

Received 13 November 2019 Accepted 5 December 2019

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; *E* configuration; iodophenyl ring; chalcone; (*E*)-3-(3-iodophenyl)-1-(4-iodophenyl)prop-2-en-1-one.

CCDC reference: 1970266

Supporting information: this article has supporting information at journals.iucr.org/e

Kieran J. Spruce,^a Charlie L. Hall,^a* Jason Potticary,^a Natalie E. Pridmore,^a Matthew E. Cremeens,^b Gemma D. D'ambruoso,^b Masaomi Matsumoto,^b Gabrielle I. Warren,^b Stephen D. Warren^b and Simon R. Hall^a

^aSchool of Chemistry, University of Bristol, Cantock's Close, Bristol, England, BS8 1TS, England, and ^bDepartment of Chemistry & Biochemistry, Gonzaga University, 502 E Boone Ave, Spokane, WA 99258, USA. *Correspondence e-mail: simon.hall@bristol.ac.uk

The title compound, $C_{15}H_{10}I_2O$, is a halogenated chalcone formed from two iodine substituted rings, one *para*-substituted and the other *meta*-substituted, linked through a prop-2-en-1-one spacer. In the molecule, the mean planes of the 3-iodophenyl and the 4-iodophenyl groups are twisted by 46.51 (15)°. The calculated electrostatic potential surfaces show the presence of σ -holes on both substituted iodines. In the crystal, the molecules are linked through type II halogen bonds, forming a sheet structure parallel to the *bc* plane. Between the sheets, weak intermolecular $C-H\cdots\pi$ interactions are observed. Hirshfeld surface analysis showed that the most significant contacts in the structure are $C\cdots H/H\cdots C$ (31.9%), followed by $H\cdots H$ (21.4%), $I\cdots H/H\cdots I$ (18.4%). $I\cdots I$ (14.5%) and $O\cdots H/H\cdots O$ (8.1%).

1. Chemical context

Chalcones are aromatic ketones which have shown potential as antibacterial, antifungal and anti-inflammatory agents (D'silva et al., 2011). These molecules are essential to the biosynthesis of flavonoids through a conjugate ring-closure to form flavone and have also attracted attention for their potential use in opto- and organic electronics (Shetty et al., 2016, 2017). As a family of molecules, substituted chalcones can be readily synthesized via a Claisen-Schmidt condensation reaction between an appropriately functionalized acetophenone and benzaldehyde. Substitutions on each of the benzene rings are currently being investigated in order to interrogate how the electronic properties of the crystal are altered. The iodo-substituted rings present in the title compound allows for the formation of iodine channels in the crystal, a conformation which may afford a change in the crystal's electrical properties.

 $\bigcirc \bigcirc$ Open \bigcirc Access

2. Structural commentary

The title compound comprises two aromatic rings, 4-iodophenyl (1-Ring) and 3-iodophenyl (3-Ring), which are

are $C5-C4-C1-C2 = 151.6 (4)^{\circ}$, $C4-C1-C2-C3 = 171.9 (4)^{\circ}$, $C1-C2-C3-C10 = 176.4 (4)^{\circ}$ and $C2-C3-C10-C11 = 170.4 (5)^{\circ}$. The mean planes of the 3-iodophenyl and 4-iodophenyl groups are twisted by 46.51 (15)° relative to each other. The H atoms of the propenone group are *trans*-configured.

3. Supramolecular features

Figure 1

The molecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

connected, respectively, to atoms C1 and C3 of the -CO-CH=CH- enone bridge (Fig. 1). The backbone torsion angles Electrostatic potential surfaces [Fig. 2(a)-(c)] show the presence of σ -holes on both substituted iodines, I1 and I2, which allow for halogen bonding of a bifurcated type II. Partial packing diagrams are shown in Fig. 3(a)-(c). Interestingly, these halogen bonds form exclusively between equivalent iodine atoms, either *para-para* or *meta-meta*. The geometries of the halogen bonds are $11 \cdots 11^{iv} = 4.0980$ (9) Å,

Electrostatic potential mapped onto an electron density isosurface with isovalue 0.02 e Å⁻³, calculated using B3LYP at the LANL2DZ level. Red and blue regions show negative and positive electric potentials, respectively. (a) shows the potential of the substituted chalcone molecule. (b) and (c) show the σ -holes on 1-Ring and 3-Ring, respectively.

Figure 3

(a) A packing diagram of the title compound in the unit cell. Red, green and blue axes indicate *a*, *b* and *c*, respectively. (b) *Meta-meta* and *para-para* halogen bonds indicated by dashed lines. (c) Three weak $C-H \cdots \pi$ interactions (dashed lines; $C5-H5 \cdots Cg1^i$, $C8-H8 \cdots Cg1^{ii}$ and $C14-H14 \cdots Cg2^{iii}$). *Cg*1 and *Cg*2 are the centroids of the C10-C15 and C4-C9 rings, respectively. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 2 - x, 1 - y, 2 - z; (iii) 1 - x, 1 - y, 2 - z; (iv) x, $\frac{1}{2} - y$, $-\frac{1}{2} + z$; (v) x, $\frac{1}{2} - y$, $\frac{1}{2} + z$; (vi) x, $\frac{3}{2} - y$, $\frac{1}{2} + z$; (vii) x, $\frac{3}{2} - y$, $-\frac{1}{2} + z$.]

research communications

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C10-C15 and C4-C9 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} \hline C5-H5\cdots Cg1^{i}\\ C8-H8\cdots Cg1^{ii}\\ C14-H14\cdots Cg2^{iii} \end{array}$	0.95	2.78	3.406 (5)	124
	0.95	2.85	3.491 (5)	126
	0.95	2.77	3.440 (5)	129

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 2, -y + 1, -z + 2; (iii) -x + 1, -y + 1, -z + 2.

 $C7-I1\cdots I1^{iv} = 113.85 (13)^{\circ}, I1\cdots I1^{v} = 4.0980 (9) \text{ Å and } C7-I1\cdots I1^{v} = 154.47 (13)^{\circ}$ for the *para-para* I···I bonds, and I2…I2^{vi} = 3.9805 (8) Å, C12-I2…I2^{vi} = 108.20 (13)^{\circ}, I2…I2^{vii} = 3.9805 (8) Å and C12-I2…I2^{vii} = 157.30 (13)^{\circ} for the *meta-meta* I···I bonds [symmetry codes: (iv) x, $\frac{1}{2} - y$,

 $-\frac{1}{2}+z$; (v) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (vi) $x, \frac{3}{2}-y, \frac{1}{2}+z$; (vii) $x, \frac{3}{2}-y, -\frac{1}{2}+z$]. A sheet structure is formed parallel to the *bc* plane. There are also three weak C-H··· π interactions (Table 1) between the sheets.

Hirshfeld surfaces, mapped over d_{norm} , shape-index and d_e , and two-dimensional fingerprint plots of the title compound were calculated using *CrystalExplorer17.5* (Turner *et al.*, 2017). Hirshfeld surfaces [Fig. 4(*a*) and (*c*)] highlight the relationship between the contact distance and the van der Waals radii (Venkatesan *et al.*, 2016). The Hirshfeld surface mapped over the shape-index [Fig. 4(*b*)] shows depressions on both 1-Ring and 3-Ring, which is indicative of $C-H\cdots\pi$ interactions. Twodimensional fingerprint plots are used to illustrate the intermolecular contacts between molecules within the crystal structure. The fingerprint plots of all significant interactions are shown in Fig. 5(*a*)–(*f*). $C\cdots H/H\cdots C$ contacts [Fig. 5(*b*)]

Figure 4

Hirshfeld surfaces of the title compound, mapped with (a) d_{norm} , where white regions represent interactions equal to, and blue regions represent interactions shorter than the sum of their van der Waals radii, (b) the shape-index, and (c) d_e , where the circled areas indicate the C-H··· π interactions.

Figure 5

Hirshfeld surfaces and fingerprint plots showing percentage of contacts of (a) all interactions, (b) $C \cdots H/H \cdots C$, (c) $H \cdots H$, (d) $I \cdots H/H \cdots I$, (e) $I \cdots I$ and (f) $O \cdots H/H \cdots O$. interactions.

Table 2	
Experimental	details.

Crystal data	
Chemical formula	$C_{15}H_{10}I_2O$
M _r	460.03
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	200
a, b, c (Å)	7.2650 (7), 32.864 (3), 5.8446 (6)
β(°)	92.277 (2)
$V(Å^3)$	1394.3 (2)
Ζ	4
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	4.50
Crystal size (mm)	$0.57 \times 0.29 \times 0.08$
Data collection	
Diffractometer	Bruker APEXII kappa CCD area detector
Absorption correction	Numerical (<i>SADABS</i> ; Bruker, 2016)
Tmin Tmar	0.065, 0.189
No. of measured, independent and	18346, 3215, 2960
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.021
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.650
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.073, 1.27
No. of reflections	3215
No. of parameters	164
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	1.14, -1.31

Computer programs: SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

make the largest contribution (31.9%) and show a pair of spikes at $d_e + d_i = \sim 2.8$ Å, representative of intermolecular C-H··· π interactions. The O···H/H···O plot also contains a pair of spikes at $d_e + d_i = \sim 2.7$ Å [Fig. 5(*f*)]. The negligible contributions from other contacts, not included in Fig. 5, are as follows: C···C (3.1%), C···O/O···C (2.1%) and C···I/I···C (0.5%).

4. Database survey

A survey of the Cambridge Structural Database (CSD; Groom et al., 2016) showed that existing similar structures include (2*E*)-1-(4-bromophenyl)-3-(4-fluorophenyl)prop-2-en-1-one (refcode NURCIN; Dutkiewicz et al., 2010), 1-(4-bromophenyl)-3-(4-chlorophenyl)prop-2-en-1-one (LEPYIP; Yang al., 1,3-bis(4-bromophenyl)prop-2-en-1-one 2006), et (LEHROG; Ng et al., 2006), (E)-1-(4-bromophenyl)-3-(4iodophenyl)prop-2-en-1-one (IWALAV; Zainuri et al., 2017) 3-(3-bromophenyl)-1-(4-bromophenyl)prop-2-en-1-one and (ODEDEH; Teh et al., 2006). Four compounds (NURCIN, LEPYIP, LEHROG and IWALAV) contain only parasubstituted rings. Within these structures, halogen bonds exist only between bromine and iodine species, and never between equivalent halogens. 3-(3-Bromophenyl)-1-(4-bromophenyl)prop-2-en-1-one contains one meta-substituted ring and one para-substituted ring: each halogen bond exists between rings with the same substitution, either para-para or meta-meta, as seen in the title compound.

5. Synthesis and crystallization

4'-Iodoacetophenone (0.773 g, 3.14 mmol), 3-iodobenzaldehyde (0.697 g, 3.00), anhydrous zinc chloride (0.615 g, 4.51 mmol) and absolute ethanol (1.5 ml) were added to a microwave vessel with a stir bar. Using a microwave reactor, the reaction mixture was heated to 468 K for 15 minutes. Upon cooling the reaction, yellowish solids were collected by vacuum filtration and washed with 95% ethanol. The resulting solid was recrystallized from 95% ethanol (0.603 g, 44% yield, vellow crystals, m.p. 442.5–443.7 K). ¹H NMR (400 MHz, DMSO- d_6 , referenced to TMS): δ (ppm) 8.37 (1H, s), 8.0–7.94 (5H, m), 7.88 (1H, d, J = 8 Hz), 7.81 (1H, d, J = 8 Hz), 7.68 (1H, d, J = 16 Hz), 7.26 (1H, t, J = 8 Hz). ¹³C NMR (100 MHz, DMSO- d_6 , referenced to solvent, 39.52 ppm): δ (ppm) 188.44, 142.75, 139.04, 137.72, 136.95, 136.66, 136.61, 130.89, 130.38, 128.73, 122.81, 102.14, 95.57. Single crystals suitable for X-ray diffraction were obtained by the slow evaporation technique from an acetone solution at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically (C-H = 0.95 Å) and refined using a riding model with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C}).$

Acknowledgements

GU co-authors thank E. Mermann-Jozwiak, J. Hazen, S. Economu, M. Fellin, B. Hendricks, R. Meehan, & G. Warren for their assistance, as well as the Howard Hughes Medical Institute through its Undergraduate Science Education Program for supporting equipment acquisition.

Funding information

UoB co-authors acknowledge the Engineering and Physical Sciences Research Council UK (grant EP/G036780/1) and the Centre for Doctoral Training in Condensed Matter Physics for project funding. SRH and JP acknowledge MagnaPharm, a collaborative research project funded by the European Union's Horizon 2020 Research and Innovation programme (grant No. 736899).

References

- Bruker (2016). SAINT and SADABS. Bruker Analytical X-ray Instruments Inc., Madison, WI, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- D'silva, E. D., Podagatlapalli, G. K., Rao, S. V., Rao, D. N. & Dharmaprakash, S. M. (2011). Cryst. Growth Des. 11, 5326–5369.
- Dutkiewicz, G., Veena, K., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2010). Acta Cryst. E66, 01243–01244.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B**72**, 171–179.

Ng, S.-L., Shettigar, V., Razak, I. A., Fun, H.-K., Patil, P. S. & Dharmaprakash, S. M. (2006). *Acta Cryst.* E62, 01421–01423.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

- Shetty, T. C. S., Chidan Kumar, C. S., Gagan Patel, K. N., Chia, T. S., Dharmaprakash, S. M., Ramasami, P., Umar, Y., Chandraju, S. & Quah, C. K. (2017). J. Mol. Struct. 1143, 306–317.
- Shetty, T. C. S., Raghavendra, S., Chidan Kumar, C. S. & Dharmaprakash, S. M. (2016). Appl. Phys. B, 122, 205.
- Teh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, 02399–02400.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer.* Version 17. University of Western Australia.
- Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, **153**, 625–636.
- Yang, W., Wang, L. & Zhang, D. (2006). J. Chem. Crystallogr. 36, 195– 198.
- Zainuri, D. A., Arshad, S., Khalib, N. C., Razak, I. A., Pillai, R. R., Sulaiman, S. F., Hashim, N. S., Ooi, K. L., Armaković, S., Armaković, S. J., Panicker, C. Y. & Van Alsenoy, C. (2017). J. Mol. Struct. 1128, 520–533.

supporting information

Acta Cryst. (2020). E76, 72-76 [https://doi.org/10.1107/S2056989019016402]

Crystal structure and Hirshfeld surface analysis of (*E*)-3-(3-iodophenyl)-1-(4-iodophenyl)prop-2-en-1-one

Kieran J. Spruce, Charlie L. Hall, Jason Potticary, Natalie E. Pridmore, Matthew E. Cremeens, Gemma D. D'ambruoso, Masaomi Matsumoto, Gabrielle I. Warren, Stephen D. Warren and Simon R. Hall

Computing details

Data collection: *SAINT* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015*b*); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

(E)-3-(3-lodophenyl)-1-(4-iodophenyl)prop-2-en-1-one

Crystal data

 $\begin{array}{l} {\rm C}_{15}{\rm H}_{10}{\rm I_2O} \\ M_r = 460.03 \\ {\rm Monoclinic}, \ P2_1/c \\ a = 7.2650 \ (7) \ {\rm \AA} \\ b = 32.864 \ (3) \ {\rm \AA} \\ c = 5.8446 \ (6) \ {\rm \AA} \\ \beta = 92.277 \ (2)^{\circ} \\ V = 1394.3 \ (2) \ {\rm \AA}^3 \\ Z = 4 \end{array}$

Data collection

Bruker APEXII kappa CCD area detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: numerical (SADABS; Bruker, 2016) $T_{\min} = 0.065$, $T_{\max} = 0.189$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.073$ S = 1.273215 reflections F(000) = 856 $D_x = 2.191 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8513 reflections $\theta = 2.5-27.5^{\circ}$ $\mu = 4.50 \text{ mm}^{-1}$ T = 200 KPlate, clear colourless $0.57 \times 0.29 \times 0.08 \text{ mm}$

18346 measured reflections 3215 independent reflections 2960 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.5^{\circ}$ $h = -9 \rightarrow 9$ $k = -42 \rightarrow 37$ $l = -7 \rightarrow 7$

164 parameters0 restraintsPrimary atom site location: iterativeHydrogen site location: inferred from neighbouring sitesH-atom parameters constrained

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0034P)^2 + 6.4729P] \\ &\text{where } P = (F_o^2 + 2F_c^2)/3 \\ &(\Delta/\sigma)_{\text{max}} = 0.001 \\ &\Delta\rho_{\text{max}} = 1.14 \text{ e } \text{ Å}^{-3} \\ &\Delta\rho_{\text{min}} = -1.30 \text{ e } \text{ Å}^{-3} \end{split}$$

Extinction correction: SHELXL2018 (Sheldrick, 2015*b*), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.00062 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C4	0.8336 (6)	0.43230 (13)	0.5707 (7)	0.0250 (9)
С9	0.9114 (6)	0.42521 (14)	0.7892 (8)	0.0278 (9)
Н9	0.939830	0.447424	0.888449	0.033*
C8	0.9474 (6)	0.38548 (14)	0.8617 (8)	0.0289 (9)
H8	1.003866	0.380553	1.008533	0.035*
C7	0.9004 (6)	0.35322 (14)	0.7183 (8)	0.0292 (9)
C6	0.8265 (6)	0.35974 (14)	0.4992 (8)	0.0298 (10)
H6	0.797488	0.337429	0.400879	0.036*
C5	0.7955 (6)	0.39954 (14)	0.4252 (8)	0.0285 (9)
Н5	0.747935	0.404397	0.273958	0.034*
C1	0.7892 (6)	0.47421 (14)	0.4874 (8)	0.0284 (9)
C2	0.7447 (6)	0.50560 (14)	0.6605 (8)	0.0294 (9)
H2	0.729579	0.497837	0.815221	0.035*
C3	0.7258 (6)	0.54438 (13)	0.5999 (8)	0.0268 (9)
Н3	0.749373	0.550781	0.445302	0.032*
C10	0.6729 (6)	0.57825 (13)	0.7450 (7)	0.0251 (9)
C11	0.6878 (6)	0.61791 (13)	0.6589 (8)	0.0273 (9)
H11	0.740192	0.622248	0.514565	0.033*
C12	0.6264 (6)	0.65086 (13)	0.7836 (8)	0.0289 (9)
C13	0.5540 (6)	0.64548 (15)	0.9989 (8)	0.0322 (10)
H13	0.513741	0.668101	1.084900	0.039*
C14	0.5424 (6)	0.60607 (15)	1.0845 (8)	0.0311 (10)
H14	0.493446	0.601952	1.230991	0.037*
C15	0.6003 (6)	0.57271 (14)	0.9618 (8)	0.0280 (9)
H15	0.590951	0.546131	1.024224	0.034*
I1	0.92866 (6)	0.29371 (2)	0.84509 (7)	0.04484 (12)
I2	0.63173 (6)	0.70888 (2)	0.63477 (6)	0.04434 (12)
01	0.7830 (5)	0.48192 (10)	0.2821 (6)	0.0376 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C4	0.022 (2)	0.027 (2)	0.026 (2)	0.0011 (17)	0.0023 (16)	0.0009 (17)
C9	0.027 (2)	0.028 (2)	0.028 (2)	-0.0020 (18)	-0.0031 (18)	-0.0029 (17)

supporting information

C8	0.028 (2)	0.034 (2)	0.024 (2)	0.0032 (19)	-0.0031 (17)	0.0017 (18)
C7	0.027 (2)	0.026 (2)	0.034 (2)	0.0048 (18)	0.0022 (18)	0.0026 (18)
C6	0.029 (2)	0.029 (2)	0.031 (2)	0.0003 (18)	-0.0001 (18)	-0.0077 (18)
C5	0.028 (2)	0.033 (2)	0.024 (2)	0.0036 (18)	-0.0010 (17)	-0.0009 (17)
C1	0.023 (2)	0.031 (2)	0.031 (2)	0.0005 (17)	0.0008 (18)	0.0024 (18)
C2	0.033 (2)	0.028 (2)	0.027 (2)	-0.0004 (18)	0.0022 (18)	0.0019 (17)
C3	0.026 (2)	0.029 (2)	0.026 (2)	-0.0005 (18)	0.0003 (17)	0.0016 (17)
C10	0.021 (2)	0.030 (2)	0.025 (2)	-0.0016 (17)	-0.0045 (16)	0.0015 (17)
C11	0.027 (2)	0.029 (2)	0.026 (2)	-0.0048 (18)	-0.0012 (17)	0.0022 (17)
C12	0.031 (2)	0.024 (2)	0.031 (2)	-0.0037 (18)	-0.0077 (18)	0.0016 (17)
C13	0.028 (2)	0.035 (2)	0.033 (2)	0.0014 (19)	-0.0018 (19)	-0.0073 (19)
C14	0.028 (2)	0.041 (3)	0.024 (2)	-0.002 (2)	-0.0003 (18)	-0.0015 (19)
C15	0.025 (2)	0.030 (2)	0.028 (2)	0.0001 (18)	-0.0048 (17)	0.0043 (18)
I1	0.0555 (2)	0.02652 (17)	0.0520 (2)	0.00766 (15)	-0.00426 (16)	0.00411 (14)
I2	0.0618 (3)	0.02421 (16)	0.0466 (2)	-0.00405 (15)	-0.00256 (16)	0.00229 (14)
01	0.051 (2)	0.0340 (18)	0.0278 (17)	0.0045 (16)	0.0029 (15)	0.0051 (14)

Geometric parameters (Å, °)

C4—C9	1.395 (6)	С2—С3	1.328 (6)
C4—C5	1.393 (6)	С3—Н3	0.9500
C4—C1	1.492 (6)	C3—C10	1.460 (6)
С9—Н9	0.9500	C10—C11	1.403 (6)
С9—С8	1.394 (6)	C10—C15	1.403 (6)
С8—Н8	0.9500	C11—H11	0.9500
C8—C7	1.386 (6)	C11—C12	1.388 (6)
С7—С6	1.386 (6)	C12—C13	1.394 (7)
C7—I1	2.099 (4)	C12—I2	2.097 (4)
С6—Н6	0.9500	C13—H13	0.9500
C6—C5	1.393 (6)	C13—C14	1.392 (7)
С5—Н5	0.9500	C14—H14	0.9500
C1—C2	1.490 (6)	C14—C15	1.385 (7)
C101	1.225 (5)	C15—H15	0.9500
С2—Н2	0.9500		
C9—C4—C1	121.8 (4)	С3—С2—Н2	119.8
С5—С4—С9	119.5 (4)	С2—С3—Н3	116.4
C5—C4—C1	118.6 (4)	C2-C3-C10	127.1 (4)
С4—С9—Н9	120.0	С10—С3—Н3	116.4
C8—C9—C4	119.9 (4)	C11—C10—C3	118.3 (4)
С8—С9—Н9	120.0	C11—C10—C15	118.8 (4)
С9—С8—Н8	120.2	C15—C10—C3	122.8 (4)
С7—С8—С9	119.6 (4)	C10-C11-H11	119.8
С7—С8—Н8	120.2	C12—C11—C10	120.4 (4)
C8—C7—I1	118.8 (3)	C12—C11—H11	119.8
С6—С7—С8	121.2 (4)	C11—C12—C13	121.0 (4)
C6—C7—I1	120.0 (3)	C11—C12—I2	118.7 (3)
С7—С6—Н6	120.5	C13—C12—I2	120.2 (3)

C7—C6—C5	118.9 (4)	C12—C13—H13	120.9
С5—С6—Н6	120.5	C14—C13—C12	118.2 (4)
C4—C5—C6	120.7 (4)	C14—C13—H13	120.9
С4—С5—Н5	119.6	C13—C14—H14	119.1
С6—С5—Н5	119.6	C15—C14—C13	121.8 (4)
C2—C1—C4	117.9 (4)	C15—C14—H14	119.1
O1—C1—C4	120.6 (4)	C10—C15—H15	120.1
O1—C1—C2	121.4 (4)	C14—C15—C10	119.8 (4)
C1—C2—H2	119.8	C14—C15—H15	120.1
C3—C2—C1	120.4 (4)		
C4—C9—C8—C7	-1.9 (7)	C2-C3-C10-C11	170.4 (5)
C4—C1—C2—C3	171.9 (4)	C2-C3-C10-C15	-12.5 (7)
C9—C4—C5—C6	2.9 (7)	C3—C10—C11—C12	175.2 (4)
C9—C4—C1—C2	-28.3 (6)	C3-C10-C15-C14	-176.0 (4)
C9—C4—C1—O1	154.5 (5)	C10-C11-C12-C13	1.9 (7)
C9—C8—C7—C6	3.3 (7)	C10—C11—C12—I2	-175.0(3)
C9—C8—C7—I1	-173.2 (3)	C11—C10—C15—C14	1.0 (6)
C8—C7—C6—C5	-1.5 (7)	C11—C12—C13—C14	-0.9 (7)
C7—C6—C5—C4	-1.6 (7)	C12—C13—C14—C15	0.0 (7)
C5-C4-C9-C8	-1.1 (7)	C13—C14—C15—C10	0.0 (7)
C5-C4-C1-C2	151.6 (4)	C15—C10—C11—C12	-1.9 (6)
C5-C4-C1-O1	-25.6 (7)	I1—C7—C6—C5	175.0 (3)
C1-C4-C9-C8	178.8 (4)	I2—C12—C13—C14	175.9 (3)
C1—C4—C5—C6	-177.0 (4)	O1—C1—C2—C3	-10.9 (7)
C1—C2—C3—C10	176.4 (4)		~ /
	· /		

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C10–C15 and C4–C9 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
$C5-H5\cdots Cg1^i$	0.95	2.78	3.406 (5)	124
C8— $H8$ ··· $Cg1$ ⁱⁱ	0.95	2.85	3.491 (5)	126
C14—H14… <i>Cg</i> 2 ⁱⁱⁱ	0.95	2.77	3.440 (5)	129

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+2; (iii) -x+1, -y+1, -z+2.