Crystal structure, Hirshfeld surface analysis and DFT studies of 1-benzyl-3-[(1-benzyl-1H-1,2,3triazol-5-yl)methyl]-2,3-dihydro-1H-1,3-benzodiazol-2-one monohvdrate

Asmaa Saber,^a Nada Kheira Sebbar,^{b,a}* Tuncer Hökelek,^c Mohamed Labd Taha,^b Ioel T. Mague,^d Noureddine Hamou Ahabchane^a and El Mokhtar Essassi^a

^aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, ^bLaboratoire de Chimie Appliquée et Environnement, Equipe de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, ^cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and ^dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA. *Correspondence e-mail: nadouchsebbarkheira@gmail.com

In the title molecule, $C_{24}H_{21}N_5O\cdot H_2O$, the dihydrobenzodiazole moiety is not quite planar, while the whole molecule adopts a U-shaped conformation in which there is a close approach of the two benzyl groups. In the crystal, chains of alternating molecules and lattice water extending along [201] are formed by O- $H_{UncoordW} \cdot \cdot \cdot O_{Dhyr}$ and $O - H_{UncoordW} \cdot \cdot \cdot N_{Trz}$ (UncoordW = uncoordinated water, Dhyr = dihydro and Trz = triazole) hydrogen bonds. The chains are connected into layers parallel to (010) by C-H_{Trz}···O_{UncoordW} hydrogen bonds with the dihydrobenzodiazole units in adjacent layers intercalating to form head-to-tail π -stacking [centroid-to-centroid distance = 3.5694 (11) Å] interactions between them, which generates the overall three-dimensional structure. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from $H \cdots H$ (52.1%), $H \cdots C/C \cdots H$ (23.8%) and $O \cdots H/$ $H \cdots O$ (11.2%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/ 6-311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO-LUMO behaviour was elucidated to determine the energy gap.

1. Chemical context

Nitrogen heterocyclic compounds are known to exhibit excellent biological and pharmaceutical activities (Olesen et al., 1994; Baxter & Clarke, 1992; Saber et al., 2020; Rémond et al., 1997). The benzimidazole core has several active sites and provides great responsiveness, making it an excellent heterocyclic precursor in the syntheses of the new heterocyclic compounds (Saber et al., 2018a,b; Ouzidan et al., 2011; Saber et al., 2020). With respect to the biological applications of benzimidazolone derivatives, it has been shown that these compounds are found to possess potent antioxidant (Gaba et al., 2014), antiparasitic (Ayhan-Kılcıgil et al., 2007), anthelmintic (Navarrete-Vazquez et al., 2001), antiproliferative (Ravina et al., 1993), anti-HIV (Garuti et al., 2000), anticonvulsant (Rao et al., 2002), anti-inflammatory (Thakurdesai et al., 2007), antihypertensive (Serafin et al., 1989) and antitrichinellosis (Mavrova et al., 2007) activities. In addition, they are considered to be important moieties for the development of molecules of pharmaceutical interest (Mondieig et al., 2013;

Edited by A. J. Lough, University of Toronto,

CRYSTALLOGRAPHIC

COMMUNICATIONS

Keywords: crystal structure; dihydrobenzodiazole; hydrogen bond; triazole; π -stacking; Hirshfeld surface

CCDC reference: 1972575

Supporting information: this article has supporting information at journals.iucr.org/e

 $\bigcirc \bigcirc$ Open \bigcirc Access

ISSN 2056-9890

research communications

Lakhrissi *et al.*, 2008). As a continuation of our research devoted to the study of the cycloaddition reactions involving benzimidazolone derivatives (Sebbar *et al.*, 2016; Saber *et al.*, 2020), we report herein the synthesis, the molecular and crystal structures of the title compound along with the results of the Hirshfeld surface analysis and the density functional theory (DFT) computational calculations carried out at the B3LYP/6–311 G(d,p) level in order to compare the theoretical and experimentally determined molecular structures in the solid state.

Figure 2

A partial packing diagram viewed along the *a*-axis direction with O– $H_{UncoordW} \cdots O_{Dhyr}$, O– $H_{UncoordW} \cdots N_{Trz}$ and C– $H_{Trz} \cdots O_{UncoordW}$ (UncoordW = uncoordinated water, Dhyr = dihydro, Trz = triazole) hydrogen bonds shown, respectively, as red, pink and black dashed lines. The π -stacking interactions are shown as orange dashed lines.

2. Structural commentary

The title molecule, (I), adopts a U-shaped conformation with an H20···C14 separation of 2.83 Å, which is very close to a normal van der Waals contact (2.90 Å). The orientation of the C11–C17 benzyl group is partly determined by an intramolecular C13–H13···Cg interaction, where Cg is the centroid of the triazole (C9/C10/N3–N5), ring C (Fig. 1 and Table 1). The dihydrobenzodiazole unit is not quite planar, as

The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The $O-H_{UncoordW} \cdots N_{Trz}$ (UncoordW = uncoordinated water, Trz = triazole) hydrogen bond is shown by a red dashed line while the intramolecular $C-H\cdots\pi(ring)$ interaction is depicted by a green dashed line.

indicated by the dihedral angle of $2.50 (8)^{\circ}$ between the constituent rings *A* (C1–C6) and *B* (N1/N2/C1/C6/C7) and the deviation of atom C7 by 0.0418 (14) Å out of the mean plane through the whole unit. The benzene ring *D* (C12–C17) is inclined to the triazole ring *C* by 78.91 (11)° while the latter ring is inclined to the *B* ring by 64.70 (11)°. The dihedral angle between the mean planes of the *B* and *E* (C19–C24) rings is 87.67 (8)°.

3. Supramolecular features

In the crystal, the molecules form chains with the water molecule of crystallization, which extend along [201] through O– $H_{UncoordW} \cdots O_{Dhyr}$ and O– $H_{UncoordW} \cdots N_{Trz}$ (UncoordW = uncoordinated water, Dhyr = dihydro, Trz = triazole) hydrogen bonds (Table 1 and Fig. 2). The chains are connected

A partial packing diagram projected onto (301) with intermolecular interactions depicted as in Fig. 2.

Table 1			
Hydrogen-bond	geometry	(Å,	°).

Cg is the centroid of the triazole ring C (C9/C10/N3–N5).

$D - \mathbf{H} \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O2-H2A\cdots N3$	0.87	2.04	2.892 (2)	166
$O2-H2B\cdots O1^{i}$	0.87	2.00	2.865 (2)	176
$C10-H10\cdots O2^{v}$	0.95	2.48	3.402 (3)	164
$C13-H13\cdots Cg$	0.95	2.83	3.451 (3)	124

Symmetry codes: (i) x - 1, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (v) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$.

into layers parallel to (010) by $C-H_{Trz} \cdots O_{UncoordW}$ hydrogen bonds (Table 1 and Fig. 2). Intercalation of the dihydrobenzodiazole groups between adjacent layers with concomitant head-to-tail π -stacking interactions between them $[Cg2\cdots Cg1^{i} = 3.5694 (11) \text{ Å where } Cg1 \text{ and } Cg2 \text{ are the}$ centroids of the A and B rings, respectively; symmetry code: (i) -x + 1, -y + 1, -z + 2; dihedral angle = 2.50 (10)°] leads to the final three-dimensional structure (Fig. 3).

4. Hirshfeld surface analysis

In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Javatilaka, 2009) was carried out using Crystal Explorer 17.5 (Turner et al., 2017). In the HS plotted over d_{norm} (Fig. 4), white areas indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact), respectively, than the van der Waals radii (Venkatesan et al., 2016). The bright-red spots appearing near O1 and hydrogen atom H2B indicate their roles as the respective donors and acceptors. The shape-index of the HS is a tool to visualize the π - π stacking by

Table 2 Selected interatomic distances (Å).

$O2 \cdot \cdot \cdot O1^i$	2.865 (2)	C10···H5	2.98
$O2 \cdot \cdot \cdot C17^i$	3.192 (3)	C11···H8B	2.90
$O2 \cdot \cdot \cdot N3$	2.892 (2)	C14···H20	2.83
O1···H8B	2.55	C18· · · H2	2.98
O1· · · H11 <i>B</i>	2.81	C22···H16 ^{vii}	2.98
$O1 \cdot \cdot \cdot H18A$	2.56	$C22 \cdot \cdot \cdot H13^{vi}$	2.97
O1···H18A ⁱⁱ	2.87	C23···H16 ^{vii}	2.97
O2···H5 ⁱⁱⁱ	2.64	$H2 \cdot \cdot \cdot N4^{viii}$	2.78
$O2 \cdot \cdot \cdot H11B^{i}$	2.77	$H2A \cdots N4$	2.62
$O2 \cdot \cdot \cdot H17^{i}$	2.71	$H2A \cdots N3$	2.04
N4···C13	3.200 (3)	$H2B \cdots O1^{i}$	2.00
$N2 \cdot \cdot \cdot H20$	2.60	$H2B \cdots H11B^{i}$	2.48
N4···H13	2.73	$H3 \cdot \cdot \cdot H15^{vi}$	2.48
N5···H13	2.52	$H4 \cdot \cdot \cdot H18A^{ix}$	2.57
$C1 \cdot \cdot \cdot C20$	3.557 (3)	$H5 \cdot \cdot \cdot H10$	2.44
$C2 \cdot \cdot \cdot C6^{iv}$	3.542 (3)	$H8A \cdots N4^{v}$	2.67
$C3 \cdot \cdot \cdot C7^{iv}$	3.540 (3)	H8B···H11B	2.27
C5···C9	3.592 (3)	$H10 \cdot \cdot \cdot O2^{v}$	2.48
$C9 \cdot \cdot \cdot C5$	3.592 (3)	$H10 \cdot \cdot \cdot H17^{ix}$	2.46
$C10 \cdot \cdot \cdot O2^v$	3.402 (3)	$H11A \cdots C15^{v}$	2.92
$C11 \cdots C15^{v}$	3.421 (3)	$H11A \cdots H17$	2.51
$C14 \cdot \cdot \cdot C20$	3.505 (3)	H16···H23 ^{vii}	2.44
$C2 \cdot \cdot \cdot H18B$	2.98	H16· · ·H22 ^{vii}	2.46
$C3 \cdot \cdot \cdot H15^{vi}$	2.88	$H18A \cdots H18A^{ii}$	2.19
$C8 \cdot \cdot \cdot H11B$	2.79	H18B···H24	2.43
C8···H5	2.99	H24· · ·N3 ^{viii}	2.76
Symmetry codes:	(i) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$	$-\frac{1}{2}$; (ii) $-x+2, -y+1, -x$	z + 2; (iii)
$x, -y + \frac{1}{2}, z - \frac{1}{2};$ (iv) $-x + 1, -y + 1,$	$-z+2;$ (v) $x, -y+\frac{1}{2}, z$	$+\frac{1}{2}$; (vi)

the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π - π interactions. Fig. 5 clearly suggests that there are $\pi - \pi$ interactions in (I).

Figure 4

View of the three-dimensional Hirshfeld surface of the title compound plotted over d_{norm} in the range -0.5603 to 1.3285 a.u.

Figure 5 Hirshfeld surface of the title compound plotted over shape-index.

research communications

Figure 6

The full two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) $H \cdots H$, (c) $H \cdots C/C \cdots H$, (d) $H \cdots O/O \cdots H$, (e) $H \cdots N/N \cdots H$, (f) $C \cdots C$ and (g) $C \cdots N/N \cdots C$ interactions. The d_i and d_e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The overall two-dimensional fingerprint plot, Fig. 6a, and those delineated into $H \cdots H$, $H \cdots C/C \cdots H$, $H \cdots O/O \cdots H$, $H \cdots N/N \cdots H$, $C \cdots C$ and $C \cdots N/N \cdots C$ contacts (McKinnon *et* al., 2007) are illustrated in Fig. 6b-g, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction (Table 2) is $H \cdots H$, contributing 52.1% to the overall crystal packing, which is reflected in Fig. 6b as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at $d_e = d_i =$ 1.00 Å. The presence of $C-H \cdots \pi$ interactions give rise to pairs of characteristic wings in the fingerprint plot delineated into $H \cdots C/C \cdots H$ contacts (23.8% contribution to the HS), Fig. 6c, (Table 2) with triple pairs of spikes with the tips at d_e + $d_i = 2.86, 2.82$ and 2.85 Å. The scattered points in the pair of wings in the fingerprint plots delineated into H...O/O···H contacts (11.2% contribution), Fig. 6d, have a symmetrical distribution with the edges at $d_e + d_i = 1.85$ Å. The H···N/ $N \cdots N$ contacts, contributing 7.4% to the overall crystal packing, are shown in Fig. 6e as widely scattered points with the tips at $d_e + d_i = 2.56$ Å. The C···C contacts, Fig. 6f, have an arrow-shaped distribution of points with the tip at $d_e = d_i =$ 1.77 Å. Finally, the $C \cdots N/N \cdots C$ interactions (2.2%) are reflected in Fig. 6g as tiny characteristic wings with the tips at $d_{\rm e} + d_{\rm i} = 3.44$ Å.

The Hirshfeld surface representations with the function d_{norm} plotted onto the surface are shown for the H···H, H···C/C···H, H···O/O···H and H···N/N···H interactions in Fig. 7*a*-*d*, respectively.

Figure 7

The Hirshfeld surface representations with the function d_{norm} plotted onto the surface for (a) $H \cdots H$, (b) $H \cdots C/C \cdots H$, (c) $H \cdots O/O \cdots H$ and (d) $H \cdots N/N \cdots H$ interactions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of $H \cdots H$, $H \cdots C/C \cdots H$ and $H \cdots O/O \cdots H$ interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar *et al.*, 2015).

5. Database survey

An N-substituted benzoimidazol-2-one analogue (Saber et al., 2018a,b; Saber et al., 2020) and other similar compounds have also been reported (Belaziz et al., 2012, 2013; Bouayad et al., 2015). In derivatives of benzimidazolin-2-one in which both nitrogen atoms form exocyclic C-N bonds, the bicyclic ring system is either planar, has a slight twist end-to-end, or, in the cases where the exocyclic substituents form a ring, has a very shallow bowl shape. The closest examples to the title compound are 2 (Saber et al., 2018a) and 3 (Saber et al., 2018b) with 4 (Díez-Barra et al., 1997) as a more distant relative. In 3, the C-N bond, connecting the nitrogen atoms to form exocyclic units are 1.4632 (15) and 1.4525 (16) Å, while in the title compound, the C-N bonds are 1.4301 (15) and 1.4525 (16) Å. In the bicyclic units, they are in an antiarrangement, and this is basically the same for 2. Interestingly, the three bicyclic units in 4 are close to all being syn to one another.

6. DFT calculations

The optimized structure of the title compound, (I), in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6-311 G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results are in good agreement (Table 3). The highest-occupied molecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied molecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the molecular framework. E_{HOMO} and E_{LUMO} clarify the inevitable charge-exchange collaboration inside the studied material, electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ) are recorded in Table 4. The significance of η and σ is to evaluate both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 8. The HOMO and LUMO are localized in the plane extending over the whole 1benzyl-3-[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]-2,3-dihydro-1H-1,3-benzodiazol-2-one hydrate ring. The energy band gap $[\Delta E = E_{LUMO} - E_{HOMO}]$ of the molecule is 5.3468 eV, and the frontier molecular orbital energies, E_{HOMO} and E_{LUMO} are -6.1633 and -0.8166 eV, respectively.

Comparison of selected (X-ray and DFT) geometric data (Å, °).				
Bonds/angles	X-ray	B3LYP/6-311G(d,p)		
O1-C7	1.225 (2)	1.25497		
N1-C7	1.384 (2)	1.40076		
N1-C6	1.397 (2)	1.40603		
N1-C8	1.452 (2)	1.46502		

N1-C6	1.397 (2)	1.40603
N1-C8	1.452 (2)	1.46502
N2-C7	1.379 (2)	1.39180
N2-C1	1.395 (2)	1.40574
N2-C18	1.450 (2)	1.47028
N3-N4	1.314 (2)	1.32954
N3-C10	1.358 (3)	1.37406
N4-N5	1.347 (2)	1.38781
N5-C9	1.356 (2)	1.37548
N5-C11	1.452 (2)	1.47090
C7-N1-C6	109.72 (15)	109.64541
C7-N1-C8	123.68 (15)	122.59694
C6-N1-C8	125.96 (15)	127.83740
C7-N2-C1	109.90 (15)	109.86320
C7-N2-C18	123.91 (16)	122.77835
C1-N2-C18	125.82 (16)	128.23580
N4-N3-C10	108.55 (17)	108.75382
N3-N4-N5	107.17 (16)	107.07997
N4-N5-C9	111.14 (15)	110.25168
N4-N5-C11	118.44 (16)	118.90455

7. Synthesis and crystallization

Table 2

To a mixture of 3-methyl-1-(prop-2-ynyl)-3,4-dihydroquinoxalin-2(1H)-one (0.65 mmol) in ethanol (20 ml) was added 1-(azidomethyl)benzene (1.04 mmol). The mixture was stirred under reflux for 24 h. After completion of the reaction (monitored by TLC), the solution was concentrated and the residue obtained was purified by column chromatography on silica gel by using as eluent a mixture (hexane/ethyl acetate: 9/

Figure 8 The energy band gap of the title compound, (I).

research communications

Table 4	
Calculated	energies.

Molecular Energy (a.u.) (eV)	Compound (I)
Total Energy, TE (eV)	-34723.0011
$E_{\rm HOMO}~(\rm eV)$	-6.1633
$E_{\rm LUMO}~({\rm eV})$	-0.8166
Gap ΔE (eV)	5.3468
Dipole moment, μ (Debye)	5.5500
Ionization potential I (eV)	6.1633
Electron affinity, A	0.8166
Electronegativity, χ	3.4900
Hardness, η	2.6734
Electrophilicity index, ω	2.2780
Softness, σ	0.3741
Fraction of electron transferred, ΔN	0.6565

1). The isolated solid product was recrystallized from ethanol to afford yellow crystals (yield: in 19%).

8. Refinement

The experimental details including the crystal data, data collection and refinement are summarized in Table 5. Hydrogen atoms were included as riding contributions in idealized positions with C-H = 0.95-0.99 Å and $U_{\rm iso}(\rm H) = 1.2U_{\rm eq}(\rm C)$.

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

- Ayhan-Kılcıgil, G., Kus, G., Özdamar, E. D., Can-Eke, B. & Iscan, M. (2007). Arch. Pharm. Chem. Life Sci. 340, 607–611.
- Baxter, G. S. & Clarke, D. E. (1992). *Eur. J. Pharmacol.* **212**, 225–229. Becke, A. D. (1993). *J. Chem. Phys.* **98**, 5648–5652.
- Belaziz, D., Kandri Rodi, Y., Essassi, E. M. & El Ammari, L. (2012). Acta Cryst. E68, 01276.
- Belaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). *Acta Cryst.* E**69**, 0122.
- Bouayad, K., Kandri Rodi, Y., Ouzidan, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 0735–0736.
- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). *APEX3* and *SAINT*, Bruker AXS, Inc., Madison, Wisconsin, USA.
- Díez-Barra, E., Dotor, J., de la Hoz, A., Foces-Foces, C., Enjalbal, C., Aubagnac, J. L., Claramunt, R. M. & Elguero, J. (1997). *Tetrahedron*, 53, 7689–7704.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene,

Table 5
Experimental details.
Crystal data

Chemical formula	$C_{24}H_{21}N_5O\cdot H_2O$
M _r	413.47
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	150
a, b, c (Å)	9.0872 (2), 21.1012 (4), 11.7134 (2)
β (°)	112.654 (1)
$V(Å^3)$	2072.77 (7)
Z	4
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	0.70
Crystal size (mm)	$0.18\times0.08\times0.01$
Data collection	
Diffractometer	Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.85, 0.99
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	15080, 3887, 2909
R _{int}	0.057
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.610
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.048, 0.113, 1.06
No. of reflections	3887
No. of parameters	280
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} \ { m \AA}^{-3})$	0.22, -0.22

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT2014 (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b) and DIAMOND (Brandenburg & Putz, 2012).

M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, ., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). *GAUSSIAN 09*. Gaussian Inc., Wallingford, CT, US

- Gaba, M., Singh, S. & Mohan, C. (2014). *Eur. J. Med. Chem.* **76**, 494–505.
- Garuti, L., Roberti, M., Malagoli, M., Rossi, T. & Castelli, M. (2000). Bioorg. Med. Chem. Lett. 10, 2193–2195.
- Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). *IUCrJ*, 2, 563–574.
- Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129-138.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Lakhrissi, B., Benksim, A., Massoui, M., Essassi, el M., Lequart, V., Joly, N., Beaupère, D., Wadouachi, A. & Martin, P. (2008). *Carbohydr. Res.* 343, 421–433.
- Mavrova, A. Ts, Denkova, P., Tsenov, Y. A., Anichina, K. K. & Vutchev, D. I. (2007). *Bioorg. Med. Chem.* 15, 6291–6297.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Mondieig, D., Lakhrissi, L., El Assyry, A., Lakhrissi, B., Negrier, P., Essassi, E. M., Massoui, M., Michel Leger, J. & Benali, B. (2013). J. Mar. Chim. Heterocycl. 12, 51–61.
- Navarrete-Vazquez, G., Cedillo, R., Hernandez-Campos, A., Yepez, L., Hernandez-Luis, F., Valdez, J., Morales, R., Cortes, R., Hernandez, M. & Castillo, R. (2001). *Bioorg Med Chem.* 11, 187– 190.
- Olesen, S. P., Munch, E., Moldt, P. & Drejer, J. (1994). Eur. J. Pharmacol. 251, 53–59.

- Ouzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011). Acta Cryst. E67, 0362–0363.
- Rao, A., Chimirri, A., De Clercq, E., Monforte, A. M., Monforte, P., Pannecouque, C. & Zappalà, M. (2002). *Farmaco*, 57, 819–823.
- Ravina, E., Sanchez-Alonso, R., Fueyo, J., Baltar, M. P., Bos, J., Iglesias, R. & Sanmartin, M. L. (1993). Arzneim. Forsch. 43, 684– 694.
- Rémond, G., Portevin, B., Bonnet, J., Canet, E., Regoli, D. & De Nanteuil, G. (1997). Eur. J. Med. Chem. 32, 843–868.
- Saber, A., Sebbar, N. K., Hökelek, T., El hafi, M., Mague, J. T. & Essassi, E. M. (2018b). Acta Cryst. E74, 1842–1846.
- Saber, A., Sebbar, N. K., Hökelek, T., Hni, B., Mague, J. T. & Essassi, E. M. (2018a). Acta Cryst. E74, 1746–1750.
- Saber, A., Sebbar, N. K., Sert, Y., Alzaqri, N., Hökelek, T., El Ghayati, L., Talbaoui, A., Mague, J. T., Baba, Y. F., Urrutigoîty, M. & Essassi, M. (2020). J. Mol. Struct. 1200, 127174.

- Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Abdelfettah Z., Ouzidan Y., Kandri, Rodi Y., Talbaoui, A. & Bakri, Y. (2016). J. Mar. Chim. Heterocycl. 15, 1–11.
- Serafin, B., Borkowska, G., Glowczyk, J., Kowalska, I. & Rump, S. (1989). Pol. J. Pharmcol. Pharm. 41, 89–96.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, M. A. & Jayatilaka, D. (2009). *CrystEngComm*, **11**, 19–32. Thakurdesai, P. A., Wadodkar, S. G. & Chopade, C. T. (2007).
- Pharmacology Online 1, 314–329.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.
- Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, **153**, 625–636.

supporting information

Acta Cryst. (2020). E76, 95-101 [https://doi.org/10.1107/S2056989019016876]

Crystal structure, Hirshfeld surface analysis and DFT studies of 1-benzyl-3-[(1-benzyl-1*H*-1,2,3-triazol-5-yl)methyl]-2,3-dihydro-1*H*-1,3-benzodiazol-2-one monohydrate

Asmaa Saber, Nada Kheira Sebbar, Tuncer Hökelek, Mohamed Labd Taha, Joel T. Mague, Noureddine Hamou Ahabchane and El Mokhtar Essassi

Computing details

Data collection: *APEX3* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016; program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015b); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2012); software used to prepare material for publication: *SHELXL2018* (Sheldrick, 2015b).

1-Benzyl-3-[(1-benzyl-1H-1,2,3-triazol-5-yl)methyl]-2,3-dihydro-1H-1,3-benzodiazol-2-one monohydrate

Crystal data

C₂₄H₂₁N₅O·H₂O $M_r = 413.47$ Monoclinic, P2₁/c a = 9.0872 (2) Å b = 21.1012 (4) Å c = 11.7134 (2) Å $\beta = 112.654$ (1)° V = 2072.77 (7) Å³ Z = 4

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer
Radiation source: INCOATEC IμS micro–focus source
Mirror monochromator
Detector resolution: 10.4167 pixels mm⁻¹ ω scans
Absorption correction: multi-scan (SADABS; Krause et al., 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.113$ S = 1.06 F(000) = 872 $D_x = 1.325 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9060 reflections $\theta = 4.2-70.2^{\circ}$ $\mu = 0.70 \text{ mm}^{-1}$ T = 150 KPlate, colourless $0.18 \times 0.08 \times 0.01 \text{ mm}$

 $T_{\min} = 0.85, T_{\max} = 0.99$ 15080 measured reflections
3887 independent reflections
2909 reflections with $I > 2\sigma(I)$ $R_{int} = 0.057$ $\theta_{\max} = 70.2^{\circ}, \theta_{\min} = 4.2^{\circ}$ $h = -11 \rightarrow 10$ $k = -24 \rightarrow 25$ $l = -14 \rightarrow 13$

3887 reflections280 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0367P)^2 + 0.901P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: mixed	$(\Delta/\sigma)_{\rm max} < 0.001$
H-atom parameters constrained	$\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H- atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to oxygen were placed in locations derived from a difference map and their coordinates adjusted to give O—H = 0.87 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.85567 (15)	0.39779 (7)	0.93327 (13)	0.0375 (4)	
N1	0.58475 (17)	0.39409 (7)	0.89638 (14)	0.0267 (3)	
N2	0.68572 (18)	0.48484 (7)	0.86568 (14)	0.0278 (3)	
N3	0.3094 (2)	0.22818 (9)	0.68794 (17)	0.0426 (5)	
N4	0.4467 (2)	0.21861 (8)	0.67770 (16)	0.0378 (4)	
N5	0.55663 (19)	0.25352 (8)	0.76599 (15)	0.0300 (4)	
C1	0.5258 (2)	0.49606 (9)	0.84381 (16)	0.0274 (4)	
C2	0.4364 (2)	0.55101 (10)	0.81370 (18)	0.0350 (5)	
H2	0.480398	0.590041	0.801540	0.042*	
C3	0.2785 (3)	0.54622 (11)	0.80211 (19)	0.0411 (5)	
H3	0.213195	0.583008	0.781973	0.049*	
C4	0.2141 (2)	0.48927 (12)	0.8192 (2)	0.0416 (5)	
H4	0.105243	0.487817	0.808961	0.050*	
C5	0.3051 (2)	0.43389 (11)	0.85099 (18)	0.0342 (5)	
H5	0.261424	0.394902	0.863712	0.041*	
C6	0.4618 (2)	0.43874 (9)	0.86300 (16)	0.0263 (4)	
C7	0.7242 (2)	0.42276 (9)	0.90173 (17)	0.0275 (4)	
C8	0.5772 (2)	0.32986 (9)	0.93828 (18)	0.0307 (4)	
H8A	0.523147	0.330364	0.997257	0.037*	
H8B	0.686995	0.313896	0.982830	0.037*	
C9	0.4903 (2)	0.28571 (9)	0.83436 (17)	0.0288 (4)	
C10	0.3330 (2)	0.26854 (10)	0.7837 (2)	0.0381 (5)	
H10	0.252957	0.282630	0.811211	0.046*	
C11	0.7188 (2)	0.25400 (10)	0.77111 (19)	0.0337 (5)	
H11A	0.752881	0.209810	0.766704	0.040*	
H11B	0.790188	0.271831	0.851613	0.040*	
C12	0.7378 (2)	0.29187 (9)	0.66852 (17)	0.0303 (4)	
C13	0.6180 (3)	0.32884 (10)	0.58683 (19)	0.0372 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H13	0.516342	0.330255	0.592204	0.045*
C14	0.6458 (3)	0.36398 (11)	0.4968 (2)	0.0439 (5)
H14	0.562951	0.389101	0.440157	0.053*
C15	0.7931 (3)	0.36233 (12)	0.4897 (2)	0.0499 (6)
H15	0.813571	0.387548	0.430265	0.060*
C16	0.9119 (3)	0.32390 (14)	0.5694 (2)	0.0531 (7)
H16	1.012885	0.321923	0.563017	0.064*
C17	0.8840 (3)	0.28853 (12)	0.6578 (2)	0.0439 (6)
H17	0.965324	0.261779	0.711555	0.053*
C18	0.8011 (2)	0.53227 (10)	0.86554 (18)	0.0336 (5)
H18A	0.909556	0.515338	0.911413	0.040*
H18B	0.787800	0.570113	0.910627	0.040*
C19	0.7883 (2)	0.55247 (9)	0.73841 (17)	0.0280 (4)
C20	0.7223 (3)	0.51411 (11)	0.6354 (2)	0.0435 (5)
H20	0.679963	0.473924	0.643246	0.052*
C21	0.7171 (3)	0.53360 (12)	0.5208 (2)	0.0493 (6)
H21	0.671787	0.506684	0.450937	0.059*
C22	0.7773 (3)	0.59167 (12)	0.5081 (2)	0.0430 (5)
H22	0.772714	0.605182	0.429394	0.052*
C23	0.8446 (3)	0.63033 (11)	0.6103 (2)	0.0432 (5)
H23	0.886487	0.670536	0.602007	0.052*
C24	0.8509 (2)	0.61052 (10)	0.7246 (2)	0.0357 (5)
H24	0.898875	0.637078	0.794666	0.043*
O2	0.10404 (17)	0.18802 (8)	0.44186 (14)	0.0478 (4)
H2A	0.155922	0.195519	0.520249	0.072*
H2B	0.031707	0.160858	0.441258	0.072*

Atomic displacement parameters (\mathring{A}^2)

<i>U</i> ¹¹	U^{22} 0.0395 (9)	U ³³	U^{12}	U^{13}	L /23
	0 0395 (9)			-	C
O1 0.0242 (7)	0.0575 (7)	0.0441 (8)	0.0055 (6)	0.0078 (6)	-0.0002 (7)
N1 0.0247 (8)	0.0244 (8)	0.0286 (8)	0.0013 (6)	0.0077 (6)	-0.0006 (6)
N2 0.0259 (8)	0.0263 (9)	0.0283 (8)	-0.0016 (7)	0.0072 (6)	0.0013 (7)
N3 0.0363 (9)	0.0486 (12)	0.0454 (11)	-0.0144 (9)	0.0184 (8)	-0.0126 (9)
N4 0.0385 (9)	0.0358 (10)	0.0409 (10)	-0.0099 (8)	0.0174 (8)	-0.0081 (8)
N5 0.0306 (8)	0.0291 (9)	0.0316 (9)	-0.0037 (7)	0.0132 (7)	-0.0018 (7)
C1 0.0267 (9)	0.0319 (11)	0.0206 (9)	0.0029 (8)	0.0059 (7)	-0.0007 (7)
C2 0.0430 (11)	0.0328 (12)	0.0277 (10)	0.0085 (9)	0.0120 (9)	0.0036 (8)
C3 0.0438 (12)	0.0442 (14)	0.0339 (11)	0.0195 (10)	0.0134 (9)	0.0054 (9)
C4 0.0303 (10)	0.0591 (15)	0.0360 (12)	0.0118 (10)	0.0132 (9)	0.0009 (10)
C5 0.0302 (10)	0.0429 (13)	0.0311 (10)	0.0015 (9)	0.0135 (8)	-0.0007 (9)
C6 0.0255 (9)	0.0303 (11)	0.0215 (9)	0.0024 (8)	0.0071 (7)	-0.0011 (8)
C7 0.0232 (9)	0.0302 (10)	0.0252 (9)	-0.0006 (8)	0.0050 (7)	-0.0023 (8)
C8 0.0345 (10)	0.0279 (11)	0.0280 (10)	0.0011 (8)	0.0101 (8)	0.0026 (8)
C9 0.0309 (9)	0.0272 (10)	0.0297 (10)	-0.0018 (8)	0.0132 (8)	0.0019 (8)
C10 0.0350 (11)	0.0409 (13)	0.0416 (12)	-0.0073 (9)	0.0182 (9)	-0.0083 (10)
C11 0.0288 (10)	0.0375 (12)	0.0362 (11)	0.0025 (9)	0.0138 (8)	0.0018 (9)
C12 0.0303 (10)	0.0318 (11)	0.0283 (10)	-0.0052 (8)	0.0108 (8)	-0.0047 (8)

supporting information

C13	0.0401 (11)	0.0333 (12)	0.0401 (12)	0.0026 (9)	0.0177 (9)	0.0022 (9)
C14	0.0584 (14)	0.0363 (13)	0.0350 (12)	0.0035 (11)	0.0159 (10)	0.0016 (9)
C15	0.0679 (16)	0.0510 (15)	0.0377 (13)	-0.0150 (13)	0.0279 (12)	-0.0003 (11)
C16	0.0404 (12)	0.0785 (19)	0.0447 (14)	-0.0136 (13)	0.0211 (11)	0.0002 (13)
C17	0.0313 (10)	0.0601 (16)	0.0386 (12)	-0.0021 (10)	0.0115 (9)	0.0025 (11)
C18	0.0328 (10)	0.0340 (11)	0.0296 (10)	-0.0092 (9)	0.0070 (8)	-0.0023 (9)
C19	0.0240 (9)	0.0285 (10)	0.0309 (10)	-0.0005 (8)	0.0099 (7)	-0.0008 (8)
C20	0.0551 (14)	0.0388 (13)	0.0352 (12)	-0.0153 (11)	0.0159 (10)	-0.0061 (10)
C21	0.0625 (15)	0.0503 (15)	0.0340 (12)	-0.0167 (12)	0.0173 (11)	-0.0101 (11)
C22	0.0454 (12)	0.0512 (15)	0.0351 (12)	-0.0047 (11)	0.0188 (10)	0.0023 (10)
C23	0.0494 (13)	0.0384 (13)	0.0491 (13)	-0.0075 (10)	0.0272 (11)	0.0008 (10)
C24	0.0376 (11)	0.0323 (11)	0.0393 (12)	-0.0052 (9)	0.0171 (9)	-0.0062 (9)
O2	0.0397 (8)	0.0618 (11)	0.0395 (9)	-0.0154 (8)	0.0128 (7)	0.0018 (8)

Geometric parameters (Å, °)

01—C7	1.225 (2)	C11—H11B	0.9900
N1—C7	1.384 (2)	C12—C13	1.381 (3)
N1—C6	1.397 (2)	C12—C17	1.384 (3)
N1—C8	1.452 (2)	C13—C14	1.390 (3)
N2—C7	1.379 (2)	C13—H13	0.9500
N2—C1	1.395 (2)	C14—C15	1.373 (3)
N2-C18	1.450 (2)	C14—H14	0.9500
N3—N4	1.314 (2)	C15—C16	1.385 (4)
N3—C10	1.358 (3)	C15—H15	0.9500
N4—N5	1.347 (2)	C16—C17	1.377 (3)
N5—C9	1.356 (2)	C16—H16	0.9500
N5-C11	1.452 (2)	C17—H17	0.9500
C1—C2	1.381 (3)	C18—C19	1.510 (3)
C1—C6	1.397 (3)	C18—H18A	0.9900
C2—C3	1.392 (3)	C18—H18B	0.9900
С2—Н2	0.9500	C19—C20	1.383 (3)
C3—C4	1.384 (3)	C19—C24	1.386 (3)
С3—Н3	0.9500	C20—C21	1.387 (3)
C4—C5	1.397 (3)	C20—H20	0.9500
C4—H4	0.9500	C21—C22	1.373 (3)
С5—С6	1.379 (3)	C21—H21	0.9500
С5—Н5	0.9500	C22—C23	1.382 (3)
С8—С9	1.494 (3)	C22—H22	0.9500
C8—H8A	0.9900	C23—C24	1.383 (3)
C8—H8B	0.9900	C23—H23	0.9500
C9—C10	1.368 (3)	C24—H24	0.9500
C10—H10	0.9500	O2—H2A	0.8700
C11—C12	1.507 (3)	O2—H2B	0.8701
C11—H11A	0.9900		
O2…O1 ⁱ	2.865 (2)	C10…H5	2.98
O2…C17 ⁱ	3.192 (3)	C11…H8B	2.90

O2…N3	2.892 (2)	C14…H20	2.83
O1…H8B	2.55	C18…H2	2.98
O1…H11B	2.81	C22…H16 ^{vii}	2.98
O1…H18A	2.56	C22…H13 ^{vi}	2.97
O1…H18A ⁱⁱ	2.87	C23…H16 ^{vii}	2.97
O2…H5 ⁱⁱⁱ	2.64	H2…N4 ^{viii}	2.78
O2…H11B ⁱ	2.77	H2A…N4	2.62
O2…H17 ⁱ	2.71	H2A…N3	2.04
N4…C13	3.200 (3)	H2B····O1 ⁱ	2.00
N2…H20	2.60	H2B····H11B ⁱ	2.48
N4…H13	2.73	H3…H15 ^{vi}	2.48
N5…H13	2.52	H4…H18A ^{ix}	2.57
C1…C20	3.557 (3)	H5…H10	2.44
C2…C6 ^{iv}	3.542 (3)	H8A…N4 ^v	2.67
C3····C7 ^{iv}	3.540 (3)	H8B…H11B	2.27
C5…C9	3.592 (3)	H10…O2 ^v	2.48
C9…C5	3.592 (3)	H10…H17 ^{ix}	2.46
C10O2 ^v	3.402 (3)	H11A…C15 ^v	2.92
C11…C15 ^v	3.421 (3)	H11A…H17	2.51
C14…C20	3.505 (3)	H16…H23 ^{vii}	2.44
C2…H18B	2.98	H16…H22 ^{vii}	2.46
C3···H15 ^{vi}	2.88	H18A…H18A ⁱⁱ	2.19
C8…H11B	2.79	H18B…H24	2.43
C8…H5	2.99	H24…N3 ^{viiii}	2.76
C7—N1—C6	109.72 (15)	N5—C11—H11B	108.9
C7—N1—C8	123.68 (15)	C12—C11—H11B	108.9
C6—N1—C8	125.96 (15)	H11A—C11—H11B	107.7
C7—N2—C1	109.90 (15)	C13—C12—C17	119.63 (19)
C7—N2—C18	123.91 (16)	C13—C12—C11	123.39 (18)
C1—N2—C18	125.82 (16)	C17—C12—C11	116.99 (18)
N4—N3—C10	108.55 (17)	C12—C13—C14	120.1 (2)
N3—N4—N5	107.17 (16)	C12—C13—H13	119.9
N4—N5—C9	111.14 (15)	C14—C13—H13	119.9
N4—N5—C11	118.44 (16)	C15—C14—C13	119.9 (2)
C9—N5—C11	130.35 (17)	C15—C14—H14	120.1
C2-C1-N2	131.12 (19)	C13—C14—H14	120.1
C2—C1—C6	121.84 (18)	C14—C15—C16	120.0 (2)
N2—C1—C6	106.99 (16)	C14—C15—H15	120.0
C1—C2—C3	116.5 (2)	C16—C15—H15	120.0
C1—C2—H2	121.7	C17—C16—C15	120.2 (2)
C3-C2-H2	121.7	C17-C16-H16	119.9
C4-C3-C2	121.7 121.7(2)	C_{15} $-C_{16}$ $-H_{16}$	119.9
C4—C3—H3	119.1	C16-C17-C12	120.1 (2)
С2—С3—Н3	119.1	C16-C17-H17	119.9
$C_{3}-C_{4}-C_{5}$	121 65 (19)	C12—C17—H17	119.9
C3—C4—H4	119.2	N_{2} C18 C19	114 52 (15)
C5-C4-H4	119.2	N2-C18-H18A	108.6
	· · · · ·		100.0

C6-C5-C4	1166(2)	C19-C18-H18A	108.6
C6-C5-H5	121 7	N2-C18-H18B	108.6
C4-C5-H5	121.7	C19 - C18 - H18B	108.6
C_{5} C_{6} C_{1}	121.7	H18A - C18 - H18B	107.6
C5-C6-N1	121.00(10) 131.30(18)	C_{20} C_{19} C_{24}	118 34 (19)
$C_1 = C_6 = N_1$	106.03(15)	$C_{20} = C_{10} = C_{24}$	110.54(19)
C1 = C0 = N1	100.93(13) 127.11(19)	$C_{20} = C_{19} = C_{18}$	122.34(10)
$O_1 = C_7 = N_2$	127.11(10) 126.52(10)	C_{10} C_{20} C_{21}	119.00(17)
$N_2 C_7 N_1$	120.32(18) 106.27(15)	$C_{19} = C_{20} = C_{21}$	120.8 (2)
$N_2 - C_1 - N_1$	100.57(15)	C19 - C20 - H20	119.0
$NI = C_{0} = U_{0}$	112.08 (15)	$C_{21} = C_{20} = H_{20}$	119.0
NI - C8 - H8A	109.1	$C_{22} = C_{21} = C_{20}$	120.2 (2)
C9—C8—H8A	109.1	C22—C21—H21	119.9
NI—C8—H8B	109.1	C20—C21—H21	119.9
C9—C8—H8B	109.1	C21—C22—C23	119.6 (2)
H8A—C8—H8B	107.8	С21—С22—Н22	120.2
N5—C9—C10	103.82 (17)	C23—C22—H22	120.2
N5—C9—C8	125.29 (17)	C22—C23—C24	120.0 (2)
C10—C9—C8	130.88 (18)	С22—С23—Н23	120.0
N3—C10—C9	109.31 (18)	С24—С23—Н23	120.0
N3—C10—H10	125.3	C23—C24—C19	121.0 (2)
С9—С10—Н10	125.3	C23—C24—H24	119.5
N5—C11—C12	113.37 (16)	C19—C24—H24	119.5
N5—C11—H11A	108.9	H2A—O2—H2B	103.2
C12—C11—H11A	108.9		
C10—N3—N4—N5	-0.7 (2)	C11—N5—C9—C10	177.1 (2)
N3—N4—N5—C9	0.3 (2)	N4—N5—C9—C8	-178.77 (17)
N3—N4—N5—C11	-176.95 (17)	C11—N5—C9—C8	-1.9 (3)
C7—N2—C1—C2	175.59 (19)	N1-C8-C9-N5	86.6 (2)
C18—N2—C1—C2	2.4 (3)	N1-C8-C9-C10	-92.1 (3)
C7—N2—C1—C6	-1.9 (2)	N4—N3—C10—C9	0.9 (3)
C18—N2—C1—C6	-175.07 (17)	N5-C9-C10-N3	-0.7(2)
N2—C1—C2—C3			0.7(2)
$C(C_1, C_2, C_2)$	-177.86(19)	C8—C9—C10—N3	178.24 (19)
10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-177.86 (19) -0.7 (3)	C8—C9—C10—N3 N4—N5—C11—C12	178.24 (19) 73.3 (2)
$C_{0} - C_{1} - C_{2} - C_{3}$ $C_{1} - C_{2} - C_{3} - C_{4}$	-177.86 (19) -0.7 (3) -0.4 (3)	C8—C9—C10—N3 N4—N5—C11—C12 C9—N5—C11—C12	178.24 (19) 73.3 (2) -103.4 (2)
C_{0} C_{1} C_{2} C_{3} C_{4} C_{2} C_{3} C_{4} C_{5}	-177.86 (19) -0.7 (3) -0.4 (3) 1.1 (3)	C8—C9—C10—N3 N4—N5—C11—C12 C9—N5—C11—C12 N5—C11—C12—C13	178.24 (19) 73.3 (2) -103.4 (2) 7.5 (3)
C_{0} C_{1} C_{2} C_{3} C_{4} C_{2} C_{3} C_{4} C_{5} C_{3} C_{4} C_{5} C_{6}	-177.86 (19) -0.7 (3) -0.4 (3) 1.1 (3) -0.8 (3)	C8—C9—C10—N3 N4—N5—C11—C12 C9—N5—C11—C12 N5—C11—C12—C13 N5—C11—C12—C17	(1, 1) 178.24 (19) 73.3 (2) -103.4 (2) 7.5 (3) -172.44 (19)
$\begin{array}{c} C_{0} = C_{1} = C_{2} = C_{3} \\ C_{1} = C_{2} = C_{3} = C_{4} \\ C_{2} = C_{3} = C_{4} = C_{5} \\ C_{3} = C_{4} = C_{5} = C_{6} \\ C_{4} = C_{5} = C_{6} = C_{1} \end{array}$	-177.86 (19) -0.7 (3) -0.4 (3) 1.1 (3) -0.8 (3) -0.2 (3)	C8-C9-C10-N3 N4-N5-C11-C12 C9-N5-C11-C12 N5-C11-C12-C13 N5-C11-C12-C17 C17-C12-C13-C14	$\begin{array}{c} 1.7(2) \\ 178.24(19) \\ 73.3(2) \\ -103.4(2) \\ 7.5(3) \\ -172.44(19) \\ -19(3) \end{array}$
$C_{1} = C_{2} = C_{3}$ $C_{1} = C_{2} = C_{3} = C_{4}$ $C_{2} = C_{3} = C_{4} = C_{5}$ $C_{3} = C_{4} = C_{5} = C_{6}$ $C_{4} = C_{5} = C_{6} = C_{1}$ $C_{4} = C_{5} = C_{6} = N_{1}$	-177.86 (19) -0.7 (3) -0.4 (3) 1.1 (3) -0.8 (3) -0.2 (3) 178.04 (18)	C8-C9-C10-N3 N4-N5-C11-C12 C9-N5-C11-C12 N5-C11-C12-C13 N5-C11-C12-C17 C17-C12-C13-C14 C11-C12-C13-C14	$\begin{array}{c} 1.7(2) \\ 178.24(19) \\ 73.3(2) \\ -103.4(2) \\ 7.5(3) \\ -172.44(19) \\ -1.9(3) \\ 1781(2) \end{array}$
$C_{0} = C_{1} = C_{2} = C_{3}$ $C_{1} = C_{2} = C_{3} = C_{4}$ $C_{2} = C_{3} = C_{4} = C_{5}$ $C_{3} = C_{4} = C_{5} = C_{6}$ $C_{4} = C_{5} = C_{6} = C_{1}$ $C_{4} = C_{5} = C_{6} = C_{5}$	-177.86 (19) -0.7 (3) -0.4 (3) 1.1 (3) -0.8 (3) -0.2 (3) 178.04 (18) 1.0 (3)	C8-C9-C10-N3 N4-N5-C11-C12 C9-N5-C11-C12 N5-C11-C12-C13 N5-C11-C12-C17 C17-C12-C13-C14 C11-C12-C13-C14 C12-C13-C14-C15	$\begin{array}{c} 1.7(2) \\ 178.24 (19) \\ 73.3 (2) \\ -103.4 (2) \\ 7.5 (3) \\ -172.44 (19) \\ -1.9 (3) \\ 178.1 (2) \\ -0.6 (3) \end{array}$
$C_{0}-C_{1}-C_{2}-C_{3}-C_{4}$ $C_{2}-C_{3}-C_{4}-C_{5}$ $C_{3}-C_{4}-C_{5}-C_{6}$ $C_{4}-C_{5}-C_{6}-C_{1}$ $C_{4}-C_{5}-C_{6}-C_{1}$ $C_{4}-C_{5}-C_{6}-N_{1}$ $C_{2}-C_{1}-C_{6}-C_{5}$ $N_{2}-C_{1}-C_{6}-C_{5}$	-177.86 (19) -0.7 (3) -0.4 (3) 1.1 (3) -0.8 (3) -0.2 (3) 178.04 (18) 1.0 (3) 178.79 (17)	C8-C9-C10-N3 N4-N5-C11-C12 C9-N5-C11-C12 N5-C11-C12-C13 N5-C11-C12-C17 C17-C12-C13-C14 C11-C12-C13-C14 C12-C13-C14-C15 C13-C14-C15-C16	$\begin{array}{c} 1.7(2) \\ 178.24(19) \\ 73.3(2) \\ -103.4(2) \\ 7.5(3) \\ -172.44(19) \\ -1.9(3) \\ 178.1(2) \\ -0.6(3) \\ 2.4(4) \end{array}$
$C_{0}-C_{1}-C_{2}-C_{3}-C_{4}$ $C_{2}-C_{3}-C_{4}-C_{5}$ $C_{3}-C_{4}-C_{5}-C_{6}$ $C_{4}-C_{5}-C_{6}-C_{1}$ $C_{4}-C_{5}-C_{6}-N_{1}$ $C_{2}-C_{1}-C_{6}-C_{5}$ $N_{2}-C_{1}-C_{6}-C_{5}$ $C_{2}-C_{1}-C_{6}-N_{1}$	-177.86 (19) -0.7 (3) -0.4 (3) 1.1 (3) -0.8 (3) -0.2 (3) 178.04 (18) 1.0 (3) 178.79 (17) -177.65 (17)	C8-C9-C10-N3 N4-N5-C11-C12 C9-N5-C11-C12 N5-C11-C12-C13 N5-C11-C12-C17 C17-C12-C13-C14 C11-C12-C13-C14 C12-C13-C14-C15 C13-C14-C15-C16 C14-C15-C16-C17	$\begin{array}{c} 1.7(2) \\ 178.24(19) \\ 73.3(2) \\ -103.4(2) \\ 7.5(3) \\ -172.44(19) \\ -1.9(3) \\ 178.1(2) \\ -0.6(3) \\ 2.4(4) \\ -17(4) \end{array}$
$C_{0}-C_{1}-C_{2}-C_{3}-C_{4}$ $C_{2}-C_{3}-C_{4}-C_{5}$ $C_{3}-C_{4}-C_{5}-C_{6}$ $C_{4}-C_{5}-C_{6}-C_{1}$ $C_{4}-C_{5}-C_{6}-C_{1}$ $C_{2}-C_{1}-C_{6}-C_{5}$ $N_{2}-C_{1}-C_{6}-C_{5}$ $C_{2}-C_{1}-C_{6}-N_{1}$ $N_{2}-C_{1}-C_{6}-N_{1}$	-177.86 (19) -0.7 (3) -0.4 (3) 1.1 (3) -0.8 (3) -0.2 (3) 178.04 (18) 1.0 (3) 178.79 (17) -177.65 (17) 0.13 (19)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1.7(2) \\ 178.24(19) \\ 73.3(2) \\ -103.4(2) \\ 7.5(3) \\ -172.44(19) \\ -1.9(3) \\ 178.1(2) \\ -0.6(3) \\ 2.4(4) \\ -1.7(4) \\ -0.8(4) \end{array}$
$C_{0}-C_{1}-C_{2}-C_{3}-C_{4}$ $C_{2}-C_{3}-C_{4}-C_{5}$ $C_{3}-C_{4}-C_{5}-C_{6}$ $C_{4}-C_{5}-C_{6}-C_{1}$ $C_{4}-C_{5}-C_{6}-C_{1}$ $C_{2}-C_{1}-C_{6}-C_{5}$ $N_{2}-C_{1}-C_{6}-C_{5}$ $C_{2}-C_{1}-C_{6}-N_{1}$ $N_{2}-C_{1}-C_{6}-N_{1}$ $C_{7}-N_{1}-C_{6}-C_{5}$	-177.86 (19) -0.7 (3) -0.4 (3) 1.1 (3) -0.8 (3) -0.2 (3) 178.04 (18) 1.0 (3) 178.79 (17) -177.65 (17) 0.13 (19) -176.8 (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1.7(2) \\ 178.24 (19) \\ 73.3 (2) \\ -103.4 (2) \\ 7.5 (3) \\ -172.44 (19) \\ -1.9 (3) \\ 178.1 (2) \\ -0.6 (3) \\ 2.4 (4) \\ -1.7 (4) \\ -0.8 (4) \\ 2.6 (2) \end{array}$
$C_{0}-C_{1}-C_{2}-C_{3}-C_{4}$ $C_{2}-C_{3}-C_{4}-C_{5}$ $C_{3}-C_{4}-C_{5}-C_{6}$ $C_{4}-C_{5}-C_{6}-C_{1}$ $C_{4}-C_{5}-C_{6}-C_{1}$ $C_{2}-C_{1}-C_{6}-C_{5}$ $N_{2}-C_{1}-C_{6}-C_{5}$ $C_{2}-C_{1}-C_{6}-N_{1}$ $N_{2}-C_{1}-C_{6}-N_{1}$ $C_{7}-N_{1}-C_{6}-C_{5}$ $C_{8}-N_{1}-C_{6}-C_{5}$	-177.86 (19) -0.7 (3) -0.4 (3) 1.1 (3) -0.8 (3) -0.2 (3) 178.04 (18) 1.0 (3) 178.79 (17) -177.65 (17) 0.13 (19) -176.8 (2) -5 g (3)	$\begin{array}{c} C8-C9-C10-N3\\ N4-N5-C11-C12\\ C9-N5-C11-C12\\ N5-C11-C12-C13\\ N5-C11-C12-C13\\ N5-C11-C12-C17\\ C17-C12-C13-C14\\ C11-C12-C13-C14\\ C12-C13-C14-C15\\ C13-C14-C15\\ C13-C14-C15-C16\\ C14-C15-C16-C17\\ C15-C16-C17-C12\\ C13-C12-C17-C16\\ C14-C15-C16\\ C14-C15-C16\\ C17-C12\\ C13-C12-C17-C16\\ C14-C15-C16\\ C14-C15-C16\\ C15-C16\\ C17-C12\\ C15-C16\\ C17-C16\\ C15-C16\\ C17-C16\\ C15-C16\\ C15-C16\\ C17-C16\\ C15-C16\\ C15-C16\\ C15-C16\\ C17-C16\\ C15-C16\\ $	$\begin{array}{c} 1.7(2) \\ 178.24 (19) \\ 73.3 (2) \\ -103.4 (2) \\ 7.5 (3) \\ -172.44 (19) \\ -1.9 (3) \\ 178.1 (2) \\ -0.6 (3) \\ 2.4 (4) \\ -1.7 (4) \\ -0.8 (4) \\ 2.6 (3) \\ -177 (4) \end{array}$
$C_{0}-C_{1}-C_{2}-C_{3}-C_{4}$ $C_{2}-C_{3}-C_{4}-C_{5}$ $C_{3}-C_{4}-C_{5}-C_{6}$ $C_{4}-C_{5}-C_{6}-C_{1}$ $C_{4}-C_{5}-C_{6}-C_{1}$ $C_{2}-C_{1}-C_{6}-C_{5}$ $N_{2}-C_{1}-C_{6}-C_{5}$ $C_{2}-C_{1}-C_{6}-N_{1}$ $N_{2}-C_{1}-C_{6}-N_{1}$ $C_{7}-N_{1}-C_{6}-C_{5}$ $C_{8}-N_{1}-C_{6}-C_{5}$ $C_{7}-N_{1}-C_{6}-C_{5}$	-177.86 (19) -0.7 (3) -0.4 (3) 1.1 (3) -0.8 (3) -0.2 (3) 178.04 (18) 1.0 (3) 178.79 (17) -177.65 (17) 0.13 (19) -176.8 (2) -5.8 (3) 177.02	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1.7(2) \\ 178.24 (19) \\ 73.3 (2) \\ -103.4 (2) \\ 7.5 (3) \\ -172.44 (19) \\ -1.9 (3) \\ 178.1 (2) \\ -0.6 (3) \\ 2.4 (4) \\ -1.7 (4) \\ -0.8 (4) \\ 2.6 (3) \\ -177.4 (2) \\ 100.6 (2) \end{array}$
$C_{0}-C_{1}-C_{2}-C_{3}-C_{4}$ $C_{2}-C_{3}-C_{4}-C_{5}$ $C_{3}-C_{4}-C_{5}-C_{6}$ $C_{4}-C_{5}-C_{6}-C_{1}$ $C_{4}-C_{5}-C_{6}-C_{1}$ $C_{4}-C_{5}-C_{6}-C_{5}$ $N_{2}-C_{1}-C_{6}-C_{5}$ $C_{2}-C_{1}-C_{6}-N_{1}$ $N_{2}-C_{1}-C_{6}-N_{1}$ $N_{2}-C_{1}-C_{6}-N_{1}$ $C_{7}-N_{1}-C_{6}-C_{5}$ $C_{8}-N_{1}-C_{6}-C_{5}$ $C_{7}-N_{1}-C_{6}-C_{1}$ $C_{8}-N_{1}-C_{6}-C_{1}$	$\begin{array}{c} -177.86 (19) \\ -0.7 (3) \\ -0.4 (3) \\ 1.1 (3) \\ -0.8 (3) \\ -0.2 (3) \\ 178.04 (18) \\ 1.0 (3) \\ 178.79 (17) \\ -177.65 (17) \\ 0.13 (19) \\ -176.8 (2) \\ -5.8 (3) \\ 1.7 (2) \\ 172.72 (16) \end{array}$	$\begin{array}{c} C8-C9-C10-N3\\ N4-N5-C11-C12\\ C9-N5-C11-C12\\ N5-C11-C12-C13\\ N5-C11-C12-C13\\ N5-C11-C12-C13\\ C17-C12-C13-C14\\ C11-C12-C13-C14\\ C12-C13-C14-C15\\ C13-C14-C15-C16\\ C14-C15-C16-C17\\ C15-C16-C17-C12\\ C13-C12-C17-C16\\ C11-C12-C17-C16\\ C11-C12-C17-C16\\ C7-N2-C18-C19\\ C1-N2-C18-C19\\ C1-N2-C18$	$\begin{array}{c} 1.7(2) \\ 178.24 (19) \\ 73.3 (2) \\ -103.4 (2) \\ 7.5 (3) \\ -172.44 (19) \\ -1.9 (3) \\ 178.1 (2) \\ -0.6 (3) \\ 2.4 (4) \\ -1.7 (4) \\ -0.8 (4) \\ 2.6 (3) \\ -177.4 (2) \\ 109.6 (2) \\ 78.2 (2) \end{array}$
$C_{0}-C_{1}-C_{2}-C_{3}-C_{4}$ $C_{2}-C_{3}-C_{4}-C_{5}$ $C_{3}-C_{4}-C_{5}-C_{6}$ $C_{4}-C_{5}-C_{6}-C_{1}$ $C_{4}-C_{5}-C_{6}-C_{1}$ $C_{2}-C_{1}-C_{6}-C_{5}$ $C_{2}-C_{1}-C_{6}-C_{5}$ $C_{2}-C_{1}-C_{6}-N_{1}$ $N_{2}-C_{1}-C_{6}-N_{1}$ $C_{7}-N_{1}-C_{6}-C_{5}$ $C_{8}-N_{1}-C_{6}-C_{5}$ $C_{7}-N_{1}-C_{6}-C_{1}$ $C_{8}-N_{1}-C_{6}-C_{1}$ $C_{1}-N_{2}-C_{1}-C_{6}-C_{1}$	-177.86 (19) -0.7 (3) -0.4 (3) 1.1 (3) -0.8 (3) -0.2 (3) 178.04 (18) 1.0 (3) 178.79 (17) -177.65 (17) 0.13 (19) -176.8 (2) -5.8 (3) 1.7 (2) 172.72 (16) 176.5 (12)	$\begin{array}{c} C8-C9-C10-N3\\ N4-N5-C11-C12\\ C9-N5-C11-C12\\ N5-C11-C12-C13\\ N5-C11-C12-C13\\ N5-C11-C12-C13\\ C17-C12-C13-C14\\ C11-C12-C13-C14\\ C12-C13-C14-C15\\ C13-C14-C15-C16\\ C14-C15-C16-C17\\ C15-C16-C17\\ C15-C16-C17-C12\\ C13-C12-C17-C16\\ C11-C12-C17-C16\\ C11-C12-C17-C16\\ C7-N2-C18-C19\\ C1-N2-C18-C19\\ C12-C12\\ C12-C$	$\begin{array}{c} 1.7(2) \\ 178.24 (19) \\ 73.3 (2) \\ -103.4 (2) \\ 7.5 (3) \\ -172.44 (19) \\ -1.9 (3) \\ 178.1 (2) \\ -0.6 (3) \\ 2.4 (4) \\ -1.7 (4) \\ -0.8 (4) \\ 2.6 (3) \\ -177.4 (2) \\ 109.6 (2) \\ -78.2 (2) \\ 24.7 (2) \end{array}$

C10 NO C7 O1	2.2 (2)	NO 010 010 004	150 15 (10)
C18 - N2 - C/ - O1	-3.2(3)	N2-C18-C19-C24	158.15 (18)
C1—N2—C7—N1	2.9 (2)	C24—C19—C20—C21	-0.8 (3)
C18—N2—C7—N1	176.23 (16)	C18—C19—C20—C21	-178.0 (2)
C6—N1—C7—O1	176.65 (18)	C19—C20—C21—C22	-0.2 (4)
C8—N1—C7—O1	5.4 (3)	C20—C21—C22—C23	0.7 (4)
C6—N1—C7—N2	-2.83 (19)	C21—C22—C23—C24	-0.1 (4)
C8—N1—C7—N2	-174.11 (16)	C22—C23—C24—C19	-1.0 (3)
C7—N1—C8—C9	-111.65 (19)	C20—C19—C24—C23	1.4 (3)
C6—N1—C8—C9	78.5 (2)	C18—C19—C24—C23	178.7 (2)
N4—N5—C9—C10	0.2 (2)		

Symmetry codes: (i) *x*-1, -*y*+1/2, *z*-1/2; (ii) -*x*+2, -*y*+1, -*z*+2; (iii) *x*, -*y*+1/2, *z*-1/2; (iv) -*x*+1, -*y*+1, -*z*+2; (v) *x*, -*y*+1/2, *z*+1/2; (vi) -*x*+1, -*y*+1, -*z*+1; (vii) -*x*+1, *y*+1/2, -*z*+3/2; (ix) *x*-1, *y*, *z*.

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the triazole ring C (C9/C10/N3–N5).

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O2—H2A…N3	0.87	2.04	2.892 (2)	166
O2— $H2B$ ···O1 ⁱ	0.87	2.00	2.865 (2)	176
C10—H10···O2 ^v	0.95	2.48	3.402 (3)	164
C13—H13…Cg	0.95	2.83	3.451 (3)	124

Symmetry codes: (i) x-1, -y+1/2, z-1/2; (v) x, -y+1/2, z+1/2.