and washed with hexane/1,4-dioxane (10:1 v/v) three times using Schlenk techniques. 40.7 g (0.23 mol) were collected after drying the almost hexagonal colourless crystals in an argon stream (40 min). Compound $\mathbf{1}$ is stable at room temperature and shows a poor solubility in 1,4-dioxane, but a good solubility in acetonitrile.

An elemental analysis was performed with a HEKATECH EA 3000 elemental analyser using *Callidus 2E3* software. 1.7 mg of freshly ground crystals were used and a modifier was added to suppress the influence of the high fluorine content. Table 3Experimental details.

Crystal data	
Chemical formula	$H_2BF_3O \cdot C_4H_8O_2$
M _r	173.93
Crystal system, space group	Orthorhombic, Pbca
Temperature (K)	223
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.6835 (5), 12.929 (1), 15.2326 (13)
$V(Å^3)$	1513.2 (2)
Ζ	8
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.16
Crystal size (mm)	$0.69 \times 0.48 \times 0.42$
Data collection	
Diffractometer	Stoe IPDS
Absorption correction	Multi-scan (Blessing 1989)
T_{\min} T_{\max}	0.673, 0.920
No. of measured, independent and	19913, 1481, 932
observed $[I > 2\sigma(I)]$ reflections	, ., ., .
Rint	0.085
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.617
Pefinement	
$P[F^2 > 2\sigma(F^2)] = wP(F^2)$ S	0.067 0.138 1.38
K[T > 20(T)], WK(T), S	1491
No. of peremotors	1401
No. of parameters	100
n-atom treatment	independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.60, -0.42

Computer programs: X-AREA (Stoe & Cie, 2009), SHELXS (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Analysis calculated (%) for $C_4H_{10}BF_3O_3$: 27.62 C, 5.80 H; found: 27.84 C, 5.87 H.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The positions of all H atoms were identified *via* subsequent ΔF syntheses. In the refinement, a riding model was applied, using idealized C-H bond lengths, as well as H-C-H and C-C-H angles. The U_{iso} values were set at $1.2U_{eq}(C)$ for methylene H atoms. For the H atoms of the aqua ligand, positional parameters and U_{iso} values were refined.

Acknowledgements

We thank E. Hammes and P. Roloff for technical support, and C. Siemes for the preparation of the structural formula scheme.

References

- Bang, W. B. & Carpenter, G. B. (1964). Acta Cryst. 17, 742-745.
- Bartmann, K. & Mootz, D. (1990). Acta Cryst. C46, 319-320.
- Berzelius, J. J. (1824). Liebigs Ann. Chem. 46, 48-58.
- Blessing, R. H. (1989). J. Appl. Cryst. 22, 396-397.
- Bott, S. B., Alvanipour, A. & Atwood, J. L. (1991). J. Incl. Phenom. Macrocycl. Chem. 10, 153–158.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.

- Buschmann, J., Müller, E. & Luger, P. (1986). Acta Cryst. C42, 873-876.
- Chekhlov, A. N. (2005). Russ. J. Coord. Chem. 31, 9-13.
- Christe, K. O., Schack, C. J. & Wilson, R. D. (1975). *Inorg. Chem.* 14, 2224–2230.
- Davy, J. (1812). Phil. Trans. R. Soc. 102, 352-363.
- Diehl, P. (1958). Helv. Phys. Acta, 31, 685-712.
- Dubey, A., Saha, H. P., Pink, R. H., Badu, S. R., Mahato, D. N., Scheicher, R. H., Mahanti, K. M., Chow, L. & Das, T. P. (2007). *Hyperfine Interact.* **176**, 45–50.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Farcasui, D. & Ghenciu, A. (1992). J. Catal. 134, 126-133.
- Feinberg, H., Columbus, I., Cohen, S., Rabinovitz, M., Selig, H. & Shoham, G. (1993). Polyhedron, 12, 2913–2919.
- Fonar, M. S., Simonov, Y. A., Mazus, M. D., Ganin, E. V. & Gelmboldt, V. O. (1997). Crystallogr. Rep. 42, 790–794.
- Ford, P. T. & Richards, R. E. (1956). J. Chem. Soc. pp. 3870-3874.
- Fulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., Bercaw, J. E. & Goldberg, K. I. (2010). Organometallics, 29, 2176–2179.
- Gascard, C. & Mascherpa, G. (1973). J. Chim. Phys. 70, 1040-1047.
- Gay-Lussac, J. L. & Thenard, L. J. (1809). Ann. Phys. 32, 1-15.
- Gillespie, R. J. & Hartman, J. S. (1967). Can. J. Chem. 45, 859-863.
- Gottlieb, H. E., Kotlyar, V. & Nudelman, A. (1997). J. Org. Chem. 62, 7512–7515.
- Greenwood, N. N. & Martin, R. L. (1951). J. Chem. Soc. pp. 1915– 1921.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gutmann, V. (1976). Coord. Chem. Rev. 18, 225-255.
- Klinkenberg, L. J. & Ketelaar, J. A. A. (1935). *Recl Trav. Chim. Pays Bas*, **54**, 959–961.
- Liu, L., Wang, X. & Li, C. (2003). Org. Lett. 5, 361-363.
- Matsumoto, K., Hagiwara, R., Mazej, Z., Goreshnik, E. & Žemva, B. (2006). J. Phys. Chem. B, 110, 2138–2141.
- McGrath, J. S., Stack, G. G. & McCusker, P. A. (1944). J. Am. Chem. Soc. 66, 1263–1264.
- Meerwein, H. (1933). Ber. Dtsch Chem. Ges. A/B, 66, 411-414.
- Meerwein, H. & Pannwitz, W. (1934). J. Prakt. Chem. 141, 123-148.
- Mootz, D. & Steffen, M. (1981a). Z. Anorg. Allg. Chem. 482, 193-200.
- Mootz, D. & Steffen, M. (1981b). Z. Anorg. Allg. Chem. 483, 171-180.
- Mootz, D. & Steffen, M. (1981c). Acta Cryst. B37, 1110-1112.
- Orain, P.-Y., Capon, J.-F., Gloaguen, F., Pétillon, F. Y., Schollhammer, P., Talarmin, J., Zampella, G., De Gioia, L. & Roisnel, T. (2010). *Inorg. Chem.* **49**, 5003–5008.
- Oyama, T., Hamano, T., Nagumo, K. & Nakane, R. (1978). Bull. Chem. Soc. Jpn, **51**, 1441–1443.
- Pawlenko, S. (1959). Z. Anorg. Allg. Chem. 300, 152-158.
- Pawlenko, S. (1968). Chem. Ing. Tech. 40, 52-55.
- Prakash, G. K. S., Gurung, L., Marinez, E. R., Mathew, T. & Olah, G. A. (2016). *Tetrahedron Lett.* 57, 288–291.
- Schomaker, V. & Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Simonov, Y. A., Gelmboldt, V. O., Ganin, E. V., Dvorkin, A. A., Fonar, M. S., Ostapchuk, L. V. & Lipkovsky, Y. (1995). *Russ. J. Coord. Chem.* 21, 724–729.
- Stoe & Cie (2009). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.
- Van Rijn, J., Reedijk, J., Dartmann, M. & Krebs, B. (1987). J. Chem. Soc. Dalton Trans. pp. 2579–2593.
- Wamser, C. A. (1951). J. Am. Chem. Soc. 73, 409-416.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yeo, G. A. & Ford, T. A. (2006). S. Afr. J. Chem. 59, 129-134.
- Yoneda, N., Hasegawa, E., Aomura, K. & Ohtsuka, H. (1969). *Bull. Jpn Petrol. Inst.* **11**, 54–58.

supporting information

Acta Cryst. (2019). E75, 1787-1791 [https://doi.org/10.1107/S2056989019014312]

The `super acid' BF_3H_2O stabilized by 1,4-dioxane: new preparative aspects and the crystal structure of $BF_3H_2O\cdot C_4H_8O_2$

Peter Barthen and Walter Frank

Computing details

Data collection: *X-AREA* (Stoe & Cie, 2009); cell refinement: *X-AREA* (Stoe & Cie, 2009); data reduction: *X-AREA* (Stoe & Cie, 2009); program(s) used to solve structure: *SHELXS* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Aquatrifluoridoboron-1,4-dioxane (1/1)

Crystal data	
H ₂ BF ₃ O·C ₄ H ₈ O ₂ $M_r = 173.93$ Orthorhombic, <i>Pbca</i> a = 7.6835 (5) Å b = 12.929 (1) Å c = 15.2326 (13) Å V = 1513.2 (2) Å ³ Z = 8 F(000) = 720	$D_x = 1.527 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7579 reflections $\theta = 2.7-25.9^{\circ}$ $\mu = 0.16 \text{ mm}^{-1}$ T = 223 K Prisms, colourless $0.69 \times 0.48 \times 0.42 \text{ mm}$
Data collection	
Stoe IPDS diffractometer Radiation source: sealed tube φ -scan Absorption correction: multi-scan (Blessing, 1989) $T_{min} = 0.673, T_{max} = 0.920$ 19913 measured reflections	1481 independent reflections 932 reflections with $I > 2\sigma(I)$ $R_{int} = 0.085$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -9 \rightarrow 9$ $k = -15 \rightarrow 15$ $l = -18 \rightarrow 18$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.067$ $wR(F^2) = 0.138$ S = 1.38 1481 reflections 108 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + 1.3744P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.60$ e Å ⁻³ $\Delta\rho_{min} = -0.42$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
F1	0.2228 (2)	0.10315 (15)	0.11881 (16)	0.0760 (7)	
F2	0.2173 (4)	-0.0515 (2)	0.05362 (17)	0.1020 (9)	
F3	0.2125 (4)	-0.0419 (2)	0.19661 (18)	0.1177 (11)	
01	0.4628 (3)	0.0027 (2)	0.1262 (3)	0.0968 (14)	
H1	0.516 (6)	0.057 (4)	0.133 (3)	0.108 (17)*	
H2	0.515 (6)	-0.053 (4)	0.128 (3)	0.109 (17)*	
O2	0.6367 (2)	0.16850 (14)	0.13995 (14)	0.0435 (5)	
03	0.8588 (2)	0.33805 (14)	0.11459 (14)	0.0425 (5)	
C1	0.8229 (3)	0.1569 (2)	0.1462 (2)	0.0409 (7)	
H11	0.8705	0.1372	0.0889	0.049*	
H12	0.8511	0.1021	0.1883	0.049*	
C2	0.9021 (4)	0.2567 (2)	0.1756 (2)	0.0435 (8)	
H21	0.8585	0.2745	0.2341	0.052*	
H22	1.0288	0.2493	0.1792	0.052*	
C3	0.6730(3)	0.3498 (2)	0.1084 (2)	0.0410 (7)	
H31	0.6449	0.4046	0.0663	0.049*	
H32	0.6256	0.3696	0.1657	0.049*	
C4	0.5934 (4)	0.2498 (2)	0.0791 (2)	0.0448 (8)	
H41	0.4666	0.2573	0.0756	0.054*	
H42	0.6366	0.2319	0.0205	0.054*	
B1	0.2712 (4)	0.0021 (3)	0.1232 (3)	0.0412 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0439 (11)	0.0559 (12)	0.128 (2)	0.0169 (9)	0.0004 (13)	0.0007 (12)
F2	0.0930 (18)	0.113 (2)	0.1005 (19)	-0.0035 (16)	-0.0243 (16)	-0.0500 (16)
F3	0.118 (2)	0.141 (2)	0.0942 (19)	-0.035 (2)	0.0120 (17)	0.0528 (18)
O1	0.0264 (12)	0.0294 (13)	0.234 (4)	0.0014 (11)	-0.008(2)	-0.0130 (18)
O2	0.0295 (10)	0.0357 (10)	0.0652 (14)	-0.0044 (8)	-0.0025 (9)	0.0052 (10)
O3	0.0292 (10)	0.0355 (10)	0.0629 (14)	-0.0033 (8)	0.0010 (10)	0.0012 (10)
C1	0.0308 (16)	0.0374 (15)	0.0544 (18)	0.0027 (12)	-0.0045 (13)	0.0001 (14)
C2	0.0314 (14)	0.0430 (17)	0.056 (2)	0.0027 (13)	-0.0078 (14)	-0.0035 (14)
C3	0.0318 (15)	0.0367 (15)	0.0544 (19)	0.0014 (12)	-0.0022 (13)	0.0054 (14)
C4	0.0348 (15)	0.0442 (17)	0.055 (2)	-0.0003 (13)	-0.0100 (15)	0.0025 (14)
B1	0.0299 (16)	0.0422 (18)	0.052 (2)	-0.0037 (15)	-0.0039 (18)	0.0006 (15)

Geometric parameters (Å, °)

F1—B1	1.361 (4)	C1—C2	1.495 (4)	
F2—B1	1.332 (4)	C1—H11	0.9800	
F3—B1	1.333 (4)	C1—H12	0.9800	
O1—B1	1.473 (4)	C2—H21	0.9800	
01—H1	0.82 (5)	C2—H22	0.9800	
O1—H2	0.82 (5)	C3—C4	1.499 (4)	
O2—C4	1.440 (3)	C3—H31	0.9800	
O2—C1	1.442 (3)	C3—H32	0.9800	
O3—C3	1.439 (3)	C4—H41	0.9800	
O3—C2	1.442 (3)	C4—H42	0.9800	
B1—O1—H1	121 (3)	O3—C3—H31	109.8	
B1-01-H2	119 (3)	C4—C3—H31	109.8	
H1-01-H2	120 (4)	O3—C3—H32	109.8	
C4—O2—C1	110.4 (2)	C4—C3—H32	109.8	
C3—O3—C2	110.4 (2)	H31—C3—H32	108.2	
O2—C1—C2	109.5 (2)	O2—C4—C3	110.1 (2)	
O2-C1-H11	109.8	O2—C4—H41	109.6	
C2-C1-H11	109.8	C3—C4—H41	109.6	
O2-C1-H12	109.8	O2—C4—H42	109.6	
C2-C1-H12	109.8	C3—C4—H42	109.6	
H11—C1—H12	108.2	H41—C4—H42	108.2	
O3—C2—C1	110.1 (2)	F3—B1—F2	109.9 (3)	
O3—C2—H21	109.6	F3—B1—F1	111.0 (3)	
C1—C2—H21	109.6	F2—B1—F1	112.1 (3)	
O3—C2—H22	109.6	F3—B1—O1	108.3 (3)	
C1—C2—H22	109.6	F2—B1—O1	109.8 (3)	
H21—C2—H22	108.2	F1—B1—O1	105.6 (3)	
O3—C3—C4	109.5 (2)			
C4—O2—C1—C2	58.7 (3)	C2—O3—C3—C4	-58.7 (3)	
C3—O3—C2—C1	59.2 (3)	C1—O2—C4—C3	-58.9 (3)	
O2—C1—C2—O3	-58.6 (3)	O3—C3—C4—O2	58.5 (3)	

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
01—H1…O2	0.82 (5)	1.72 (5)	2.534 (3)	175 (5)
O1—H2···O3 ⁱ	0.82 (5)	1.72 (5)	2.539 (3)	170 (5)

Symmetry code: (i) -x+3/2, y-1/2, z.