

Received 7 October 2019 Accepted 8 October 2019

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

‡ Additional correspondence author: dhirajslg2@gmail.com

Keywords: crystal structure; copper(II); coordination complex; Hirshfeld surface analysis; computational chemistry.

CCDC reference: 1958158

**Supporting information**: this article has supporting information at journals.iucr.org/e





## Bis[2-(4,5-diphenyl-1*H*-imidazol-2-yl)-4-nitrophenolato]copper(II) dihydrate: crystal structure and Hirshfeld surface analysis

# Sailesh Chettri,<sup>a</sup> Dhiraj Brahman,<sup>a</sup>‡ Biswajit Sinha,<sup>b</sup> Mukesh M. Jotani<sup>c</sup> and Edward R. T. Tiekink<sup>d</sup>\*

<sup>a</sup>Department of Chemistry, St. Joseph's College, Darjeeling 734 104, India, <sup>b</sup>Department of Chemistry, University of North Bengal, Darjeeling 734 013, India, <sup>c</sup>Department of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, and <sup>d</sup>Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia. \*Correspondence e-mail: edwardt@sunway.edu.my

The crystal and molecular structures of the title Cu<sup>II</sup> complex, isolated as a dihydrate,  $[Cu(C_{21}H_{14}N_3O_3)_2] \cdot 2H_2O$ , reveals a highly distorted coordination geometry intermediate between square-planar and tetrahedral defined by an  $N_2O_2$  donor set derived from two mono-anionic bidentate ligands. Furthermore, each six-membered chelate ring adopts an envelope conformation with the Cu atom being the flap. In the crystal, imidazolyl-amine-N-H. O(water), water-O-H···O(coordinated, nitro and water), phenyl-C-H···O(nitro) and  $\pi$ (imidazolyl)- $\pi$ (nitrobenzene) [inter-centroid distances = 3.7452 (14) and 3.6647 (13) Å] contacts link the components into a supramolecular layer lying parallel to (101). The connections between layers forming a three-dimensional architecture are of the types nitrobenzene-C-H···O(nitro) and phenyl-C- $H \cdots \pi$  (phenyl). The distorted coordination geometry for the Cu<sup>II</sup> atom is highlighted in an analysis of the Hirshfeld surface calculated for the metal centre alone. The significance of the intermolecular contacts is also revealed in a study of the calculated Hirshfeld surfaces; the dominant contacts in the crystal are  $H \cdots H$  (41.0%),  $O \cdots H/H \cdots O$  (27.1%) and  $C \cdots H/H \cdots C$  (19.6%).

#### 1. Chemical context

The title copper(II) complex, (I), was isolated during an ongoing research programme on the catalytic activity of copper borate (CuB<sub>4</sub>O<sub>7</sub>) for C-N heterocyclic bond formation reactions. Complex (I) was formed during the attempted synthesis of a triarylimidazole derivative using benzil and the respective aromatic aldehyde with copper borate, using ammonium acetate as a nitrogen source. The single-crystal analysis of the synthesized product revealed that in the copper(II) complex, the triarylimidazole moiety acts as a bidentate ligand for the copper atom. During the successful synthesis of the triarylimidazole, the desired product formed in good yield at a temperature in the range 100-110 °C. However, when the reaction was conducted at 130 °C and above, the title copper(II) complex formed instead of the targeted triarylimidazole. The crystal and molecular structures of (I) are described herein, along with a detailed analysis of the molecular packing via an analysis of the calculated Hirshfeld surfaces.

#### 2. Structural commentary

The crystallographic asymmetric unit of (I) comprises a complex molecule and two water molecules of crystallization.

Table 1Selected geometric parameters (Å, °).Cu=O11 9291 (17)Cu=N1

| Cu-O1    | 1.9291 (17) | Cu-N1    | 1.9586 (19) |
|----------|-------------|----------|-------------|
| Cu-O2    | 1.9304 (17) | Cu-N2    | 1.957 (2)   |
|          |             |          |             |
| O1-Cu-O2 | 89.36 (7)   | O2-Cu-N1 | 144.41 (8)  |
| O1-Cu-N2 | 147.34 (8)  | O2-Cu-N2 | 93.56 (7)   |
| O1-Cu-N1 | 92.83 (8)   | N1-Cu-N2 | 103.14 (8)  |

The copper(II) centre in (I), Fig. 1, is bis-N,O-chelated by two 2-(4,5-diphenyl-1*H*-imidazol-2-yl)-4-nitrophenolate monoanions. The resulting N2O2 donor set defines a highly distorted coordination geometry, as seen in the angles included in Table 1 and in the view of Fig. 2. The angles range from a narrow 89.36 (7)°, for O1-Cu-O2, to a wide 147.34 (8)°, for O1-Cu-N2. The distortion is highlighted in the dihedral angle between the best planes through the two chelate rings of 49.82 (7)°. The value of  $\tau_4$  is a geometric measure of the distortion of a four-coordinate geometry (Yang et al., 2007). For (I), the value computes as 0.48 which is almost exactly intermediate between the values of  $\tau_4 = 0$  for an ideal tetrahedron and  $\tau_4 = 1.0$  for an ideal square-planar geometry. In fact, the six-membered chelate rings are not planar, each adopting an envelope conformation with the Cu atom being the flap atom. In this description, the r.m.s. deviation for the least-squares plane through the O1/N1/C1/C2 atoms is 0.036 Å with the Cu atom lying 0.410 (3) Å out of the plane. The comparable parameters for the O2-chelate ring are 0.033 and 0.354 (3) Å, respectively. The dihedral angle formed between the two planar regions of the chelate rings is  $49.38 (8)^{\circ}$ . The dihedral angles between the best plane through the O1chelate ring and each of the fused six- and five-membered rings are 9.18 (12) and 5.54 (14)°, respectively; the equivalent angles for the O2-chelate rings are 8.44 (8) and 2.71 (9) $^{\circ}$ , respectively. The N1-imidazol-2-yl ring forms dihedral angles of 41.20 (11) and 37.46 (10)° with the C10- and C16-phenyl substituents, respectively, and the dihedral angle between the



#### Figure 1

The molecular structure of the complex molecule in (I), showing the atom-labelling scheme and with displacement ellipsoids drawn at the 70% probability level.

| Table 2   |               |       |     |
|-----------|---------------|-------|-----|
| Hydrogen- | bond geometry | ' (Å, | °). |

Cg1 is the ring centroid of the C16-C21 ring.

| $D - H \cdot \cdot \cdot A$ |
|-----------------------------|
| 173 (3)                     |
| 172 (3)                     |
| 164 (2)                     |
| 134 (2)                     |
| 172 (2)                     |
| 136 (2)                     |
| 151                         |
| 151                         |
| 151                         |
| 168                         |
|                             |

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) x - 1, y, z - 1; (iv)  $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$ ; (v) x + 1, y, z + 1; (vi)  $x, -y + \frac{1}{2}, z - \frac{1}{2}$ .

phenyl rings is 59.92 (8)°, *i.e.* all indicating splayed relationships. A similar situation pertains to the N2-imidazol-2-yl ring, where the comparable dihedral angles formed with the C31- and C37-phenyl rings are 38.29 (10), 48.5 (9) and 50.84 (7)°, respectively. Finally, the nitro groups are not strictly coplanar with the benzene rings to which they are connected, as seen in the dihedral angles of 14.2 (4)° for C1–C6/N4/O3/O4 and 5.9 (3)° for C22–C27/N6/O5/O6.



#### 3. Supramolecular features

As each component of the asymmetric unit has hydrogenbonding functionality, conventional hydrogen bonds are found in the crystal of (I); the geometric parameters characterizing the identified intermolecular interactions operating in the crystal of (I) are collated in Table 2. Each of the imidazolylamine-N-H atoms forms a donor interaction to a water molecule to generate a three-molecule aggregate. The O1W water molecule forms donor interactions to the coordinated O2 atom and to a symmetry-related O2W water molecule. The O2W water molecule connects to the coordinated O1 atom as well as to a nitro-O3 atom. Hence, the O2W water molecule is involved in four hydrogen-bonding interactions. The fourth contact involving the O1W water molecule, a  $C-H \cdots O$ acceptor contact, is provided by the nitrobenzene ring. There is also a phenyl-C-H···O(nitro) contact of note, Table 2. The aforementioned interactions combine to stabilize a supramolecular layer lying parallel to (101), as shown in Fig. 3(a). There are also  $\pi - \pi$  stacking and C-H···O interactions in the crystal, Fig. 3(b). Within layers, there are  $\pi - \pi$  interactions occurring between the imidazolyl and nitrobenzene rings



A view of the molecular structure of the complex molecule in (I), highlighting the distorted coordination geometry about the copper(II) atom.

[inter-centroid distances:  $Cg(N1/N3/C7-C9)\cdots Cg(C1-C6) = 3.7452 (14) \text{ Å}$  and angle of inclination = 9.70 (13)° for symmetry operation (-x + 2, -y + 1, -z + 1);  $Cg(N2/N5/C28-C30)\cdots Cg(C22-C27) = 3.6647 (13) \text{ Å}$  and angle of inclination = 8.15 (12)° for (-x + 1, -y + 1, -z + 1)]. The connections between layers along [010] are of the type nitrobenzene-C-H···O(nitro) and phenyl-C-H··· $\pi$ (phenyl), as detailed in Table 2.

#### 4. Hirshfeld surface analysis

The Hirshfeld surface calculations for (I) were performed with *CrystalExplorer17* (Turner *et al.*, 2017) and published proto-

cols (Tan *et al.*, 2019), and serve to indicate the significant role of the two water molecules in the supramolecular association in the crystal. The involvement of both the water molecules in hydrogen bonds, Table 2, are evident as bright-red spots near the respective atoms on the Hirshfeld surfaces mapped over  $d_{norm}$  for the O1W-, Fig. 4(*a*), and O2W-water, Fig. 4(*b*), molecules. In addition, the presence of faint-red spots near the O1W, O2W and H1W atoms in Figs. 4(*a*) and 4(*b*) are indicative of the other contacts of these atoms with those of the Cu<sup>II</sup> complex molecule (Table 2). The donors and acceptors of the hydrogen bonds involving atoms of the complex molecule are also apparent as bright-red spots near the participating atoms in the views of the Hirshfeld surfaces calculated for the complex molecule shown in Figs. 4(*c*)–(*e*).

The presence of a short interatomic  $C \cdots C$  contact between atoms C22 and C28 (Table 3) arises from  $\pi$ - $\pi$  stacking between symmetry-related imidazole and nitrobenzene rings, and is observable as the faint-red spots near these atoms on the  $d_{\text{norm}}$ -mapped Hirshfeld surface in Fig. 4(c). The pair of faint-red spots appearing near the phenyl-C36 and H36 atoms, and also near the nitro-O5 atom on the surface indicating short interatomic contacts that characterize the weak C-H···O interaction, Table 3. The influence of the C-H··· $\pi$ contact on the molecular packing is recognized from the three faint-red spots in the phenyl-(C16-C21) ring and another near atom H34 in Fig. 4(e). The donors and acceptors of this interaction are also evident as the blue bump and a brightorange spot enclosed within the black circle on the Hirshfeld surface mapped with the shape-index property in Fig. 5(a). The bright-orange region enclosed within a black circle in Fig. 5(b) is also an indication of the O2W-H4W···Cg(C16-C21) contact. The Hirshfeld surfaces mapped over the calculated electrostatic potential for the water and complex molecules in Fig. 6 also illustrate the donors and acceptors of



#### Figure 3

The molecular packing in the crystal of (I): (a) a supramolecular layer parallel to (101) sustained by  $O-H\cdots O$ ,  $N-H\cdots O$  and  $C-H\cdots O$  interactions shown as orange, blue and green dashed lines, respectively, and (b) a view of the unit-cell contents in projection down the c axis, with  $\pi-\pi$  and  $C-H\cdots\pi$  interactions shown as purple and pink dashed lines, respectively.

intermolecular interactions through blue and red regions corresponding to positive and negative electrostatic potentials, respectively. The  $\pi$ - $\pi$  stacking between symmetry-related imidazolyl and nitrobenzene rings are viewed as the flat regions enclosing them on the Hirshfeld surfaces mapped over curvedness in Fig. 7. On the Hirshfeld surfaces mapped over  $d_{\text{norm}}$  illustrated in Figs. 4(c)-(e), faint-red spots also appear near other atoms indicating their involvement in other short interatomic contacts, as summarized in Table 3.

The Hirshfeld surfaces also provide an insight into the distortion in the coordination geometry formed by the N<sub>2</sub>O<sub>4</sub> donor set about the copper(II) centre in the complex molecule. This is performed by considering the Hirshfeld surface about the metal centre alone (Pinto et al., 2019). The distortion in the coordination geometry is observed on the Hirshfeld surface mapped with the shape-index property as the brightorange patches of irregular shape covering a major region for the Cu-O bonds in Fig. 8(a) and the small orange regions on the surface relatively far from the Cu-N bonds in Fig. 8(*b*). The different curvature of the Hirshfeld surfaces coordinated by the  $N_2O_4$  donor set in Figs. 8(c) and 8(d) also support this observation. The Cu-O and Cu-N bonds are rationalized in the two-dimensional fingerprint plot taking into account only the Hirshfeld surface for the copper atom shown in Fig. 9. The distribution of points in the fingerprint plot through the pair of aligned red points at different inclinations from  $d_e + d_i \sim 2.0$  Å for the Cu–N bonds (upper region) and the Cu–O bonds (lower region) are indicative of the distorted geometry (Pinto *et al.*, 2019).

The overall two-dimensional fingerprint plot for (I), i.e. the entire asymmetric unit, Fig. 10(a), and those delineated into  $H \cdots H, O \cdots H/H \cdots O, C \cdots H/H \cdots C, C \cdots C and C \cdots O/O \cdots C$ contacts are illustrated in Figs. 10(b)-(f), respectively. The percentage contribution from different interatomic contacts to the Hirshfeld surfaces of the complex molecule and for overall (I) are summarized in Table 4. The presence of water molecules in the crystal of (I) increases the percentage contribution from O···H/H···O contacts (Table 4) to the Hirshfeld surface of the asymmetric unit compared with the complex molecule alone. This results in slight decreases in the percentage contributions from other interatomic contacts for (I) (Table 4). A single conical tip at  $d_e + d_i \sim 1.9$  Å in the fingerprint plot delineated into H...H contacts shown in Fig. 10(b) is the result of the involvement of the H12 atom in a short interatomic H...H contact, Table 3. The points due to short interatomic contacts between amine hydrogen-H3N and water hydrogen atoms, H1W and H2W, Table 3, are merged within the plot. Although the molecular packing of (I) is influenced by several intermolecular O-H···O and C-H.  $\cdot \cdot \cdot$ O interactions, the presence of a pair of long spikes at  $d_{e}$  +



Figure 4

Different views of the Hirshfeld surfaces for the constituents of (I) mapped over  $d_{\text{norm}}$  for the (a) water-O1W molecule [in the range -0.2369 to +1.2173 arbitrary units (au)], (b) water-O2W molecule (-0.2114 to +0.7500 au) and (c)–(e) complex molecule (-0.1170 to +1.6287 au).

## research communications



Figure 5

Two views of the Hirshfeld surface mapped with the shape-index property for the complex molecule in (I) from -1.0 to +1.0 arbitrary units highlighting (a) the donor and acceptor atoms of the C-H·· $\pi$ interaction through a blue bump near the H34 atom and bright-orange curvature, enclosed within the black circle, and (b) the O2W-H4W·· $\pi$ interaction by the bright-orange region enclosed within the black circle.

 $d_i \sim 1.8$  Å in the plot delineated into O···H/H···O contacts, Fig. 10(c), arise from the  $N-H \cdots O$  hydrogen bond, while the merged points correspond to other interactions at greater interatomic distances. The significant contribution from interatomic C···H/H···C contacts (Table 4) to the Hirshfeld surface of (I) reflect the combined influence of intermolecular  $C-H \cdot \cdot \pi$  interactions (Table 2) and the short interatomic  $C \cdots H/H \cdots C$  contacts, summarized in Table 3, and viewed as the distribution of points in the form of characteristic wings in Fig. 10(d). The presence of short interatomic  $C \cdots C$  contacts are evident as the points near a rocket shape tip at  $d_{\rm e}$  +  $d_{\rm i}$   $\sim$ 3.2 Å in the respective delineated fingerprint plot, Fig. 10(e), while the points corresponding  $\pi$ - $\pi$  stacking between the imidazole and nitrobenzene rings are distributed about  $d_e =$  $d_i = 1.7$  Å in the plot. The small, *i.e.* 2.7%, contribution from  $C \cdots N/N \cdots C$  contacts to the surface is also due to these  $\pi - \pi$ stacking interactions (delineated plot not shown). The

| Table 3                                              |  |
|------------------------------------------------------|--|
| Summary of short interatomic contacts (Å) in $(I)^a$ |  |

| Contact                     | Distance  | Symmetry operation                                 |
|-----------------------------|-----------|----------------------------------------------------|
| H12···H12                   | 1.92      | -x + 1, -y + 1, -z + 1                             |
| $H1W \cdot \cdot H3N$       | 2.22      | -x + 2, -y + 1, -z + 1                             |
| H2W···H3N                   | 2.26      | -x + 2, -y + 1, -z + 1                             |
| $O4 \cdot \cdot \cdot H40$  | 2.54      | $x + 1, -y + \frac{3}{2}, z + \frac{1}{2}$         |
| $C1 \cdot \cdot \cdot H3W$  | 2.74      | -x + 1, -y + 1, -z + 1                             |
| C6···O6                     | 3.206 (3) | -x + 1, -y + 1, -z + 1                             |
| C12···H12                   | 2.55      | -x + 1, -y + 1, -z                                 |
| C13···C25                   | 3.347 (3) | -x + 1, -y + 1, -z                                 |
| C14···O5                    | 3.197 (3) | -x + 1, -y + 1, -z                                 |
| H17···O6                    | 2.55      | -x + 1, -y + 1, -z                                 |
| C19···H34                   | 2.68      | $x, -y + \frac{3}{2}, z - \frac{1}{2}$             |
| C20···H34                   | 2.60      | $x_{1} - y_{1} + \frac{3}{2}, z_{1} - \frac{1}{2}$ |
| C21···H34                   | 2.67      | $x, -y + \frac{3}{2}, z - \frac{1}{2}$             |
| $C21 \cdot \cdot \cdot H2W$ | 2.64      | -x + 2, -y + 1, -z + 1                             |
| $C21 \cdot \cdot \cdot O1W$ | 3.161 (3) | -x + 2, -y + 1, -z + 1                             |
| C22···C28                   | 3.267 (3) | -x + 1, -y + 1, -z + 1                             |
| C36···O5                    | 3.146 (3) | -x + 1, -y + 1, -z + 1                             |
| H36···O5                    | 2.49      | -x + 1, -y + 1, -z + 1                             |
| $C41 \cdot \cdot \cdot H20$ | 2.76      | -x + 1, y, z                                       |

Notes: (a) the interatomic distances are calculated in CrystalExplorer17 (Turner et al., 2017), whereby the X-H bond lengths are adjusted to their neutron values.

contribution of 3.2% from C···O/O···C contacts is due to the presence of short interatomic contacts involving nitro-O atoms, Table 2, and are apparent as the pair of parabolic tips at  $d_e + d_i \sim 3.2$  Å in the delineated plot of Fig. 10(*f*). The





Different views of the Hirshfeld surfaces for the constituents of (I) mapped over the electrostatic potential (the red and blue regions represent negative and positive electrostatic potentials, respectively) for the (a) water-O1W molecule [in the range -0.1001 to +0.1943 atomic units (a.u.)], (b) water-O2W molecule (-0.1013 to +0.1751 a.u.) and (c) complex molecule (-0.1209 to +0.2076 a.u.). The hydrogen bonds involving water molecules in (c) are indicated by green dashed lines.



#### Figure 7

Two views of the Hirshfeld surface mapped over curvedness for the complex molecule in (I), highlighting flat regions enclosing symmetry-related imidazole and nitrobenzene rings involved in  $\pi$ - $\pi$  stacking, labelled Cg1 and Cg3 for one pair of rings in (a), and Cg2 and Cg4 for the other pair in (b).



#### Figure 8

Different views of the Hirshfeld surfaces calculated for the copper(II) centre in (I) highlighting the coordination by the N<sub>2</sub>O<sub>4</sub> donor set mapped over (a)/(b) shape-index in the range -1.0 to +1.0 arbitrary units and (c)/(d) curvedness in the range -4.0 to +0.4 arbitrary units.

| Ta | bl | e  | 4   |
|----|----|----|-----|
| Ia | UI | С. | ÷•• |

| Percentage contributions of interatomic | c contacts to the Hirshfeld surface |
|-----------------------------------------|-------------------------------------|
| for the complex molecule in (I) and ov  | verall (I).                         |

| Contact                                         | Percentage contribution |      |  |
|-------------------------------------------------|-------------------------|------|--|
|                                                 | complex molecule        | (I)  |  |
| $H \cdots H$                                    | 41.3                    | 41.0 |  |
| $O{\cdots} H/H{\cdots} O$                       | 25.6                    | 27.1 |  |
| $C \cdot \cdot \cdot H/H \cdot \cdot \cdot C$   | 19.8                    | 19.6 |  |
| $\mathbf{C} \cdots \mathbf{C}$                  | 3.5                     | 3.3  |  |
| $C \cdots O / O \cdots C$                       | 3.4                     | 3.2  |  |
| $C \cdot \cdot \cdot N / N \cdot \cdot \cdot C$ | 2.8                     | 2.7  |  |
| $N{\cdots}H/H{\cdots}N$                         | 2.2                     | 2.1  |  |
| 00                                              | 0.6                     | 0.5  |  |
| $N{\cdots}O/O{\cdots}N$                         | 0.2                     | 0.2  |  |
| Cu···O/O···Cu                                   | 0.0                     | 0.3  |  |
| $Cu{\cdots}C/C{\cdots}Cu$                       | 0.3                     | 0.0  |  |

contribution from other interatomic contacts to the surface summarized in Table 4 have negligible influence on the molecular packing.

#### 5. Database survey

There are five crystal structures of copper complexes with related 2-(4,5-diphenyl-1H-imidazol-2-yl)phenolate ligands in the literature [Cambridge Structural Database (CSD): Groom et al., 2016]. The first of these is the 4-bromo derivative of (I), isolated as a dimethylformamide solvate [(II); CSD refcode YUKSOO] (Parween et al., 2015). The remaining four structures are  $2,4-(t-Bu)_2$ -phenolate derivatives, three of which are copper(II) complexes and the other, a copper(III) complex. Three of these four species have no additional substitution (Benisvy et al., 2003). One was isolated as a methanol trisolvate [(III); JADZUK], another as a dimethylformamide tetrasolvate [(IV); NEPLAV01] and the third an oxidized species, *i.e.* a copper(III) complex, was isolated as a tetrafluoroborate salt/dichloromethane disolvate [(V); NEP-LEZ01]; complex (IV) has crystallographic twofold symmetry. The final structure, a copper(II) complex (Benisvy et al., 2006), has additional 4-methoxyphenyl substituents on the imidazol-



#### Figure 9

The two-dimensional fingerprint plot taking into account only the Hirshfeld surface calculated about the copper(II) atom.

## research communications



Figure 10

(a) A comparison of the full two-dimensional fingerprint plot for (I) and those delineated into  $(b) \operatorname{H} \cdots \operatorname{H}, (c) \operatorname{O} \cdots \operatorname{H}/\operatorname{H} \cdots \operatorname{O}, (d) \operatorname{C} \cdots \operatorname{H}/\operatorname{H} \cdots \operatorname{C}, (e) \operatorname{C} \cdots \operatorname{C}$  and  $(f) \operatorname{C} \cdots \operatorname{O}/\operatorname{O} \cdots \operatorname{C}$  contacts.

2-yl rings and was isolated as a methanol disolvate [(VI); JEBRUE]. The common feature of all the structures is the '*cis*'-N<sub>2</sub>O<sub>2</sub> set but the coordination geometries are highly distorted, as seen in the sequence of  $\tau_4$  values for (I)–(VI) of 0.48, 0.53, 0.44, 0.37, 0.47 and 0.35, respectively.

#### 6. Synthesis and crystallization

In a typical procedure, benzil (0.3 g, 1 mmol), ammonium acetate (0.19 g, 2.5 mmol), 2-hydroxy-5-nitrobenzalaldehyde (0.167 g, 1 mmol) and copper(II) borate (0.218 mg, 1 mmol) were ground in an agate mortar with a pestle. To this mixture, about 1.5 g of dried silica gel (column chromatography, 60–120 mesh) was added and the reaction mixture was ground again for 30 min. The whole reaction mixture was then transferred to a 100 ml round-bottomed flask and heated at 130 °C with constant stirring for 4 h. The reaction mixture was then extracted with dry acetone and dried over MgSO<sub>4</sub>. After a few

| Table 5                                                                    |                                                                              |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Experimental details.                                                      |                                                                              |
| Crevetal data                                                              |                                                                              |
| Chemical formula                                                           | $[C_{\nu}(C H N O)]$ 2H O                                                    |
| M                                                                          | $[Cu(C_{21}\Pi_{14}\Pi_{3}G_{3})_{2}]^{-2\Pi_{2}G}$                          |
| Mr<br>Crystal system space group                                           | Monoclinic P2 /c                                                             |
| Temperature (K)                                                            | 100                                                                          |
| $a \ b \ c \ (\mathring{A})$                                               | 132752(2) 251602(4)                                                          |
| <i>u</i> , <i>b</i> , <i>c</i> ( <i>r</i> )                                | 11.1166 (2)                                                                  |
| β (°)                                                                      | 104.256 (1)                                                                  |
| $V(\dot{A}^3)$                                                             | 3598.68 (10)                                                                 |
| Z                                                                          | 4                                                                            |
| Radiation type                                                             | Cu Kα                                                                        |
| $\mu \text{ (mm}^{-1})$                                                    | 1.42                                                                         |
| Crystal size (mm)                                                          | $0.14 \times 0.11 \times 0.07$                                               |
|                                                                            |                                                                              |
| Data collection                                                            |                                                                              |
| Diffractometer                                                             | XtaLAB Synergy, Dualflex,<br>AtlasS2                                         |
| Absorption correction                                                      | Gaussian ( <i>CrysAlis PRO</i> ; Rigaku OD, 2018)                            |
| $T_{\min}, T_{\max}$                                                       | 0.757, 1.000                                                                 |
| No. of measured, independent and                                           | 46023, 7490, 6420                                                            |
| observed $[I > 2\sigma(I)]$ reflections                                    |                                                                              |
| R <sub>int</sub>                                                           | 0.058                                                                        |
| $(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$                   | 0.631                                                                        |
|                                                                            |                                                                              |
| Refinement                                                                 |                                                                              |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                        | 0.047, 0.128, 1.05                                                           |
| No. of reflections                                                         | 7490                                                                         |
| No. of parameters                                                          | 532                                                                          |
| No. of restraints                                                          | 8                                                                            |
| H-atom treatment                                                           | H atoms treated by a mixture of<br>independent and constrained<br>refinement |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$ | 0.61, -0.74                                                                  |

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXS (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

days, a dark-brown solid was obtained. The product was recrystallized from dry dimethylformamide and, after 5 d, light-blue crystals of (I) were obtained (yield 60%; m.p. >  $300 \,^{\circ}$ C).

#### 7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. Carbon-bound H-atoms were placed in calculated positions (C-H = 0.95 Å) and were included in the refinement in the riding-model approximation, with  $U_{\rm iso}({\rm H})$  values set at  $1.2U_{\rm eq}({\rm C})$ . The O- and N-bound H atoms were located in a difference Fourier map but were refined with distance restraints of O-H =  $0.84 \pm 0.01$  Å and N-H =  $0.88 \pm 0.01$  Å, respectively, and with  $U_{\rm iso}({\rm H})$  set at  $1.5U_{\rm eq}({\rm O})$  or  $1.2U_{\rm eq}({\rm N})$ .

#### Acknowledgements

The authors thank the Research Centre of Crystalline Materials X-ray crystallography laboratory for the X-ray intensity data. Crystallographic research at Sunway University is supported by Sunway University Sdn Bhd.

#### **Funding information**

Funding for this research was provided by: Sunway University Sdn Bhd (grant No. STR-RCTR-RCCM-001-2019).

#### References

- Benisvy, L., Bill, E., Blake, A. J., Collison, D., Davies, E. S., Garner, C. D., McArdle, G., McInnes, E. J. L., McMaster, J., Ross, S. H. K. & Wilson, C. (2006). *Dalton Trans.* pp. 258–267.
- Benisvy, L., Blake, A. J., Collison, D., Stephen Davies, E., David Garner, C., McInnes, E. J. L., McMaster, J., Whittaker, G. & Wilson, C. (2003). *Dalton Trans.* pp. 1975–1985.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

- Parween, A., Mandal, T. K., Guillot, R. & Naskar, S. (2015). *Polyhedron*, **99**, 34–46.
- Pinto, C. B., Dos Santos, L. H. R. & Rodrigues, B. L. (2019). Acta Cryst. C75, 707–716.
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.
- Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer.* Version 17. The University of Western Australia. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.

#### Acta Cryst. (2019). E75, 1664-1671 [https://doi.org/10.1107/S2056989019013720]

# Bis[2-(4,5-diphenyl-1*H*-imidazol-2-yl)-4-nitrophenolato]copper(II) dihydrate: crystal structure and Hirshfeld surface analysis

## Sailesh Chettri, Dhiraj Brahman, Biswajit Sinha, Mukesh M. Jotani and Edward R. T. Tiekink

#### **Computing details**

Data collection: *CrysAlis PRO* (Rigaku OD, 2018); cell refinement: *CrysAlis PRO* (Rigaku OD, 2018); data reduction: *CrysAlis PRO* (Rigaku OD, 2018); program(s) used to solve structure: *SHELXS* (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015*b*); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Bis[2-(4,5-diphenyl-1H-imidazol-2-yl)-4-nitrophenolato]copper(II) dihydrate

| F(000) = 1676<br>$D_x = 1.499 \text{ Mg m}^{-3}$<br>Cu K $\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$<br>Cell parameters from 17322 reflections<br>$\theta = 3.4-75.1^{\circ}$<br>$\mu = 1.42 \text{ mm}^{-1}$<br>T = 100  K<br>Block, light-blue<br>$0.14 \times 0.11 \times 0.07 \text{ mm}$                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                 |
| 46023 measured reflections<br>7490 independent reflections<br>6420 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.058$<br>$\theta_{max} = 76.5^{\circ}, \ \theta_{min} = 3.4^{\circ}$<br>$h = -16 \rightarrow 15$<br>$k = -31 \rightarrow 18$<br>$l = -14 \rightarrow 13$                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                 |
| Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: mixed<br>H atoms treated by a mixture of independent<br>and constrained refinement<br>$w = 1/[\sigma^2(F_o^2) + (0.0612P)^2 + 4.3316P]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} = 0.001$<br>$\Delta\rho_{max} = 0.61$ e Å <sup>-3</sup><br>$\Delta \rho_{max} = -0.74$ e Å <sup>-3</sup> |
|                                                                                                                                                                                                                                                                                                                                                                                                 |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|     | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|--------------|-----------------------------|--|
| Cu  | 0.74255 (2)  | 0.52876 (2)  | 0.48001 (3)  | 0.01988 (11)                |  |
| 01  | 0.83947 (13) | 0.50064 (7)  | 0.62462 (16) | 0.0252 (4)                  |  |
| 02  | 0.66268 (12) | 0.46402 (7)  | 0.46842 (16) | 0.0230 (3)                  |  |
| O3  | 1.24824 (14) | 0.57484 (8)  | 0.99386 (16) | 0.0330 (4)                  |  |
| O4  | 1.27722 (17) | 0.60469 (10) | 0.82272 (19) | 0.0473 (6)                  |  |
| 05  | 0.24188 (14) | 0.37240 (7)  | 0.15743 (17) | 0.0293 (4)                  |  |
| 06  | 0.22116 (14) | 0.45563 (7)  | 0.10696 (17) | 0.0306 (4)                  |  |
| N1  | 0.85211 (14) | 0.56519 (8)  | 0.42190 (18) | 0.0205 (4)                  |  |
| N2  | 0.62006 (14) | 0.57293 (8)  | 0.41429 (17) | 0.0195 (4)                  |  |
| N3  | 1.00287 (15) | 0.60284 (8)  | 0.43184 (18) | 0.0208 (4)                  |  |
| H3N | 1.0706 (14)  | 0.6096 (12)  | 0.456 (3)    | 0.025*                      |  |
| N4  | 1.22194 (17) | 0.58167 (9)  | 0.8805 (2)   | 0.0288 (5)                  |  |
| N5  | 0.46035 (15) | 0.59145 (8)  | 0.31342 (18) | 0.0209 (4)                  |  |
| H5N | 0.3926 (14)  | 0.5882 (12)  | 0.288 (3)    | 0.025*                      |  |
| N6  | 0.27280 (15) | 0.41869 (8)  | 0.16466 (18) | 0.0232 (4)                  |  |
| C1  | 0.93103 (18) | 0.52034 (9)  | 0.6799 (2)   | 0.0217 (5)                  |  |
| C2  | 0.98664 (18) | 0.55672 (9)  | 0.6228 (2)   | 0.0206 (4)                  |  |
| C3  | 1.08255 (18) | 0.57635 (10) | 0.6906 (2)   | 0.0239 (5)                  |  |
| Н3  | 1.1200       | 0.6008       | 0.6532       | 0.029*                      |  |
| C4  | 1.12307 (18) | 0.56018 (10) | 0.8122 (2)   | 0.0232 (5)                  |  |
| C5  | 1.07118 (19) | 0.52365 (10) | 0.8690 (2)   | 0.0246 (5)                  |  |
| Н5  | 1.1001       | 0.5124       | 0.9519       | 0.030*                      |  |
| C6  | 0.97736 (18) | 0.50408 (10) | 0.8029 (2)   | 0.0246 (5)                  |  |
| H6  | 0.9423       | 0.4787       | 0.8411       | 0.029*                      |  |
| C7  | 0.94688 (17) | 0.57399 (9)  | 0.4945 (2)   | 0.0201 (4)                  |  |
| C8  | 0.84752 (17) | 0.58953 (9)  | 0.3082 (2)   | 0.0202 (4)                  |  |
| C9  | 0.94244 (17) | 0.61300 (9)  | 0.3143 (2)   | 0.0205 (4)                  |  |
| C10 | 0.75336 (18) | 0.58906 (10) | 0.2072 (2)   | 0.0224 (5)                  |  |
| C11 | 0.69242 (19) | 0.54320 (11) | 0.1822 (2)   | 0.0250 (5)                  |  |
| H11 | 0.7152       | 0.5115       | 0.2269       | 0.030*                      |  |
| C12 | 0.5990 (2)   | 0.54366 (12) | 0.0927 (2)   | 0.0320 (6)                  |  |
| H12 | 0.5578       | 0.5124       | 0.0772       | 0.038*                      |  |
| C13 | 0.5652 (2)   | 0.58977 (13) | 0.0253 (2)   | 0.0326 (6)                  |  |
| H13 | 0.5006       | 0.5903       | -0.0351      | 0.039*                      |  |
| C14 | 0.6269 (2)   | 0.63488 (12) | 0.0476 (2)   | 0.0299 (6)                  |  |
| H14 | 0.6051       | 0.6662       | 0.0005       | 0.036*                      |  |
| C15 | 0.71990 (19) | 0.63494 (11) | 0.1373 (2)   | 0.0254 (5)                  |  |
| H15 | 0.7612       | 0.6662       | 0.1517       | 0.031*                      |  |
| C16 | 0.98685 (17) | 0.64082 (10) | 0.2229 (2)   | 0.0217 (5)                  |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{A}^2)$ 

| C17        | 0.96256 (18)               | 0.62504 (10)             | 0.0983 (2)             | 0.0239 (5) |
|------------|----------------------------|--------------------------|------------------------|------------|
| H17        | 0.9122                     | 0.5981                   | 0.0701                 | 0.029*     |
| C18        | 1.0124 (2)                 | 0.64895 (11)             | 0.0159 (2)             | 0.0291 (5) |
| H18        | 0.9954                     | 0.6383                   | -0.0687                | 0.035*     |
| C19        | 1.0863 (2)                 | 0.68803 (12)             | 0.0558 (3)             | 0.0323 (6) |
| H19        | 1.1218                     | 0.7032                   | -0.0003                | 0.039*     |
| C20        | 1.1084 (2)                 | 0.70494 (11)             | 0.1786 (3)             | 0.0311 (6) |
| H20        | 1.1578                     | 0.7324                   | 0.2060                 | 0.037*     |
| C21        | 1.05857 (18)               | 0.68174 (10)             | 0.2611 (2)             | 0.0247 (5) |
| H21        | 1.0734                     | 0.6938                   | 0.3446                 | 0.030*     |
| C22        | 0.56875 (17)               | 0.45490 (9)              | 0.3982 (2)             | 0.0200 (4) |
| C23        | 0.50083 (18)               | 0.49614 (9)              | 0.3407 (2)             | 0.0204 (4) |
| C24        | 0.40437 (18)               | 0.48271 (10)             | 0.2621 (2)             | 0.0214 (5) |
| H24        | 0.3598                     | 0.5099                   | 0.2198                 | 0.026*     |
| C25        | 0 37391 (17)               | 0.43039(10)              | 0.2459(2)              | 0.0209(5)  |
| C26        | 0.37371(17)<br>0.43829(18) | 0 38910 (10)             | 0.2135(2)<br>0.3045(2) | 0.0205(5)  |
| H26        | 0.4163                     | 0 3531                   | 0.2930                 | 0.0228 (3) |
| C27        | 0.53397 (18)               | 0.40181 (10)             | 0.2930<br>0.3791 (2)   | 0.027      |
| H27        | 0.5782                     | 0.3740                   | 0.4191                 | 0.0230 (3) |
| C28        | 0.5762                     | 0.5740                   | 0.4191<br>0.3586 (2)   | 0.020      |
| C28        | 0.52750(17)                | 0.55192(9)<br>0.62771(0) | 0.3380(2)<br>0.4033(2) | 0.0193(4)  |
| C29        | 0.01089(17)                | 0.02771(9)               | 0.4033(2)              | 0.0192(4)  |
| C30        | 0.31040(18)                | 0.03939(9)               | 0.3401(2)<br>0.4520(2) | 0.0212(3)  |
| C31<br>C22 | 0.09704(18)                | 0.004/4(9)               | 0.4339(2)              | 0.0214(3)  |
| 0.52       | 0.70930 (19)               | 0.71076 (10)             | 0.3893 (2)             | 0.0255 (5) |
| H32        | 0.6635                     | 0.7179                   | 0.310/                 | 0.031*     |
| 033        | 0.7886 (2)                 | 0.74629 (11)             | 0.4399 (3)             | 0.0318 (6) |
| H33        | 0./9/1                     | 0.7777                   | 0.3959                 | 0.038*     |
| C34        | 0.8553 (2)                 | 0.73593 (11)             | 0.5545 (3)             | 0.0340 (6) |
| H34        | 0.9089                     | 0.7605                   | 0.5892                 | 0.041*     |
| C35        | 0.8443 (2)                 | 0.69010 (11)             | 0.6187 (3)             | 0.0316 (6) |
| H35        | 0.8906                     | 0.6830                   | 0.6968                 | 0.038*     |
| C36        | 0.76519 (19)               | 0.65455 (10)             | 0.5684 (2)             | 0.0245 (5) |
| H36        | 0.7575                     | 0.6230                   | 0.6124                 | 0.029*     |
| C37        | 0.45587 (18)               | 0.68949 (10)             | 0.2984 (2)             | 0.0228 (5) |
| C38        | 0.46133 (19)               | 0.73260 (10)             | 0.3798 (2)             | 0.0262 (5) |
| H38        | 0.5002                     | 0.7296                   | 0.4635                 | 0.031*     |
| C39        | 0.4098 (2)                 | 0.77969 (10)             | 0.3378 (3)             | 0.0289 (5) |
| H39        | 0.4135                     | 0.8088                   | 0.3933                 | 0.035*     |
| C40        | 0.35291 (19)               | 0.78459 (10)             | 0.2151 (3)             | 0.0284 (5) |
| H40        | 0.3180                     | 0.8169                   | 0.1868                 | 0.034*     |
| C41        | 0.34751 (19)               | 0.74196 (11)             | 0.1343 (2)             | 0.0279 (5) |
| H41        | 0.3090                     | 0.7452                   | 0.0504                 | 0.034*     |
| C42        | 0.39843 (19)               | 0.69450 (10)             | 0.1760 (2)             | 0.0255 (5) |
| H42        | 0.3939                     | 0.6654                   | 0.1205                 | 0.031*     |
| O1W        | 0.78491 (13)               | 0.37472 (7)              | 0.51477 (16)           | 0.0256 (4) |
| H1W        | 0.753 (2)                  | 0.4034 (8)               | 0.489 (2)              | 0.038*     |
| H2W        | 0.778 (2)                  | 0.3679 (11)              | 0.5869 (15)            | 0.038*     |
| O2W        | 0.24174 (13)               | 0.58295 (7)              | 0.25549 (16)           | 0.0255 (4) |
|            | × /                        | × /                      | × /                    |            |

| H3W | 0.221 (2) | 0.5561 (9)  | 0.287 (2)   | 0.038* |
|-----|-----------|-------------|-------------|--------|
| H4W | 0.210 (2) | 0.5863 (12) | 0.1806 (12) | 0.038* |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$     | $U^{23}$     |
|-----|--------------|--------------|--------------|---------------|--------------|--------------|
| Cu  | 0.01593 (17) | 0.02201 (19) | 0.02094 (18) | -0.00086 (12) | 0.00306 (13) | 0.00226 (13) |
| 01  | 0.0202 (8)   | 0.0287 (9)   | 0.0257 (8)   | -0.0045 (7)   | 0.0035 (7)   | 0.0039 (7)   |
| O2  | 0.0167 (7)   | 0.0238 (8)   | 0.0271 (9)   | -0.0004 (6)   | 0.0026 (6)   | 0.0021 (7)   |
| O3  | 0.0316 (10)  | 0.0436 (11)  | 0.0194 (8)   | -0.0056 (8)   | -0.0023 (7)  | 0.0008 (8)   |
| O4  | 0.0359 (11)  | 0.0665 (15)  | 0.0329 (11)  | -0.0253 (10)  | -0.0043 (9)  | 0.0158 (10)  |
| 05  | 0.0302 (9)   | 0.0269 (9)   | 0.0290 (9)   | -0.0097 (7)   | 0.0040 (7)   | -0.0014 (7)  |
| O6  | 0.0245 (9)   | 0.0302 (10)  | 0.0315 (9)   | 0.0023 (7)    | -0.0037 (7)  | 0.0009 (8)   |
| N1  | 0.0161 (9)   | 0.0247 (10)  | 0.0195 (9)   | -0.0003 (7)   | 0.0024 (7)   | 0.0011 (7)   |
| N2  | 0.0175 (9)   | 0.0212 (9)   | 0.0199 (9)   | -0.0027 (7)   | 0.0046 (7)   | -0.0009 (7)  |
| N3  | 0.0152 (9)   | 0.0259 (10)  | 0.0201 (9)   | 0.0000 (7)    | 0.0025 (7)   | 0.0026 (8)   |
| N4  | 0.0279 (11)  | 0.0312 (11)  | 0.0243 (10)  | -0.0061 (9)   | 0.0007 (8)   | 0.0025 (9)   |
| N5  | 0.0171 (9)   | 0.0217 (10)  | 0.0233 (10)  | -0.0004(7)    | 0.0039 (8)   | 0.0002 (8)   |
| N6  | 0.0229 (10)  | 0.0268 (10)  | 0.0195 (9)   | -0.0028 (8)   | 0.0046 (8)   | -0.0019 (8)  |
| C1  | 0.0182 (10)  | 0.0230 (11)  | 0.0233 (11)  | 0.0010 (9)    | 0.0036 (9)   | 0.0015 (9)   |
| C2  | 0.0200 (11)  | 0.0219 (11)  | 0.0194 (11)  | 0.0009 (9)    | 0.0041 (9)   | 0.0003 (9)   |
| С3  | 0.0217 (11)  | 0.0261 (12)  | 0.0229 (11)  | -0.0026 (9)   | 0.0037 (9)   | 0.0020 (9)   |
| C4  | 0.0199 (11)  | 0.0268 (12)  | 0.0207 (11)  | -0.0012 (9)   | 0.0009 (9)   | -0.0013 (9)  |
| C5  | 0.0243 (12)  | 0.0265 (12)  | 0.0222 (11)  | 0.0011 (9)    | 0.0044 (9)   | 0.0021 (9)   |
| C6  | 0.0227 (11)  | 0.0274 (12)  | 0.0234 (11)  | -0.0011 (9)   | 0.0053 (9)   | 0.0039 (9)   |
| C7  | 0.0152 (10)  | 0.0231 (11)  | 0.0218 (11)  | -0.0018 (8)   | 0.0042 (8)   | 0.0006 (9)   |
| C8  | 0.0188 (11)  | 0.0244 (11)  | 0.0171 (10)  | -0.0009 (9)   | 0.0040 (8)   | 0.0010 (8)   |
| С9  | 0.0171 (10)  | 0.0242 (12)  | 0.0190 (11)  | 0.0008 (9)    | 0.0021 (8)   | 0.0015 (9)   |
| C10 | 0.0183 (11)  | 0.0293 (12)  | 0.0199 (11)  | 0.0002 (9)    | 0.0052 (9)   | -0.0009 (9)  |
| C11 | 0.0221 (11)  | 0.0329 (13)  | 0.0194 (11)  | -0.0035 (10)  | 0.0041 (9)   | -0.0004 (9)  |
| C12 | 0.0261 (13)  | 0.0445 (16)  | 0.0248 (12)  | -0.0091 (11)  | 0.0054 (10)  | -0.0060 (11) |
| C13 | 0.0215 (12)  | 0.0552 (18)  | 0.0192 (11)  | 0.0012 (11)   | 0.0012 (9)   | -0.0006 (11) |
| C14 | 0.0259 (12)  | 0.0422 (15)  | 0.0212 (11)  | 0.0086 (11)   | 0.0053 (10)  | 0.0054 (10)  |
| C15 | 0.0232 (12)  | 0.0321 (13)  | 0.0218 (11)  | 0.0012 (10)   | 0.0070 (9)   | 0.0023 (10)  |
| C16 | 0.0174 (10)  | 0.0251 (12)  | 0.0225 (11)  | 0.0018 (9)    | 0.0048 (9)   | 0.0034 (9)   |
| C17 | 0.0207 (11)  | 0.0288 (12)  | 0.0218 (11)  | 0.0017 (9)    | 0.0045 (9)   | 0.0029 (9)   |
| C18 | 0.0268 (12)  | 0.0362 (14)  | 0.0251 (12)  | 0.0071 (10)   | 0.0083 (10)  | 0.0061 (10)  |
| C19 | 0.0254 (12)  | 0.0389 (15)  | 0.0357 (14)  | 0.0031 (11)   | 0.0133 (11)  | 0.0113 (11)  |
| C20 | 0.0220 (12)  | 0.0316 (14)  | 0.0395 (14)  | -0.0026 (10)  | 0.0074 (11)  | 0.0086 (11)  |
| C21 | 0.0193 (11)  | 0.0271 (12)  | 0.0255 (12)  | -0.0004 (9)   | 0.0015 (9)   | 0.0046 (9)   |
| C22 | 0.0176 (10)  | 0.0242 (11)  | 0.0190 (10)  | -0.0023 (9)   | 0.0058 (8)   | -0.0010 (9)  |
| C23 | 0.0212 (11)  | 0.0209 (11)  | 0.0201 (10)  | -0.0008(9)    | 0.0067 (9)   | 0.0002 (9)   |
| C24 | 0.0221 (11)  | 0.0235 (11)  | 0.0191 (11)  | 0.0006 (9)    | 0.0060 (9)   | 0.0012 (9)   |
| C25 | 0.0178 (11)  | 0.0254 (12)  | 0.0195 (10)  | -0.0025 (9)   | 0.0047 (9)   | -0.0020 (9)  |
| C26 | 0.0219 (11)  | 0.0229 (12)  | 0.0232 (11)  | -0.0025 (9)   | 0.0061 (9)   | -0.0018 (9)  |
| C27 | 0.0224 (11)  | 0.0225 (12)  | 0.0246 (11)  | 0.0016 (9)    | 0.0066 (9)   | 0.0010 (9)   |
| C28 | 0.0169 (10)  | 0.0242 (12)  | 0.0184 (10)  | -0.0001 (8)   | 0.0059 (8)   | 0.0005 (8)   |
| C29 | 0.0174 (10)  | 0.0218 (11)  | 0.0178 (10)  | -0.0012 (8)   | 0.0032 (8)   | -0.0004 (8)  |

| C30 | 0.0206 (11) | 0.0219 (11) | 0.0217 (11) | -0.0018 (9)  | 0.0063 (9)  | -0.0008 (9)  |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C31 | 0.0195 (11) | 0.0221 (11) | 0.0237 (11) | -0.0018 (9)  | 0.0074 (9)  | -0.0023 (9)  |
| C32 | 0.0248 (12) | 0.0227 (12) | 0.0290 (12) | 0.0007 (9)   | 0.0065 (10) | 0.0003 (10)  |
| C33 | 0.0287 (13) | 0.0234 (12) | 0.0439 (15) | -0.0040 (10) | 0.0103 (11) | 0.0004 (11)  |
| C34 | 0.0278 (13) | 0.0293 (14) | 0.0431 (16) | -0.0086 (10) | 0.0052 (12) | -0.0086 (11) |
| C35 | 0.0261 (13) | 0.0351 (14) | 0.0307 (13) | -0.0042 (10) | 0.0017 (10) | -0.0066 (11) |
| C36 | 0.0228 (11) | 0.0279 (12) | 0.0230 (11) | -0.0015 (9)  | 0.0060 (9)  | -0.0011 (9)  |
| C37 | 0.0205 (11) | 0.0229 (12) | 0.0260 (12) | -0.0004 (9)  | 0.0078 (9)  | 0.0007 (9)   |
| C38 | 0.0252 (12) | 0.0245 (12) | 0.0285 (12) | -0.0008 (9)  | 0.0060 (10) | -0.0016 (10) |
| C39 | 0.0254 (12) | 0.0249 (12) | 0.0373 (14) | 0.0010 (10)  | 0.0098 (11) | -0.0016 (10) |
| C40 | 0.0232 (12) | 0.0261 (13) | 0.0379 (14) | 0.0015 (10)  | 0.0115 (10) | 0.0064 (10)  |
| C41 | 0.0238 (12) | 0.0322 (13) | 0.0279 (13) | 0.0021 (10)  | 0.0065 (10) | 0.0060 (10)  |
| C42 | 0.0242 (12) | 0.0256 (12) | 0.0264 (12) | 0.0008 (9)   | 0.0059 (10) | 0.0019 (9)   |
| O1W | 0.0210 (8)  | 0.0285 (9)  | 0.0263 (9)  | 0.0014 (7)   | 0.0038 (7)  | 0.0020 (7)   |
| O2W | 0.0213 (8)  | 0.0295 (9)  | 0.0246 (8)  | -0.0014 (7)  | 0.0035 (7)  | 0.0039 (7)   |
|     |             |             |             |              |             |              |

## Geometric parameters (Å, °)

| Cu—O1  | 1.9291 (17) | C17—C18 | 1.392 (3) |
|--------|-------------|---------|-----------|
| Cu—O2  | 1.9304 (17) | С17—Н17 | 0.9500    |
| Cu—N1  | 1.9586 (19) | C18—C19 | 1.383 (4) |
| Cu—N2  | 1.957 (2)   | C18—H18 | 0.9500    |
| O1—C1  | 1.316 (3)   | C19—C20 | 1.391 (4) |
| O2—C22 | 1.318 (3)   | С19—Н19 | 0.9500    |
| O3—N4  | 1.234 (3)   | C20—C21 | 1.384 (4) |
| O4—N4  | 1.232 (3)   | С20—Н20 | 0.9500    |
| O5—N6  | 1.231 (3)   | C21—H21 | 0.9500    |
| O6—N6  | 1.236 (3)   | C22—C27 | 1.412 (3) |
| N1—C7  | 1.335 (3)   | C22—C23 | 1.420 (3) |
| N1—C8  | 1.392 (3)   | C23—C24 | 1.402 (3) |
| N2—C28 | 1.341 (3)   | C23—C28 | 1.449 (3) |
| N2—C29 | 1.386 (3)   | C24—C25 | 1.376 (3) |
| N3—C7  | 1.349 (3)   | C24—H24 | 0.9500    |
| N3—C9  | 1.378 (3)   | C25—C26 | 1.400 (3) |
| N3—H3N | 0.889 (17)  | C26—C27 | 1.373 (3) |
| N4—C4  | 1.449 (3)   | C26—H26 | 0.9500    |
| N5—C28 | 1.347 (3)   | С27—Н27 | 0.9500    |
| N5—C30 | 1.374 (3)   | C29—C30 | 1.377 (3) |
| N5—H5N | 0.877 (17)  | C29—C31 | 1.475 (3) |
| N6—C25 | 1.452 (3)   | C30—C37 | 1.471 (3) |
| C1—C6  | 1.415 (3)   | C31—C36 | 1.392 (3) |
| C1—C2  | 1.420 (3)   | C31—C32 | 1.393 (3) |
| C2—C3  | 1.400 (3)   | C32—C33 | 1.390 (4) |
| C2—C7  | 1.459 (3)   | С32—Н32 | 0.9500    |
| C3—C4  | 1.387 (3)   | C33—C34 | 1.385 (4) |
| С3—Н3  | 0.9500      | С33—Н33 | 0.9500    |
| C4—C5  | 1.390 (3)   | C34—C35 | 1.382 (4) |
| C5—C6  | 1.372 (3)   | С34—Н34 | 0.9500    |

| C5—H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9500               | C35—C36                    | 1.388 (3)            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|----------------------|
| С6—Н6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9500               | С35—Н35                    | 0.9500               |
| C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.378 (3)            | С36—Н36                    | 0.9500               |
| C8—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.460 (3)            | C37—C42                    | 1.392 (3)            |
| C9—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.471 (3)            | C37—C38                    | 1.403 (3)            |
| C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.397 (3)            | C38—C39                    | 1.390 (4)            |
| C10—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.401 (4)            | С38—Н38                    | 0.9500               |
| C11—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.385 (4)            | C39—C40                    | 1.393 (4)            |
| C11—H11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500               | С39—Н39                    | 0.9500               |
| C12—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.394 (4)            | C40—C41                    | 1.390 (4)            |
| С12—Н12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500               | C40—H40                    | 0.9500               |
| C13—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 386 (4)            | C41-C42                    | 1 394 (4)            |
| C13—H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500               | C41 - H41                  | 0.9500               |
| C14 $C15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 383 (3)            | C42 H42                    | 0.9500               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0500               | $O_1W$ $H_1W$              | 0.9500               |
| C15 H15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500               |                            | 0.831(10)            |
| C16_C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.206(2)             | $O_{1}W = H_{2}W$          | 0.847(10)            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.396 (3)            | O2W—H3W                    | 0.843 (10)           |
| C16C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.400 (3)            | O2W—H4W                    | 0.840 (10)           |
| O1  C1  O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 89.36 (7)            | C19 C18 C17                | 120.7(2)             |
| 01 - Cu - 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 147.34(8)            | $C_{10} = C_{10} = C_{17}$ | 120.7 (2)            |
| O1 - Cu - N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 147.34(0)            | $C_{17} = C_{18} = 1118$   | 119.0                |
| Ol-Cu-NI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 92.03(0)             | C17 - C18 - H18            | 119.0                |
| 02—Cu—NI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 144.41(8)            | C18 - C19 - C20            | 119.6 (2)            |
| O2—Cu—N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 93.56 (7)            | С18—С19—Н19                | 120.2                |
| N1—Cu—N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 103.14 (8)           | С20—С19—Н19                | 120.2                |
| C1—O1—Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 126.91 (15)          | C21—C20—C19                | 120.1 (2)            |
| C22—O2—Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 127.61 (15)          | С21—С20—Н20                | 120.0                |
| C7—N1—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 107.45 (19)          | С19—С20—Н20                | 120.0                |
| C7—N1—Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122.96 (16)          | C20—C21—C16                | 120.8 (2)            |
| C8—N1—Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 129.44 (15)          | C20—C21—H21                | 119.6                |
| C28—N2—C29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.50 (19)          | C16—C21—H21                | 119.6                |
| C28—N2—Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122.09 (16)          | O2—C22—C27                 | 118.7 (2)            |
| C29—N2—Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 130.13 (15)          | O2—C22—C23                 | 122.9 (2)            |
| C7—N3—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 108.85 (19)          | C27—C22—C23                | 118.4 (2)            |
| C7—N3—H3N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 126.5 (19)           | C24—C23—C22                | 119.1 (2)            |
| C9—N3—H3N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 123.8 (19)           | C24—C23—C28                | 118.3 (2)            |
| 04—N4—O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122.9 (2)            | $C_{22}$ $C_{23}$ $C_{28}$ | 122.6(2)             |
| 04—N4—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.8(2)             | $C_{25}$ $C_{24}$ $C_{23}$ | 120.4(2)             |
| 03—N4—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.6(2)<br>118.4(2) | $C_{25} = C_{24} = H_{24}$ | 119.8                |
| $C_{28}$ N5 $C_{30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1091(2)              | $C_{23}$ $C_{24}$ $H_{24}$ | 119.8                |
| $C_{28}$ N5 H5N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.1(2)<br>126(2)   | $C_{23} = C_{24} = 1124$   | 117.0<br>121.5(2)    |
| $C_{20} = N_{5} = H_{5}N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120(2)<br>124(2)     | $C_{24} = C_{25} = C_{20}$ | 121.3(2)<br>118.2(2) |
| $O_5$ NG OG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 127(2)<br>123()(2)   | $C_{24} = C_{25} = C_{10}$ | 120.2(2)             |
| $O_5 = N_6 = C_{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 123.0(2)             | $C_{20} = C_{23} = 100$    | 120.3(2)             |
| $O_{3}$ $O_{4}$ $O_{5}$ $O_{5}$ $O_{6}$ $O_{6}$ $O_{6}$ $O_{7}$ $O_{7$ | 110.4(2)             | $C_{21} = C_{20} = C_{23}$ | 110.4 (2)            |
| $U_0 - N_0 - U_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 118.7 (2)            | $C_2/-C_20-H_20$           | 120.8                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 118.3 (2)            | C25—C26—H26                | 120.8                |
| 01-01-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 123.8 (2)            | C26—C27—C22                | 122.1 (2)            |
| C6-C1-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 117.9 (2)            | C26—C27—H27                | 119.0                |

| C3—C2—C1                   | 119.3 (2)            | С22—С27—Н27                | 119.0                |
|----------------------------|----------------------|----------------------------|----------------------|
| C3—C2—C7                   | 118.9 (2)            | N2—C28—N5                  | 109.2 (2)            |
| C1—C2—C7                   | 121.7 (2)            | N2—C28—C23                 | 127.6 (2)            |
| C4—C3—C2                   | 120.3 (2)            | N5—C28—C23                 | 123.1 (2)            |
| С4—С3—Н3                   | 119.8                | C30—C29—N2                 | 108.06 (19)          |
| С2—С3—Н3                   | 119.8                | C30—C29—C31                | 128.5 (2)            |
| C5—C4—C3                   | 121.3 (2)            | N2—C29—C31                 | 123.5 (2)            |
| C5-C4-N4                   | 119.7 (2)            | N5-C30-C29                 | 106.2 (2)            |
| C3—C4—N4                   | 119.0 (2)            | N5-C30-C37                 | 120.6(2)             |
| C6-C5-C4                   | 119.0(2)<br>118.7(2) | $C_{29} - C_{30} - C_{37}$ | 120.0(2)<br>133.1(2) |
| C6-C5-H5                   | 120.7                | $C_{36}$ $C_{31}$ $C_{37}$ | 1195.1(2)            |
| $C_{4}$ $C_{5}$ $H_{5}$    | 120.7                | $C_{36} = C_{31} = C_{32}$ | 119.5(2)<br>120.0(2) |
| $C_{4} = C_{5} = C_{5}$    | 120.7<br>122.3(2)    | $C_{30} = C_{31} = C_{29}$ | 120.0(2)             |
| $C_{5}$                    | 122.3 (2)            | $C_{32} = C_{31} = C_{29}$ | 120.4(2)             |
| $C_{3}$                    | 110.0                | $C_{33} = C_{32} = C_{31}$ | 119.9 (2)            |
| CI = CO = HO               | 118.8                | C33—C32—H32                | 120.0                |
| NI = C7 = C2               | 109.5 (2)            | C31—C32—H32                | 120.0                |
| NI-C/-C2                   | 127.0 (2)            | $C_{34} - C_{33} - C_{32}$ | 120.0 (3)            |
| N3—C7—C2                   | 123.5 (2)            | С34—С33—Н33                | 120.0                |
| C9—C8—N1                   | 107.98 (19)          | С32—С33—Н33                | 120.0                |
| C9—C8—C10                  | 129.8 (2)            | C33—C34—C35                | 120.4 (2)            |
| N1—C8—C10                  | 122.2 (2)            | С33—С34—Н34                | 119.8                |
| N3—C9—C8                   | 106.2 (2)            | С35—С34—Н34                | 119.8                |
| N3—C9—C16                  | 120.3 (2)            | C34—C35—C36                | 119.7 (3)            |
| C8—C9—C16                  | 133.4 (2)            | С34—С35—Н35                | 120.2                |
| C11—C10—C15                | 118.8 (2)            | С36—С35—Н35                | 120.2                |
| C11—C10—C8                 | 120.2 (2)            | C35—C36—C31                | 120.4 (2)            |
| C15—C10—C8                 | 120.9 (2)            | С35—С36—Н36                | 119.8                |
| C12—C11—C10                | 120.5 (2)            | С31—С36—Н36                | 119.8                |
| C12—C11—H11                | 119.7                | C42—C37—C38                | 119.3 (2)            |
| C10-C11-H11                | 119.7                | C42—C37—C30                | 119.6 (2)            |
| C11—C12—C13                | 120.4 (3)            | C38—C37—C30                | 121.1 (2)            |
| C11—C12—H12                | 119.8                | C39—C38—C37                | 120.0 (2)            |
| C13—C12—H12                | 119.8                | C39—C38—H38                | 120.0                |
| $C_{14}$ $C_{13}$ $C_{12}$ | 119.1 (2)            | C37—C38—H38                | 120.0                |
| C14—C13—H13                | 120.4                | $C_{38}$ $C_{39}$ $C_{40}$ | 120.5(2)             |
| $C_{12}$ $C_{13}$ $H_{13}$ | 120.1                | $C_{38}$ $C_{39}$ $H_{39}$ | 119.8                |
| $C_{12} = C_{13} = M_{13}$ | 120.4<br>120.9(3)    | $C_{40}$ $C_{39}$ $H_{39}$ | 119.8                |
| $C_{15} = C_{14} = C_{15}$ | 110.6                | $C_{40} = C_{50} = H_{50}$ | 119.6(2)             |
| $C_{13} = C_{14} = H_{14}$ | 119.0                | C41 = C40 = C39            | 119.0 (2)            |
| C13 - C14 - III4           | 119.0                | $C_{41} = C_{40} = 1140$   | 120.2                |
| C14 - C15 - C10            | 120.3 (2)            | $C_{39} - C_{40} - H_{40}$ | 120.2                |
| C14—C15—H15                | 119.9                | C40 - C41 - C42            | 120.2 (2)            |
| C10-C15-H15                | 119.9                | U40 - U41 - H41            | 119.9                |
| C21—C16—C17                | 118.9 (2)            | C42—C41—H41                | 119.9                |
| C21—C16—C9                 | 120.0 (2)            | C3/-C42-C41                | 120.4 (2)            |
| C17—C16—C9                 | 120.9 (2)            | C37—C42—H42                | 119.8                |
| C18—C17—C16                | 119.9 (2)            | C41—C42—H42                | 119.8                |
| C18—C17—H17                | 120.1                | H1W—O1W—H2W                | 108.7 (16)           |
| С16—С17—Н17                | 120.1                | H3W—O2W—H4W                | 111.1 (16)           |

| Cu—O1—C1—C6     | 161.82 (17)  | Cu—O2—C22—C27   | 164.29 (16)  |
|-----------------|--------------|-----------------|--------------|
| Cu—O1—C1—C2     | -18.7 (3)    | Cu—O2—C22—C23   | -15.6 (3)    |
| O1—C1—C2—C3     | 178.5 (2)    | O2—C22—C23—C24  | 176.6 (2)    |
| C6—C1—C2—C3     | -2.1(3)      | C27—C22—C23—C24 | -3.3 (3)     |
| O1—C1—C2—C7     | -2.0(4)      | O2—C22—C23—C28  | -2.7(3)      |
| C6—C1—C2—C7     | 177.4 (2)    | C27—C22—C23—C28 | 177.4 (2)    |
| C1—C2—C3—C4     | 0.4 (4)      | C22—C23—C24—C25 | 3.2 (3)      |
| C7—C2—C3—C4     | -179.2 (2)   | C28—C23—C24—C25 | -177.5 (2)   |
| C2—C3—C4—C5     | 1.2 (4)      | C23—C24—C25—C26 | -1.4 (3)     |
| C2—C3—C4—N4     | -179.3 (2)   | C23—C24—C25—N6  | 179.3 (2)    |
| O4—N4—C4—C5     | 164.7 (3)    | O5—N6—C25—C24   | -174.5 (2)   |
| O3—N4—C4—C5     | -13.4 (4)    | O6—N6—C25—C24   | 4.7 (3)      |
| O4—N4—C4—C3     | -14.8 (4)    | O5—N6—C25—C26   | 6.2 (3)      |
| O3—N4—C4—C3     | 167.0 (2)    | O6—N6—C25—C26   | -174.6 (2)   |
| C3—C4—C5—C6     | -0.9(4)      | C24—C25—C26—C27 | -0.3 (3)     |
| N4—C4—C5—C6     | 179.6 (2)    | N6-C25-C26-C27  | 179.0 (2)    |
| C4—C5—C6—C1     | -0.9 (4)     | C25—C26—C27—C22 | 0.1 (3)      |
| O1—C1—C6—C5     | -178.1 (2)   | O2—C22—C27—C26  | -178.2 (2)   |
| C2-C1-C6-C5     | 2.4 (4)      | C23—C22—C27—C26 | 1.7 (3)      |
| C8—N1—C7—N3     | 0.0 (3)      | C29—N2—C28—N5   | -0.2 (2)     |
| Cu—N1—C7—N3     | -175.88 (15) | Cu—N2—C28—N5    | -174.71 (14) |
| C8—N1—C7—C2     | 178.9 (2)    | C29—N2—C28—C23  | 176.4 (2)    |
| Cu—N1—C7—C2     | 3.1 (3)      | Cu—N2—C28—C23   | 1.9 (3)      |
| C9—N3—C7—N1     | -0.2 (3)     | C30—N5—C28—N2   | 0.1 (3)      |
| C9—N3—C7—C2     | -179.2 (2)   | C30—N5—C28—C23  | -176.7 (2)   |
| C3—C2—C7—N1     | -170.4 (2)   | C24—C23—C28—N2  | -169.5 (2)   |
| C1—C2—C7—N1     | 10.1 (4)     | C22—C23—C28—N2  | 9.8 (4)      |
| C3—C2—C7—N3     | 8.4 (4)      | C24—C23—C28—N5  | 6.7 (3)      |
| C1—C2—C7—N3     | -171.1 (2)   | C22-C23-C28-N5  | -174.0 (2)   |
| C7—N1—C8—C9     | 0.3 (3)      | C28—N2—C29—C30  | 0.2 (2)      |
| Cu—N1—C8—C9     | 175.74 (17)  | Cu—N2—C29—C30   | 174.12 (16)  |
| C7—N1—C8—C10    | -178.3 (2)   | C28—N2—C29—C31  | 179.8 (2)    |
| Cu—N1—C8—C10    | -2.8 (3)     | Cu—N2—C29—C31   | -6.3 (3)     |
| C7—N3—C9—C8     | 0.4 (3)      | C28—N5—C30—C29  | 0.0 (2)      |
| C7—N3—C9—C16    | -175.8 (2)   | C28—N5—C30—C37  | 178.4 (2)    |
| N1—C8—C9—N3     | -0.4 (3)     | N2—C29—C30—N5   | -0.1 (2)     |
| C10—C8—C9—N3    | 178.0 (2)    | C31—C29—C30—N5  | -179.7 (2)   |
| N1-C8-C9-C16    | 175.1 (2)    | N2-C29-C30-C37  | -178.2 (2)   |
| C10—C8—C9—C16   | -6.6 (5)     | C31—C29—C30—C37 | 2.2 (4)      |
| C9—C8—C10—C11   | 141.4 (3)    | C30—C29—C31—C36 | 140.7 (3)    |
| N1-C8-C10-C11   | -40.4 (3)    | N2-C29-C31-C36  | -38.8 (3)    |
| C9—C8—C10—C15   | -41.4 (4)    | C30—C29—C31—C32 | -37.7 (4)    |
| N1-C8-C10-C15   | 136.8 (2)    | N2-C29-C31-C32  | 142.9 (2)    |
| C15—C10—C11—C12 | -2.1 (4)     | C36—C31—C32—C33 | -0.6 (4)     |
| C8—C10—C11—C12  | 175.1 (2)    | C29—C31—C32—C33 | 177.8 (2)    |
| C10-C11-C12-C13 | 0.8 (4)      | C31—C32—C33—C34 | 0.0 (4)      |
| C11—C12—C13—C14 | 1.0 (4)      | C32—C33—C34—C35 | 0.7 (4)      |

| C12—C13—C14—C15 | -1.5 (4)   | C33—C34—C35—C36 | -0.7 (4)   |  |
|-----------------|------------|-----------------|------------|--|
| C13—C14—C15—C10 | 0.2 (4)    | C34—C35—C36—C31 | 0.0 (4)    |  |
| C11—C10—C15—C14 | 1.6 (3)    | C32—C31—C36—C35 | 0.6 (4)    |  |
| C8-C10-C15-C14  | -175.6 (2) | C29—C31—C36—C35 | -177.8 (2) |  |
| N3—C9—C16—C21   | -36.9 (3)  | N5-C30-C37-C42  | -47.8 (3)  |  |
| C8—C9—C16—C21   | 148.2 (3)  | C29—C30—C37—C42 | 130.1 (3)  |  |
| N3—C9—C16—C17   | 139.6 (2)  | N5-C30-C37-C38  | 132.7 (2)  |  |
| C8—C9—C16—C17   | -35.3 (4)  | C29—C30—C37—C38 | -49.4 (4)  |  |
| C21—C16—C17—C18 | 2.1 (4)    | C42—C37—C38—C39 | -0.1 (4)   |  |
| C9—C16—C17—C18  | -174.5 (2) | C30—C37—C38—C39 | 179.4 (2)  |  |
| C16—C17—C18—C19 | 0.4 (4)    | C37—C38—C39—C40 | -0.2 (4)   |  |
| C17—C18—C19—C20 | -2.3 (4)   | C38—C39—C40—C41 | 0.2 (4)    |  |
| C18—C19—C20—C21 | 1.7 (4)    | C39—C40—C41—C42 | 0.2 (4)    |  |
| C19—C20—C21—C16 | 0.8 (4)    | C38—C37—C42—C41 | 0.5 (4)    |  |
| C17—C16—C21—C20 | -2.7 (4)   | C30—C37—C42—C41 | -179.0 (2) |  |
| C9—C16—C21—C20  | 173.9 (2)  | C40—C41—C42—C37 | -0.6 (4)   |  |
|                 |            |                 |            |  |

## Hydrogen-bond geometry (Å, °)

Hydrogen-bond geometry (Å, °) for (I). Cg1 is the ring centroid of the C16–C21 ring.

| D—H···A                                       | D—H      | H···A    | D··· $A$  | D—H··· $A$ |
|-----------------------------------------------|----------|----------|-----------|------------|
| N3—H3 <i>N</i> ····O1 <i>W</i> <sup>i</sup>   | 0.89 (2) | 1.91 (2) | 2.790 (3) | 173 (3)    |
| N5—H5 <i>N</i> ···O2 <i>W</i>                 | 0.88 (2) | 1.95 (2) | 2.822 (3) | 172 (3)    |
| O1 <i>W</i> —H1 <i>W</i> ···O2                | 0.85 (2) | 1.92 (2) | 2.745 (2) | 164 (2)    |
| $O1W - H2W \cdots O2W^{ii}$                   | 0.85 (2) | 2.21 (2) | 2.868 (2) | 134 (2)    |
| O2 <i>W</i> —H3 <i>W</i> ···O1 <sup>ii</sup>  | 0.84 (2) | 2.01 (2) | 2.841 (2) | 172 (2)    |
| O2 <i>W</i> —H4 <i>W</i> ···O3 <sup>iii</sup> | 0.84 (2) | 2.27 (2) | 2.938 (2) | 136 (2)    |
| C3—H3…O1 <i>W</i> <sup>i</sup>                | 0.95     | 2.57     | 3.435 (3) | 151        |
| C33—H33····O5 <sup>iv</sup>                   | 0.95     | 2.48     | 3.345 (3) | 151        |
| С5—Н5…О6 <sup>v</sup>                         | 0.95     | 2.50     | 3.361 (3) | 151        |
| C34—H34… <i>Cg</i> 1 <sup>vi</sup>            | 0.95     | 2.49     | 3.426 (3) | 168        |

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z-1; (iv) -x+1, y+1/2, -z+1/2; (v) x+1, y, z+1; (vi) x, -y+1/2, z-1/2.