

Received 17 September 2019 Accepted 4 December 2019

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; acetylacetonate; tetramethylethylenediamine; transition metal complex.

CCDC references: 1969941; 1969940; 1969939

Supporting information: this article has supporting information at journals.iucr.org/e

Syntheses and crystal structures of three [*M*(acac)₂(TMEDA)] complexes (*M* = Mn, Fe and Zn)

Jan Henrik Halz, Christian Heiser, Christoph Wagner and Kurt Merzweiler*

Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät II, Institut für Chemie, D-06099 Halle, Germany. *Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de

The complexes bis(acetylacetonato- $\kappa^2 O, O'$)(N, N, N', N'-tetramethylethylenediamine- $\kappa^2 N, N'$)manganese(II), [Mn(C₅H₇O₂)₂(C₆H₁₆N₂)], bis(acetylacetonato- $\kappa^2 O, O'$)(N, N, N', N'-tetramethylethylenediamine- $\kappa^2 N, N'$)iron(II), [Fe(C₅H₇O₂)₂-(C₆H₁₆N₂)], and bis(acetylacetonato- $\kappa^2 O, O'$)(N, N, N', N'-tetramethylethylenediamine- $\kappa^2 N, N'$)zinc(II), [Zn(C₅H₇O₂)₂(C₆H₁₆N₂)], were synthesized from the reaction of the corresponding metal acetylacetonates [$M(acac)_2(H_2O)_2$] with N, N, N', N'-tetramethylethylenediamine (TMEDA) in toluene. Each of the complexes displays a central metal atom which is nearly octahedrally surrounded by two chelating acac and one chelating TMEDA ligand, resulting in an N₂O₄ coordination set. Despite the chemical similarity of the complex units, the packing patterns for compounds **1–3** are different and thus the crystal structures are not isotypic.

1. Chemical context

Pentane-2,4-dionate (acac) and ethylenediamine derivatives are amongst the most widely used chelate ligands in transition metal chemistry. The crystal structures of mixed complexes $[M(acac)_2(TMEDA)]$ (TMEDA = N, N, N', N'-tetramethylethylenediamine) containing both types of ligands have been reported for several divalent metals, e.g. M = V (Ma et al., 1999), Co (Pasko et al., 2004), Ni (Trimmel et al., 2002; Zeller et al., 2004) and Ru (Halbach et al., 2012). The synthesis of [Zn(acac)₂(TMEDA)] was reported recently in conjunction with the Ru derivative but without crystal structure determination (Halbach et al., 2012). Typically, [M(acac)₂(TMEDA)] complexes are used as valuable starting materials for the preparation of organometallic and coordination compounds (Kaschube et al. 1988; Nelkenbaum et al., 2005; Albrecht et al., 2019). Moreover, there is an increasing interest in $[M(acac)_2(TMEDA)]$ and related $[M(hfa)_2(TMEDA)]$ (hfa = 1,1,1,5,5,5-hexafluoropentane-2,4-dionate) complexes as precursor materials for CVD deposition of Co₃O₄ (Pasko et al., 2004), Fe₂O₃ (Barreca et al., 2012) and MnF₂ (Malandrino et al., 2012).

Figure 1

Molecular structure of complex 1 showing the labeling scheme. Displacement ellipsoids drawn at 50% probability level, H atoms are omitted.

Typically, $[M(acac)_2(TMEDA)]$ complexes are synthesized from the reaction of the metal acetylacetonates with TMEDA. Following this procedure, we obtained the complexes $[Mn(acac)_2(TMEDA)]$ (1), $[Fe(acac)_2(TMEDA)]$ (2) and $[Zn(acac)_2(TMEDA)]$ (3) from the corresponding dihydrates $[M(acac)_2(H_2O)_2]$ and TMEDA in toluene as solvent. Recrystallization from *n*-hexane at 248 K afforded $[Mn(acac)_2(TMEDA)]$ (1) as yellow, $[Fe(acac)_2(TMEDA)]$ (2) as red-brown and $[Zn(acac)_2(TMEDA)]$ (3) as colorless products. Determination of the magnetic moments for $[Mn(acac)_2(TMEDA)]$ (5.7 B.M.) and $[Fe(acac)_2(TMEDA)]$ (5.1 B.M.) indicates a high-spin configuration in both cases.

Table 1Selected geometric parameters (Å, $^{\circ}$) for 1.

Mn-O1	2.1271 (13)	Mn-O4	2.1365 (12)
	21500(12)		· · · · · · · · · · · · · · · · · · ·
Mn-O2	2.1300 (12)	Mn-N1	2.3643 (15)
Mn-O3	2.1375 (12)	Mn-N2	2.3560 (15)
O1-Mn-O2	83.61 (5)	O2-Mn-N2	90.36 (5)
O1-Mn-O3	107.00 (5)	O3-Mn-O4	83.78 (5)
O1-Mn-O4	93.25 (5)	O3-Mn-N1	165.43 (5)
O1-Mn-N1	86.01 (5)	O3-Mn-N2	90.61 (5)
O1-Mn-N2	161.29 (6)	O4-Mn-N1	89.07 (5)
O2-Mn-O3	89.71 (5)	O4-Mn-N2	94.95 (6)
O2-Mn-O4	171.63 (5)	N1-Mn-N2	77.34 (6)
O2-Mn-N1	98.41 (5)		

2. Structural commentary

Compounds 1-3 crystallize in the monoclinic system, space group $P2_1/n$ with Z = 4. However, despite the similarity of the lattice parameters and the analogous molecular structures, complexes 1-3 are not isotypic. The crystal structures consist of discrete complex molecules $[M(acac)_2 TMEDA]$ in which the central metal atoms are coordinated nearly octahedrally by four oxygen atoms of two acac ligands and two nitrogen atoms of the TMEDA ligand (Figs. 1-3). Mn complex 1 exhibits Mn-O and Mn-N distances of 2.127 (1)-2.150 (1) Å and 2.356 (2)-2.364 (2) Å, respectively (Table 1). Similar geometric parameters have been reported for $[Mn(acac)_2(H_2O)_2]$ [Mn-O: 2.123(8)-2.142(8) Å; Montgomery & Lingafelter, 1968], [Mn(acac)₂(1,10-phenanthroline)] [Mn-O: 2.116(5)-2.152(5) Å, Mn-N: 2.307(5) Å;Stephens, 1977], $[Mn(acac)_2(2,2'-bipyridine)]$ [Mn-O:2.148 (2)–2.158 (2) Å, Mn–N: 2.283 (2)–2.288 (3) Å; van Gorkum et al., 2005] or [Mn(hfa)₂(TMEDA)] [Mn-O: 2.139 (4)-2.178 (4) Å, Mn-N: 2.299 (5)-2.307 (5) Å; Malandrino et al., 2012].

Figure 2

Molecular structure of complex 2 showing the labeling scheme. Displacement ellipsoids drawn at 50% probability level, H atoms are omitted.

Figure 3

Molecular structure of complex **3** showing the labeling scheme. Displacement ellipsoids drawn at 50% probability level, H atoms are omitted.

research communications

Table 2	
Selected geometric parameters (Å, $^{\circ}$) for 2 .	

Fe-O1	2.0876 (10)	Fe-O4	2.0520 (9)
Fe-O2	2.0497 (10)	Fe-N1	2.3021 (12)
Fe-O3	2.0970 (10)	Fe-N2	2.3184 (12)
O1-Fe-O2	85.58 (4)	O2-Fe-N2	84.18 (4)
O1-Fe-O3	93.98 (4)	O3-Fe-O4	86.00 (4)
O1-Fe-O4	99.11 (4)	O3-Fe-N1	170.93 (4)
O1-Fe-N1	92.44 (4)	O3-Fe-N2	95.43 (4)
O1-Fe-N2	166.73 (4)	O4-Fe-N1	86.66 (4)
O2-Fe-O3	95.84 (4)	O4-Fe-N2	90.87 (4)
O2-Fe-O4	174.85 (4)	N1-Fe-N2	79.35 (4)
O2-Fe-N1	91.04 (5)		

Table 3

Selected geometric parameters (Å, $^{\circ}$) for 3.

Zn-O1	2.0771 (12)	Zn-O4	2.0607 (10)
Zn-O2	2.0611 (11)	Zn-N1	2.2722 (13)
Zn-O3	2.0645 (11)	Zn-N2	2.2533 (13)
O1–Zn–O2	87.50 (4)	O2-Zn-N2	89.57 (5)
O1-Zn-O3	101.58 (5)	O3-Zn-O4	87.96 (4)
O1-Zn-O4	88.49 (4)	O3-Zn-N1	168.61 (5)
O1-Zn-N1	89.28 (5)	O3-Zn-N2	89.09 (5)
O1-Zn-N2	168.94 (5)	O4-Zn-N1	88.92 (5)
O2-Zn-O3	90.18 (5)	O4-Zn-N2	94.86 (5)
O2-Zn-O4	175.16 (4)	N1-Zn-N2	80.27 (5)
O2-Zn-N1	93.76 (5)		

The Fe–O and Fe–N distances in compound **2** [2.050 (1)– 2.097 (1) Å and 2.302 (1)–2.318 (1) Å, respectively; Table 2] are on average shorter than the corresponding Mn–O and Mn–N distances in complex **1**. The Fe–O and Fe–N distances compare well with the data that have been observed in the compounds [Fe(acac)₂(H₂O)₂] [Fe–O: 2.034–2.041 Å; Tsodikov *et al.*, 1995], [Fe(hfa)₂(picoline)₂] [Fe–O: 2.057 (1) Å, Fe–N: 2.190 (3)–2.224 (3) Å; Novitchi *et al.*, 2017] or [Fe(hfa)₂(TMEDA)] [Fe–O: 2.064 (1)–2.094 (1), Fe–N: 2.229 (2) Å; Dickman *et al.*, 1998].

[Zn(acac)₂(TMEDA)] (3) displays Zn–O and Zn–N distances of 2.061 (1)–2.077 (1) and 2.253 (1)–2.272 (1) Å, respectively (Table 3). In comparison with the iron complex 2, the average metal–oxygen distances and metal–nitrogen distances are slightly shortened. On the whole, the Zn–O and Zn–N distances in compound 3 are similar to those observed in the related compounds [Zn(acac)₂(H₂O)₂] [Zn–O: 2.032 (1)–2.049 (1) Å; Harbach *et al.*, 2003], [Zn(acac)₂(1,10-phenanthroline)] [Zn–O: 2.044 (1)–2.085 (1) Å, Zn–N: 2.196 (1) Å; Brahma *et al.*, 2008], [Zn(acac)₂(2,2'-bipyridine)] [Zn–O: 2.051 (1)–2.089 (1) Å, Zn–N: 2.197 (2)–2.208 (2) Å; Brahma *et al.*, 2008] or [Zn(hfa)₂(TMEDA)] [Zn–O: 2.103 (1)–2.126 (1) Å, Zn–N: 2.145 (1)–2.151 (1) Å; Ni *et al.*, 2005].

In general, the above-mentioned $[M(hfa)_2(TMEDA)]$ (M = Mn, Fe, Zn) complexes exhibit shorter M-N distances than the corresponding $[M(acac)_2(TMEDA)]$ complexes. This effect is probably due to the electron-withdrawing effect of the CF₃ groups of the hfa ligands.

The iron complex **2** displays a subtle elongation (0.041 Å) of the Fe-O bonds *trans* to the N atoms with respect to the Fe-

Table 4	
Hydrogen-bond geometry (Å, °) for 2.	

	с ,			
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1-H2\cdots O1^{i}$	0.96	2.62	3.5269 (18)	157

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

O bonds *trans* to oxygen. A similar effect was observed for $[Co(acac)_2(TMEDA)]$ (Pasko *et al.*, 2004). In the case of the Mn and Zn complexes **1** and **3**, the *trans* influence is negligible as reported for $[Ni(acac)_2(TMEDA)]$ (Trimmel *et al.*, 2002) and $[Ru(acac)_2(TMEDA)]$ (Halbach *et al.*, 2012). A reverse effect with a shortening of the Zn–O bonds *trans* to nitrogen was detected for $[Zn(acac)_2(2,2'-bipyridine)]$ and $[Zn(acac)_2(1,10-phenanthroline)]$ (Brahma *et al.*, 2008).

Each of the complexes 1–3 exhibits nearly planar sixmembered acac-*M* chelate rings. The maximum deviation from planarity, as indicated by the dihedral angle between the M/O1/O2 (M/O3/O4) plane of the chelate ring and the best plane through O1/C2/C3/C4/O2 (O3/C7/C8/C9/O4), is 6.2 (1)° in the case of the zinc complex **3**. *PLATON* (Spek, 2009) was used to calculate the dihedral angles. The five-membered *M*-TMEDA ring adopts a twist conformation with approximate C_2 symmetry. As a result of the centrosymmetric crystal structure, both types of the enantiomeric chelate rings with λ and δ conformations are present.

The MO_4N_2 coordination polyhedra in compounds **1–3** deviate moderately from a regular octahedron. The O-M-O angles are in the range 171.7 (1)° (complex **1**) to 175.2 (1)° (complex **3**) and the N-*M*-O angles vary from 161.3 (1)° (complex **1**) to 170.9 (1)° (complex **2**). The smallest acac bite angle is observed in compound **1** [83.6 (1)°], the largest is found in compound **3** [88.0 (1)°]. In the case of the TMEDA ligands, the bite angles are marginally smaller with a range between 77.3 (1)° (compound **1**) and 80.3 (1)° (compound **3**). Overall, the distortion of the MO_4N_2 octahedra in compounds **1–3** is very similar to that observed in the analogous V, Ni and Co complexes [$M(acac)_2(TMEDA)$].

3. Supramolecular features

The packing of the $[M(\text{acac})_2(\text{TMEDA})]$ units is dominated by van der Waals interactions. The mutual arrangement of the complex units **1–3** is similar but not identical (Figs. 4–6). In the case of the iron compound **2** there is also a contribution from weak C—H···O hydrogen bridges (Table 4). As a result, the complexes are associated by $R_2^2(8)$ type motifs, forming centrosymmetric dimers (Fig. 5).

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.40, February 2019 update; Groom *et al.*, 2016) for complexes with a composition $[M(acac)_2(TMEDA)]$ analogous to **1–3** revealed the crystal structures for the M = V, Ni, Co and Ru derivatives (Ma *et al.*, 1999; Pasko *et al.*, 2004; Trimmel *et al.*,

Figure 4 Crystal structure of compound $\mathbf{1}$, viewed along the b axis.

2002; Zeller *et al.*, 2004; Halbach *et al.*, 2012). However, none of these complexes is isotypic with the three title compounds. In the case of the related hfa derivatives, complexes of the type $[M(hfa)_2(TMEDA)]$ (hfa = 1,1,1,5,5,5-hexafluoropentane-2,4-dionate) with M = Mg, Mn, Fe, Co, Cu and Zn have been reported.

Figure 5

Crystal structure of compound **2**, viewed along the *b* axis. The intermolecular $C-H \cdots O$ hydrogen bonds are shown as dashed lines.

Figure 6

Crystal structure of compound 3, viewed along the b axis.

5. Synthesis and crystallization

TMEDA (7.5 ml, 5.8 g, 50 mmol) was added to a suspension of $[M(\text{acac})_2(\text{H}_2\text{O})_2]$ (25 mmol, M = Mn: 9.71 g, Fe: 9.73 g, Zn: 9.97 g) in toluene (30 ml). The suspension was stirred at 323 K for 2 h. After removal of the solvent under reduced pressure, *n*-hexane (25 ml) was added and insoluble parts were filtered off. The filtrates were kept at 248 K to obtain the products as yellow (1), red–brown (2) and colourless (3) crystalline solids in yields around 90%.

Characterization

$[Mn(acac)_2TMEDA]$ (1)

C₁₆H₃₀MnN₂O₄ calculated C 52.03, H 8.19, N 7.59%, found: C 51.71, H 8.13, N 7.14%; IR (ATR): v = 3067 w, 2993 w, 2970 w, 2917 w, 2986 w, 2860 w, 2828 w, 2788 w, 2772 w, 1595 m, 1512 s, 1468 m, 1449 m, 1412 s, 1391 m, 1353 m, 1288 m, 1251 m, 1190 w, 1159 w, 1124 w, 1095 w, 1063 w, 1045 m, 1026 w, 1011 m, 950 m, 934 w, 913 m, 794 m, 771 w, 751 m, 650 w, 583 w, 526 m, 468 w, 448 w, 436 w, 400 s, 325 m, 212 s cm⁻¹.

M.p.: 362 K.

[Fe(acac)₂TMEDA] (2)

 $C_{16}H_{30}FeN_2O_4$ calculated C 51.90, H 8.17, N 7.57%, found: C 51.75, H 8.08, N 7.23%; IR (ATR): v = 3074 w, 3001 w, 2967 w, 2911 w, 2869 w, 2836 w, 2790 w, 1583 m, 1510 s, 1455 m, 1411 s, 1382 m, 1357 w, 1289 m, 1274 w, 1256 m, 1188 w, 1165 w, 1127 w, 1101 w, 1030 w 1012 m, 952 m, 917 m, 793 m, 762 s, 651 w, 583 w, 543 m, 475 w, 436 w, 404 w, 382 s, 296 w, 265 m, 227 s cm⁻¹.

M.p.: 361 K.

research communications

 Table 5

 Experimental details.

	1	2	3
Crystal data			
Chemical formula	$[Mn(C_5H_7O_2)_2(C_6H_{16}N_2)]$	$[Fe(C_5H_7O_2)_2(C_6H_{16}N_2)]$	$[Zn(C_5H_7O_2)_2(C_6H_{16}N_2)]$
$M_{\rm r}$	369.36	370.27	379.79
Crystal system, space group	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/n$
Temperature (K)	213	213	200
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.4234 (4), 14.3123 (5), 13.6047 (5)	10.2021 (3), 15.4708 (4), 12.4881 (4)	10.2335 (3), 14.2134 (6), 13.6738 (5)
β (°)	103.154 (3)	95.382 (3)	101.208 (3)
$V(Å^3)$	1976.33 (13)	1962.37 (10)	1950.96 (12)
Z	4	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.69	0.79	1.28
Crystal size (mm)	$0.35 \times 0.25 \times 0.20$	$0.26 \times 0.25 \times 0.23$	$0.45 \times 0.39 \times 0.33$
Data collection			
Diffractometer	STOE IPDS 2	STOE IPDS 2	STOE IPDS 2T
Absorption correction	Numerical (X-AREA; Stoe & Cie, 2016)	Numerical (X-AREA; Stoe & Cie, 2016)	Numerical (<i>X-AREA</i> ; Stoe & Cie, 2016)
T_{\min}, T_{\max}	0.798, 0.912	0.814, 0.894	0.627, 0.779
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	12607, 4139, 3475	18586, 5276, 4425	22385, 4124, 3456
R _{int}	0.030	0.037	0.047
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.634	0.688	0.633
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.034, 0.099, 1.06	0.031, 0.086, 1.04	0.027, 0.076, 1.07
No. of reflections	4139	5276	4124
No. of parameters	216	216	216
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.22, -0.24	0.32, -0.22	0.37, -0.26

Computer programs: X-AREA (Stoe & Cie, 2016), SHELXT2014/7 (Sheldrick, 2015a), SHELXL2014/7 (Sheldrick, 2015b), DIAMOND (Brandenburg, 2019) and OLEX2 (Dolomanov et al., 2009).

$[Zn(acac)_2TMEDA]$ (3)

 $\begin{array}{l} C_{16}H_{30}N_2O_4Zn \mbox{ calculated C } 50.60, H 7.96, N 7.38\%, \mbox{found:} C 50.33, H 8.13, N 7.23\%; \mbox{1H-NMR (CDCl_3, 399.962 MHz) δ = 5.15 [s, 2H, C(O)CHC(O)], 2.49 (s, 4H, Me_2N-CH_2), 2.31 (s, 12H, (CH_3)_2N), 1.85 [s, 12H, CH_3C(O)]; \mbox{13C-NMR (CDCl_3, 100.581 MHz) δ = 190.9 [C(O)], 98.4 [C(O)CHC(O)], 56.5 (NCH_2), 46.6 [(CH_3)_2N], 28.3 (C(O)CH_3) ppm; IR (ATR): v = 3071 w, 3001 w, 2975 w, 2881 w, 2835 w, 2792 w, 1615 m, 1593 m, 1515 s, 1469 m, 1455 m, 1411 m, 1390 s, 1354 m, 1290 m, 1252 m, 1190 w, 1166 w, 1128 w, 1101 w, 1061 w, 1032 m, 1013 s, 953 m, 936 w, 918 m, 798 m, 770 m, 754 m, 649 w, 584 w, 543 m, 474 w, 440 m, 405 s, 382 w, 208 s cm^{-1}. \end{array}$

M.p.: 362 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. All hydrogen atoms were positioned geometrically and refined using a riding model with $U_{\rm iso}({\rm H}) = 1.2({\rm CH} \text{ and } {\rm CH}_2)$ or $1.5({\rm CH}_3)$ times $U_{\rm eq}({\rm C})$. Reflections with error/e.s.d. > 8 were omitted. Error/e.s.d. = $(wD^2/\langle wD^2 \rangle)^{0.5}$ where $D = F_0^2 - F_c^2$.

Acknowledgements

We thank A. Kiowski for technical support.

Funding information

We acknowledge the financial support within the funding programme Open Access Publishing by the German Research Foundation (DFG).

References

- Albrecht, R., Liebing, P., Morgenstern, U., Wagner, C. & Merzweiler, K. (2019). Z. Naturforsch. Teil B, 74, 233–240.
- Barreca, D., Carraro, G., Devi, A., Fois, E., Gasparotto, A., Seraglia, R., Maccato, C., Sada, C., Tabacchi, G., Tondello, E., Venzo, A. & Winter, M. (2012). *Dalton Trans.* 41, 149–155.
- Brahma, S., Sachin, H. P., Shivashankar, S. A., Narasimhamurthy, T. & Rathore, R. S. (2008). *Acta Cryst.* C64, m140–m143.
- Brandenburg, K. (2019). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Dickman, M. H. (1998). Acta Cryst. C54 IUC9800048.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Gorkum, R. van, Buda, F., Kooijman, H., Spek, A. L., Bouwman, E. & Reedijk, J. (2005). *Eur. J. Inorg. Chem.* pp. 2255–2261.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B72, 171–179.
- Halbach, R. L., Nocton, G. & Andersen, R. A. (2012). *Dalton Trans.* **41**, 8809–8812.
- Harbach, P., Lerner, H.-W. & Bolte, M. (2003). Acta Cryst. E59, m724-m725.
- Kaschube, W., Pörschke, K. R. & Wilke, G. J. (1988). J. Organomet. Chem. 355, 525–532.
- Ma, Y. M., Reardon, D., Gambarotta, S., Yap, G., Zahalka, H. & Lemay, C. (1999). Organometallics, 18, 2773–2781.

- Malandrino, G., Toro, R. G., Catalano, M. R., Fragalà, M. E., Rossi, P. & Paoli, P. (2012). *Eur. J. Inorg. Chem.* pp.1021–1024.
- Montgomery, H. & Lingafelter, E. C. (1968). Acta Cryst. B24, 1127– 1128.
- Nelkenbaum, E., Kapon, M. & Eisen, M. S. (2005). Organometallics, 24, 2645–2659.
- Ni, J., Yan, H., Wang, A., Yang, Y., Stern, C. L., Metz, A. W., Jin, S., Wang, L., Marks, T. J., Ireland, J. R. & Kannewurf, C. R. (2005). J. Am. Chem. Soc. 127, 5613–5624.
- Novitchi, G., Jiang, S., Shova, S., Rida, F., Hlavička, I., Orlita, M., Wernsdorfer, W., Hamze, R., Martins, C., Suaud, N., Guihéry, N., Barra, A.-L. & Train, C. (2017). *Inorg. Chem.* 56, 14809–14822.
- Pasko, S., Hubert-Pfalzgraf, L. G., Abrutis, A. & Vaissermann, J. (2004). *Polyhedron*, **23**, 735–741.

- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stephens, F. S. (1977). Acta Cryst. B33, 3492-3495.
- Stoe & Cie (2016). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Trimmel, G., Lembacher, C., Kickelbick, G. & Schubert, U. (2002). New J. Chem. 26, 759–765.
- Tsodikov, M. V., Bukhtenko, O. V., Ellert, O. G., Petrunenko, I. A., Antsyshkina, A. S., Sadikov, G. G., Maksimov, Y. V., Titov, Y. V. & Novotortsev, V. M. (1995). *Russ. Chem. Bull.* 44, 1396– 1400.
- Zeller, A., Herdtweck, E. & Strassner, Th. (2004). Inorg. Chem. Commun. 7, 296–301.

Acta Cryst. (2020). E76, 66-71 [https://doi.org/10.1107/S2056989019016372]

Syntheses and crystal structures of three [*M*(acac)₂(TMEDA)] complexes (*M* = Mn, Fe and Zn)

Jan Henrik Halz, Christian Heiser, Christoph Wagner and Kurt Merzweiler

Computing details

For all structures, data collection: *X-AREA* (Stoe & Cie, 2016); cell refinement: *X-AREA* (Stoe & Cie, 2016); data reduction: *X-AREA* (Stoe & Cie, 2016); program(s) used to solve structure: *SHELXT2014*/7 (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014*/7 (Sheldrick, 2015b); molecular graphics: *DIAMOND* (Brandenburg, 2019); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

Bis(acetylacetonato- $\kappa^2 O, O'$)(N, N, N', N'-tetramethylethylenediamine- $\kappa^2 N, N'$)manganese(II) (1)

```
Crystal data
```

 $[Mn(C_{5}H_{7}O_{2})_{2}(C_{6}H_{16}N_{2})]$ $M_{r} = 369.36$ Monoclinic, $P2_{1}/n$ a = 10.4234 (4) Å b = 14.3123 (5) Å c = 13.6047 (5) Å $\beta = 103.154$ (3)° V = 1976.33 (13) Å³ Z = 4

Data collection

STOE IPDS 2 diffractometer
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus, Incoatec Iμs
Plane graphite monochromator
Detector resolution: 6.67 pixels mm⁻¹
rotation method scans
Absorption correction: numerical (X-AREA; Stoe & Cie, 2016)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.099$ S = 1.064139 reflections 216 parameters 0 restraints F(000) = 788 $D_x = 1.241 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 13227 reflections $\theta = 1.4-27.2^{\circ}$ $\mu = 0.69 \text{ mm}^{-1}$ T = 213 KBlock, clear yellow $0.35 \times 0.25 \times 0.20 \text{ mm}$ $T_{\text{min}} = 0.798, T_{\text{max}} = 0.912$ 12607 measured reflections 4139 independent reflections 2475 - 2 (b)

3475 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 26.8^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -13 \rightarrow 13$ $k = -17 \rightarrow 18$ $l = -17 \rightarrow 16$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0447P)^2 + 0.6571P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.22$ e Å⁻³ $\Delta\rho_{min} = -0.24$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Mn	0.50579 (2)	0.74721 (2)	0.49407 (2)	0.04120 (11)	
01	0.67069 (13)	0.65614 (9)	0.53426 (10)	0.0602 (3)	
O2	0.64605 (12)	0.84003 (9)	0.45153 (11)	0.0554 (3)	
03	0.50538 (13)	0.83274 (9)	0.62280 (10)	0.0546 (3)	
O4	0.38216 (14)	0.65820 (9)	0.55845 (10)	0.0565 (3)	
N1	0.44810 (15)	0.65991 (11)	0.34289 (11)	0.0523 (4)	
N2	0.33093 (14)	0.83481 (11)	0.39666 (12)	0.0533 (4)	
C1	0.8801 (3)	0.5868 (2)	0.5617 (2)	0.0943 (9)	
H1	0.8477	0.5484	0.6086	0.141*	
Н3	0.9667	0.6089	0.5928	0.141*	
H2	0.8838	0.5506	0.5029	0.141*	
C2	0.7888 (2)	0.66910 (16)	0.53114 (14)	0.0593 (5)	
C3	0.8405 (2)	0.75159 (16)	0.50286 (17)	0.0664 (6)	
H4	0.9308	0.7532	0.5070	0.080*	
C4	0.76938 (18)	0.83223 (14)	0.46880 (15)	0.0568 (5)	
C5	0.8448 (2)	0.91826 (18)	0.4505 (2)	0.0885 (8)	
Н5	0.9136	0.9006	0.4178	0.133*	
H6	0.8827	0.9477	0.5138	0.133*	
H7	0.7860	0.9611	0.4082	0.133*	
C6	0.4607 (2)	0.89848 (16)	0.77048 (18)	0.0714 (6)	
H8	0.5521	0.9144	0.7936	0.107*	
H10	0.4263	0.8782	0.8267	0.107*	
H9	0.4125	0.9522	0.7400	0.107*	
C7	0.44674 (17)	0.82045 (13)	0.69347 (13)	0.0498 (4)	
C8	0.3712 (2)	0.74328 (13)	0.70557 (16)	0.0568 (5)	
H11	0.3367	0.7416	0.7629	0.068*	
C9	0.34284 (19)	0.66822 (13)	0.63927 (15)	0.0558 (4)	
C10	0.2576 (3)	0.59062 (18)	0.6645 (2)	0.0920 (9)	
H12	0.2171	0.6107	0.7176	0.138*	
H13	0.3109	0.5365	0.6861	0.138*	
H14	0.1904	0.5754	0.6057	0.138*	
C11	0.3189 (2)	0.69516 (18)	0.28808 (16)	0.0693 (6)	
H16	0.2506	0.6684	0.3173	0.083*	
H15	0.3030	0.6753	0.2182	0.083*	
C12	0.3114 (2)	0.79961 (18)	0.29216 (16)	0.0703 (6)	
H17	0.3781	0.8263	0.2612	0.084*	
H18	0.2260	0.8199	0.2535	0.084*	
C13	0.4397 (3)	0.55956 (14)	0.36410 (18)	0.0728 (6)	
H20	0.3743	0.5496	0.4026	0.109*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H21	0.5236	0.5378	0.4018	0.109*
H19	0.4156	0.5258	0.3016	0.109*
C14	0.5481 (2)	0.67378 (17)	0.28339 (15)	0.0647 (5)
H24	0.5227	0.6403	0.2208	0.097*
H22	0.6316	0.6509	0.3207	0.097*
H23	0.5553	0.7392	0.2698	0.097*
C15	0.21051 (19)	0.82208 (18)	0.43395 (18)	0.0711 (6)
H25	0.1889	0.7568	0.4331	0.107*
H27	0.1393	0.8557	0.3914	0.107*
H26	0.2246	0.8454	0.5017	0.107*
C16	0.3638 (2)	0.93462 (15)	0.4003 (2)	0.0784 (7)
H29	0.2945	0.9685	0.3560	0.118*
H28	0.4448	0.9435	0.3793	0.118*
H30	0.3736	0.9572	0.4680	0.118*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn	0.03895 (15)	0.04541 (18)	0.03899 (15)	-0.00103 (10)	0.00838 (10)	0.00066 (10)
01	0.0612 (8)	0.0613 (8)	0.0561 (8)	0.0159 (6)	0.0090 (6)	0.0076 (6)
O2	0.0433 (6)	0.0523 (7)	0.0725 (9)	-0.0029 (5)	0.0168 (6)	0.0043 (6)
O3	0.0591 (7)	0.0537 (7)	0.0526 (7)	-0.0101 (6)	0.0160 (6)	-0.0103 (6)
04	0.0700 (8)	0.0495 (7)	0.0567 (8)	-0.0136 (6)	0.0282 (6)	-0.0085 (6)
N1	0.0538 (8)	0.0612 (9)	0.0426 (8)	-0.0076 (7)	0.0124 (6)	-0.0048 (7)
N2	0.0431 (7)	0.0595 (9)	0.0546 (9)	0.0040 (7)	0.0054 (6)	0.0063 (7)
C1	0.0924 (18)	0.108 (2)	0.0744 (15)	0.0575 (16)	0.0027 (13)	-0.0049 (14)
C2	0.0561 (11)	0.0758 (14)	0.0411 (9)	0.0216 (10)	0.0009 (8)	-0.0109 (9)
C3	0.0392 (9)	0.0933 (17)	0.0658 (13)	0.0089 (10)	0.0100 (9)	-0.0196 (11)
C4	0.0454 (9)	0.0699 (12)	0.0589 (11)	-0.0094 (9)	0.0197 (8)	-0.0190 (9)
C5	0.0657 (14)	0.0870 (17)	0.124 (2)	-0.0267 (13)	0.0450 (15)	-0.0239 (16)
C6	0.0770 (14)	0.0710 (14)	0.0676 (13)	0.0026 (11)	0.0191 (11)	-0.0237 (11)
C7	0.0473 (9)	0.0556 (10)	0.0450 (9)	0.0070 (8)	0.0076 (7)	-0.0062 (8)
C8	0.0628 (12)	0.0614 (12)	0.0525 (10)	-0.0014 (9)	0.0262 (9)	-0.0058 (8)
С9	0.0581 (10)	0.0560 (11)	0.0590 (11)	-0.0039 (9)	0.0253 (9)	-0.0014 (9)
C10	0.110 (2)	0.0822 (17)	0.104 (2)	-0.0364 (15)	0.0658 (17)	-0.0179 (15)
C11	0.0544 (11)	0.0974 (17)	0.0505 (11)	-0.0062 (11)	0.0004 (9)	-0.0157 (11)
C12	0.0594 (12)	0.0975 (17)	0.0483 (11)	0.0137 (11)	0.0000 (9)	0.0114 (11)
C13	0.1012 (17)	0.0554 (12)	0.0660 (13)	-0.0177 (11)	0.0276 (12)	-0.0174 (10)
C14	0.0666 (12)	0.0849 (15)	0.0466 (10)	-0.0047 (11)	0.0210 (9)	-0.0051 (10)
C15	0.0432 (10)	0.0931 (16)	0.0760 (14)	0.0085 (10)	0.0118 (9)	0.0033 (12)
C16	0.0653 (13)	0.0614 (13)	0.1024 (19)	0.0125 (10)	0.0063 (12)	0.0203 (12)

Geometric parameters (Å, °)

Mn—O1	2.1271 (13)	C6—H10	0.9600
Mn—O2	2.1500 (12)	С6—Н9	0.9600
Mn—O3	2.1375 (12)	С6—С7	1.515 (3)
Mn—O4	2.1365 (12)	C7—C8	1.388 (3)

Mn—N1	2.3643 (15)	C8—H11	0.9300
Mn—N2	2.3560 (15)	C8—C9	1.391 (3)
O1—C2	1.255 (2)	C9—C10	1.510 (3)
O2—C4	1.258 (2)	C10—H12	0.9600
O3—C7	1.263 (2)	С10—Н13	0.9600
O4—C9	1.266 (2)	C10—H14	0.9600
N1—C11	1.472 (3)	C11—H16	0.9700
N1—C13	1.472 (3)	C11—H15	0.9700
N1-C14	1472(2)	C11-C12	1 499 (4)
N2_C12	1478(3)	C12H17	0.9700
N2 C15	1.478(3)	C12 H18	0.9700
N2 C16	1.400(2) 1.467(3)	C_{12} H_{20}	0.9700
	1.407 (3)	C12 U21	0.9000
	0.9600	C13—H21	0.9600
CI—H3	0.9600	С13—Н19	0.9600
C1—H2	0.9600	C14—H24	0.9600
C1—C2	1.512 (3)	C14—H22	0.9600
C2—C3	1.388 (3)	C14—H23	0.9600
C3—H4	0.9300	С15—Н25	0.9600
C3—C4	1.393 (3)	С15—Н27	0.9600
C4—C5	1.512 (3)	С15—Н26	0.9600
С5—Н5	0.9600	С16—Н29	0.9600
С5—Н6	0.9600	C16—H28	0.9600
С5—Н7	0.9600	C16—H30	0.9600
C6—H8	0.9600		0.0000
	0.9000		
$O1 M_{\rm T} O2$	92 61 (5)	C7 C6 H9	100.5
01 - Mi = 02	33.01(3)	$C_{1} = C_{0} = H_{0}$	109.5
01 - Mn - 03	107.00 (5)	C/C6H10	109.5
OI—Mn—O4	93.25 (5)	С/—С6—Н9	109.5
O1—Mn—N1	86.01 (5)	O3—C7—C6	115.89 (17)
O1—Mn—N2	161.29 (6)	O3—C7—C8	125.92 (17)
O2—Mn—O3	89.71 (5)	C8—C7—C6	118.18 (17)
O2—Mn—O4	171.63 (5)	C7—C8—H11	117.2
O2—Mn—N1	98.41 (5)	C7—C8—C9	125.50 (18)
O2—Mn—N2	90.36 (5)	C9—C8—H11	117.2
O3—Mn—O4	83.78 (5)	O4—C9—C8	125.99 (17)
O3—Mn—N1	165.43 (5)	O4—C9—C10	115.94 (18)
O3—Mn—N2	90.61 (5)	C8—C9—C10	118.07 (18)
O4—Mn—N1	89.07 (5)	C9-C10-H12	109.5
04—Mn—N2	94 95 (6)	C9-C10-H13	109.5
N1 Mp N2	77.34 (6)	C_{0} C_{10} H_{14}	109.5
$C_2 = O_1 = M_{\pi}$	17.34(0)		109.5
$C_2 = O_1 = M_1$	129.95(14)		109.5
C4—O2—Min	128.50 (15)	H12—C10—H14	109.5
C/—O3—Mn	129.44 (12)	H13—C10—H14	109.5
C9—O4—Mn	129.29 (12)	NI-CII-HI6	109.2
C11—N1—Mn	106.37 (12)	N1—C11—H15	109.2
C13—N1—Mn	111.10 (12)	N1—C11—C12	111.88 (17)
C13—N1—C11	110.20 (18)	H16—C11—H15	107.9
C13—N1—C14	108.71 (17)	С12—С11—Н16	109.2

C14—N1—Mn	109.60 (12)	C12—C11—H15	109.2
C14—N1—C11	110.86 (16)	N2—C12—C11	112.25 (17)
C12—N2—Mn	106.22 (12)	N2—C12—H17	109.2
C15—N2—Mn	110.63 (12)	N2—C12—H18	109.2
C15—N2—C12	110.40 (17)	C11—C12—H17	109.2
C16—N2—Mn	110.75 (12)	C11—C12—H18	109.2
C16—N2—C12	110.14 (18)	H17—C12—H18	107.9
C16—N2—C15	108.69 (17)	N1—C13—H20	109.5
Н1—С1—Н3	109.5	N1—C13—H21	109.5
H1—C1—H2	109.5	N1—C13—H19	109.5
H3—C1—H2	109.5	H20—C13—H21	109.5
C2—C1—H1	109.5	H20—C13—H19	109.5
С2—С1—Н3	109.5	H21—C13—H19	109.5
C2—C1—H2	109.5	N1—C14—H24	109.5
O1—C2—C1	115.9 (2)	N1—C14—H22	109.5
O1—C2—C3	125.51 (18)	N1—C14—H23	109.5
C3—C2—C1	118.6 (2)	H24—C14—H22	109.5
С2—С3—Н4	117.1	H24—C14—H23	109.5
C2—C3—C4	125.86 (18)	H22—C14—H23	109.5
C4—C3—H4	117.1	N2—C15—H25	109.5
O2—C4—C3	125.44 (19)	N2—C15—H27	109.5
O2—C4—C5	116.4 (2)	N2—C15—H26	109.5
C3—C4—C5	118.17 (19)	H25—C15—H27	109.5
С4—С5—Н5	109.5	H25—C15—H26	109.5
С4—С5—Н6	109.5	H27—C15—H26	109.5
С4—С5—Н7	109.5	N2—C16—H29	109.5
Н5—С5—Н6	109.5	N2—C16—H28	109.5
Н5—С5—Н7	109.5	N2—C16—H30	109.5
Н6—С5—Н7	109.5	H29—C16—H28	109.5
H8—C6—H10	109.5	H29—C16—H30	109.5
Н8—С6—Н9	109.5	H28—C16—H30	109.5
Н10—С6—Н9	109.5		
Mn—O1—C2—C1	-177.50 (14)	N1-C11-C12-N2	-60.6 (2)
Mn-O1-C2-C3	2.8 (3)	C1—C2—C3—C4	177.1 (2)
Mn-O2-C4-C3	13.4 (3)	C2—C3—C4—O2	-5.6 (3)
Mn—O2—C4—C5	-166.67 (16)	C2—C3—C4—C5	174.5 (2)
Mn—O3—C7—C6	-176.26 (13)	C6—C7—C8—C9	176.5 (2)
Mn—O3—C7—C8	3.2 (3)	C7—C8—C9—O4	0.7 (4)
Mn—O4—C9—C8	1.1 (3)	C7—C8—C9—C10	-179.4 (2)
Mn—O4—C9—C10	-178.82 (17)	C13—N1—C11—C12	162.74 (17)
Mn—N1—C11—C12	42.22 (19)	C14—N1—C11—C12	-76.9 (2)
Mn—N2—C12—C11	42.41 (19)	C15—N2—C12—C11	-77.6 (2)
O1—C2—C3—C4	-3.2 (3)	C16—N2—C12—C11	162.39 (17)
O3—C7—C8—C9	-3.0 (3)		

from

Bis(acetylacetonato- $\kappa^2 O, O'$)(N, N, N', N'-tetramethylethylenediamine- $\kappa^2 N, N'$)iron(II) (2)

F(000) = 792

 $\theta = 1.6 - 29.6^{\circ}$

 $\mu = 0.79 \text{ mm}^{-1}$ T = 213 K

 $D_{\rm x} = 1.253 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 16780 reflections

Block, clear reddish brown

 $0.26 \times 0.25 \times 0.23 \text{ mm}$

Crystal data

 $[Fe(C_5H_7O_2)_2(C_6H_{16}N_2)]$ $M_r = 370.27$ Monoclinic, $P2_1/n$ a = 10.2021 (3) Å b = 15.4708 (4) Å c = 12.4881 (4) Å $\beta = 95.382$ (3)° V = 1962.37 (10) Å³ Z = 4

Data collection

STOE IPDS 2	$T_{\min} = 0.814, \ T_{\max} = 0.894$
diffractometer	18586 measured reflections
Radiation source: sealed X-ray tube, 12 x 0.4	5276 independent reflections
mm long-fine focus, Incoatec I μ s	4425 reflections with $I > 2\sigma(I)$
Plane graphite monochromator	$R_{\rm int} = 0.037$
Detector resolution: 6.67 pixels mm ⁻¹	$\theta_{\rm max} = 29.3^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$
rotation method scans	$h = -13 \rightarrow 13$
Absorption correction: numerical	$k = -21 \rightarrow 20$
(X-AREA; Stoe & Cie, 2016)	$l = -17 \rightarrow 17$
Refinement	
Refinement on F^2	Hydrogen site location: inferred
Least-squares matrix: full	neighbouring sites

Least-squares matrix. Tun	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.031$	H-atom parameters constrained
$wR(F^2) = 0.086$	$w = 1/[\sigma^2(F_o^2) + (0.0464P)^2 + 0.3681P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
5276 reflections	$(\Delta/\sigma)_{ m max} = 0.002$
216 parameters	$\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ((À	ľ²,
---	----	-----

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.63613 (15)	0.53037 (11)	0.42322 (12)	0.0444 (3)	
H2	0.5847	0.4797	0.4338	0.067*	
Н3	0.7061	0.5160	0.3800	0.067*	
H1	0.5810	0.5739	0.3874	0.067*	
C2	0.69359 (13)	0.56425 (9)	0.53071 (11)	0.0352 (3)	
C3	0.81769 (14)	0.53357 (9)	0.57243 (12)	0.0396 (3)	
H4	0.8603	0.4948	0.5305	0.047*	
C4	0.88149 (13)	0.55660 (9)	0.67116 (12)	0.0388 (3)	
C5	1.01582 (16)	0.51923 (13)	0.70525 (16)	0.0584 (4)	
H7	1.0343	0.4733	0.6572	0.088*	

Н5	1.0172	0.4970	0.7771	0.088*
H6	1.0813	0.5636	0.7031	0.088*
C6	0.39240 (17)	0.48770 (10)	0.87153 (14)	0.0496 (4)
H10	0.3000	0.4817	0.8499	0.074*
H9	0.4064	0.4888	0.9486	0.074*
H8	0.4391	0.4397	0.8446	0.074*
C7	0.44227 (13)	0.57093 (9)	0.82668 (11)	0.0359 (3)
C8	0.35444 (13)	0.64029 (10)	0.81410 (12)	0.0379 (3)
H11	0.2707	0.6321	0.8359	0.046*
C9	0.38200 (13)	0.72026 (9)	0.77178 (11)	0.0350 (3)
C10	0.27918 (16)	0.79023 (12)	0.77050 (16)	0.0542 (4)
H14	0.2694	0.8171	0.7009	0.081*
H13	0.3059	0.8328	0.8241	0.081*
H12	0.1967	0.7654	0.7857	0.081*
C11	0.78186 (19)	0.85071 (11)	0.76164 (14)	0.0537 (4)
H16	0.7020	0.8793	0.7792	0.064*
H15	0.8440	0.8949	0.7446	0.064*
C12	0.83901 (17)	0.80004 (13)	0.85721 (14)	0.0545 (4)
H17	0.9192	0.7718	0.8398	0.065*
H18	0.8617	0.8393	0.9167	0.065*
C13	0.6596 (2)	0.83936 (13)	0.58754 (16)	0.0593 (4)
H19	0.6381	0.8022	0.5269	0.089*
H21	0.7000	0.8912	0.5641	0.089*
H20	0.5807	0.8539	0.6198	0.089*
C14	0.87086 (16)	0.77473 (12)	0.61406 (14)	0.0519 (4)
H24	0.9042	0.8268	0.5847	0.078*
H22	0.8499	0.7338	0.5572	0.078*
H23	0.9363	0.7506	0.6658	0.078*
C15	0.64471 (18)	0.77489 (13)	0.94987 (14)	0.0549 (4)
H26	0.5825	0.7319	0.9677	0.082*
H25	0.6001	0.8188	0.9060	0.082*
H27	0.6853	0.8005	1.0147	0.082*
C16	0.8174 (2)	0.67090 (14)	0.96194 (14)	0.0619 (5)
H29	0.8834	0.6428	0.9244	0.093*
H28	0.7566	0.6286	0.9840	0.093*
H30	0.8587	0.7000	1.0242	0.093*
Fe	0.65967 (2)	0.67126 (2)	0.73081 (2)	0.03242 (7)
N1	0.75139 (12)	0.79468 (8)	0.66685 (10)	0.0407 (3)
N2	0.74634 (12)	0.73421 (9)	0.89046 (10)	0.0418 (3)
01	0.62568 (9)	0.61851 (7)	0.57684 (8)	0.0395 (2)
02	0.83743 (9)	0.60880 (7)	0.73746 (9)	0.0426 (2)
03	0.55981 (10)	0.57212 (6)	0.80388 (9)	0.0414 (2)
04	0.48936 (9)	0.74134 (6)	0.73429 (8)	0.0384 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
C1	0.0435 (7)	0.0512 (8)	0.0393 (7)	-0.0086 (6)	0.0082 (6)	-0.0108 (6)

C2	0.0360 (6)	0.0341 (6)	0.0368 (7)	-0.0081 (5)	0.0096 (5)	-0.0039 (5)
C3	0.0380 (7)	0.0368 (7)	0.0453 (8)	0.0022 (5)	0.0111 (6)	-0.0064 (6)
C4	0.0301 (6)	0.0407 (7)	0.0465 (8)	0.0000 (5)	0.0089 (5)	0.0000 (6)
C5	0.0374 (8)	0.0703 (12)	0.0670 (11)	0.0127 (8)	0.0019 (7)	-0.0056 (9)
C6	0.0539 (9)	0.0434 (8)	0.0515 (9)	-0.0121 (7)	0.0050 (7)	0.0076 (7)
C7	0.0380 (6)	0.0369 (7)	0.0328 (6)	-0.0079 (5)	0.0028 (5)	-0.0029 (5)
C8	0.0303 (6)	0.0435 (7)	0.0413 (7)	-0.0049 (5)	0.0102 (5)	-0.0045 (6)
C9	0.0315 (6)	0.0393 (7)	0.0349 (6)	0.0017 (5)	0.0056 (5)	-0.0047 (5)
C10	0.0439 (8)	0.0539 (9)	0.0670 (11)	0.0149 (7)	0.0163 (7)	0.0022 (8)
C11	0.0674 (11)	0.0428 (8)	0.0540 (10)	-0.0207 (8)	0.0222 (8)	-0.0125 (7)
C12	0.0508 (9)	0.0685 (11)	0.0451 (9)	-0.0275 (8)	0.0092 (7)	-0.0158 (8)
C13	0.0626 (11)	0.0614 (11)	0.0559 (10)	-0.0011 (8)	0.0154 (8)	0.0167 (8)
C14	0.0496 (8)	0.0561 (9)	0.0537 (9)	-0.0149 (7)	0.0247 (7)	-0.0073 (7)
C15	0.0550 (9)	0.0690 (11)	0.0429 (8)	-0.0094 (8)	0.0167 (7)	-0.0164 (8)
C16	0.0650 (11)	0.0792 (13)	0.0401 (9)	0.0011 (9)	-0.0027 (8)	-0.0002 (8)
Fe	0.02688 (10)	0.03490 (11)	0.03626 (11)	-0.00268 (7)	0.00714 (7)	-0.00567 (7)
N1	0.0432 (6)	0.0415 (6)	0.0395 (6)	-0.0086 (5)	0.0147 (5)	-0.0039 (5)
N2	0.0395 (6)	0.0513 (7)	0.0354 (6)	-0.0101 (5)	0.0077 (5)	-0.0055 (5)
01	0.0329 (5)	0.0440 (5)	0.0416 (5)	0.0005 (4)	0.0028 (4)	-0.0112 (4)
O2	0.0313 (5)	0.0535 (6)	0.0429 (5)	0.0021 (4)	0.0031 (4)	-0.0100 (5)
O3	0.0352 (5)	0.0352 (5)	0.0543 (6)	-0.0009 (4)	0.0075 (4)	0.0014 (4)
O4	0.0349 (5)	0.0348 (5)	0.0471 (5)	0.0018 (4)	0.0124 (4)	0.0023 (4)

Geometric parameters (Å, °)

C1—H2	0.9600	C11—C12	1.499 (3)
С1—Н3	0.9600	C11—N1	1.477 (2)
C1—H1	0.9600	C12—H17	0.9700
C1—C2	1.5076 (19)	C12—H18	0.9700
C2—C3	1.406 (2)	C12—N2	1.475 (2)
C2—O1	1.2615 (16)	C13—H19	0.9600
С3—Н4	0.9300	C13—H21	0.9600
C3—C4	1.386 (2)	C13—H20	0.9600
C4—C5	1.511 (2)	C13—N1	1.471 (2)
C4—O2	1.2687 (17)	C14—H24	0.9600
С5—Н7	0.9600	C14—H22	0.9600
С5—Н5	0.9600	C14—H23	0.9600
С5—Н6	0.9600	C14—N1	1.4718 (19)
C6—H10	0.9600	C15—H26	0.9600
С6—Н9	0.9600	C15—H25	0.9600
С6—Н8	0.9600	C15—H27	0.9600
C6—C7	1.511 (2)	C15—N2	1.472 (2)
С7—С8	1.397 (2)	С16—Н29	0.9600
С7—ОЗ	1.2583 (17)	C16—H28	0.9600
C8—H11	0.9300	C16—H30	0.9600
C8—C9	1.385 (2)	C16—N2	1.470 (2)
C9—C10	1.506 (2)	Fe—O1	2.0876 (10)
C9—O4	1.2734 (16)	Fe—O2	2.0497 (10)

C10—H14	0.9600	Fe—O3	2.0970 (10)
C10—H13	0.9600	Fe—O4	2.0520 (9)
C10—H12	0.9600	Fe—N1	2.3021 (12)
C11—H16	0.9700	Fe—N2	2.3184 (12)
C11—H15	0.9700		
H2—C1—H3	109.5	H19—C13—H20	109.5
H2—C1—H1	109.5	H21—C13—H20	109.5
H3—C1—H1	109.5	N1—C13—H19	109.5
С2—С1—Н2	109.5	N1—C13—H21	109.5
С2—С1—Н3	109.5	N1—C13—H20	109.5
C2—C1—H1	109.5	H24—C14—H22	109.5
C3—C2—C1	118.30 (12)	H24—C14—H23	109.5
O1—C2—C1	116.98 (13)	H22—C14—H23	109.5
O1—C2—C3	124.72 (13)	N1—C14—H24	109.5
С2—С3—Н4	117.5	N1—C14—H22	109.5
C4—C3—C2	125.07 (13)	N1—C14—H23	109.5
C4—C3—H4	117.5	H26—C15—H25	109.5
C3—C4—C5	119.35 (14)	H26—C15—H27	109.5
O2—C4—C3	125.36 (13)	H25—C15—H27	109.5
O2—C4—C5	115.28 (14)	N2—C15—H26	109.5
С4—С5—Н7	109.5	N2—C15—H25	109.5
С4—С5—Н5	109.5	N2—C15—H27	109.5
С4—С5—Н6	109.5	H29—C16—H28	109.5
Н7—С5—Н5	109.5	H29—C16—H30	109.5
Н7—С5—Н6	109.5	H28—C16—H30	109.5
Н5—С5—Н6	109.5	N2—C16—H29	109.5
Н10—С6—Н9	109.5	N2—C16—H28	109.5
Н10—С6—Н8	109.5	N2—C16—H30	109.5
Н9—С6—Н8	109.5	O1—Fe—O2	85.58 (4)
C7—C6—H10	109.5	O1—Fe—O3	93.98 (4)
С7—С6—Н9	109.5	O1—Fe—O4	99.11 (4)
С7—С6—Н8	109.5	O1—Fe—N1	92.44 (4)
C8—C7—C6	117.47 (13)	O1—Fe—N2	166.73 (4)
O3—C7—C6	117.22 (13)	O2—Fe—O3	95.84 (4)
O3—C7—C8	125.31 (13)	O2—Fe—O4	174.85 (4)
C7—C8—H11	117.3	O2—Fe—N1	91.04 (5)
C9—C8—C7	125.32 (12)	O2—Fe—N2	84.18 (4)
C9—C8—H11	117.3	O3—Fe—O4	86.00 (4)
C8—C9—C10	118.69 (13)	O3—Fe—N1	170.93 (4)
O4—C9—C8	125.57 (12)	O3—Fe—N2	95.43 (4)
O4—C9—C10	115.74 (13)	O4—Fe—N1	86.66 (4)
С9—С10—Н14	109.5	O4—Fe—N2	90.87 (4)
С9—С10—Н13	109.5	N1—Fe—N2	79.35 (4)
C9—C10—H12	109.5	C11—N1—Fe	105.70 (9)
H14—C10—H13	109.5	C13—N1—C11	109.69 (14)
H14—C10—H12	109.5	C13—N1—C14	107.39 (13)
H13—C10—H12	109.5	C13—N1—Fe	111.69 (10)

H16—C11—H15 C12—C11—H16 C12—C11—H15 N1—C11—H16 N1—C11—H15 N1—C11—C12 C11—C12—H17 C11—C12—H18	108.0 109.3 109.3 109.3 109.3 111.60 (14) 109.2 109.2	C14—N1—C11 C14—N1—Fe C12—N2—Fe C15—N2—C12 C15—N2—Fe C16—N2—C12 C16—N2—C15 C16—N2—Fe C2—O1—Fe	111.18 (13) 111.24 (10) 104.52 (9) 110.31 (14) 112.54 (10) 109.77 (14) 108.03 (14) 111.65 (10) 120.04 (0)
N1-C11-C12 C11-C12-H17 C11-C12-H18 H17-C12-H18 N2-C12-C11	111.60 (14) 109.2 109.2 107.9 111.91 (13)	C16—N2—C12 C16—N2—C15 C16—N2—Fe C2—O1—Fe C4—O2—Fe	109.77 (14) 108.03 (14) 111.65 (10) 129.04 (9) 129.79 (9)
N2—C12—H17 N2—C12—H18 H19—C13—H21	109.2 109.2 109.5	C7—O3—Fe C9—O4—Fe	128.42 (10) 129.18 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C1—H2···O1 ⁱ	0.96	2.62	3.5269 (18)	157

Symmetry code: (i) -x+1, -y+1, -z+1.

Bis(acetylacetonato- $\kappa^2 O, O'$)(N, N, N', N'-tetramethylethylenediamine- $\kappa^2 N, N'$)zinc(II) (3)

Crystal data

 $[Zn(C_5H_7O_2)_2(C_6H_{16}N_2)]$ $M_r = 379.79$ Monoclinic, $P2_1/n$ a = 10.2335 (3) Å b = 14.2134 (6) Å c = 13.6738 (5) Å $\beta = 101.208$ (3)° V = 1950.96 (12) Å³ Z = 4

Data collection

STOE IPDS 2T diffractometer Detector resolution: 6.67 pixels mm⁻¹ rotation method, ω scans Absorption correction: numerical (X-AREA; Stoe & Cie, 2016) $T_{\min} = 0.627, T_{\max} = 0.779$ 22385 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.076$ S = 1.074124 reflections 216 parameters 0 restraints F(000) = 808 $D_x = 1.293 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 19126 reflections $\theta = 2.1-27.2^{\circ}$ $\mu = 1.28 \text{ mm}^{-1}$ T = 200 KBlock, clear colourless $0.45 \times 0.39 \times 0.33 \text{ mm}$

4124 independent reflections 3456 reflections with $I > 2\sigma(I)$ $R_{int} = 0.047$ $\theta_{max} = 26.7^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -12 \rightarrow 12$ $k = -17 \rightarrow 16$ $l = -17 \rightarrow 17$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0494P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.37$ e Å⁻³ $\Delta\rho_{min} = -0.26$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn	0.74026 (2)	0.26429 (2)	0.54676 (2)	0.03991 (8)	
01	0.73445 (12)	0.33774 (8)	0.41466 (9)	0.0534 (3)	
02	0.85986 (11)	0.16705 (8)	0.49492 (8)	0.0507 (3)	
O3	0.57869 (11)	0.17554 (8)	0.50853 (9)	0.0529 (3)	
O4	0.61242 (9)	0.36299 (8)	0.58630 (8)	0.0441 (2)	
N1	0.91461 (12)	0.35505 (11)	0.62041 (10)	0.0499 (3)	
N2	0.78674 (12)	0.19573 (11)	0.69813 (10)	0.0459 (3)	
C1	0.76595 (19)	0.38103 (13)	0.25509 (13)	0.0575 (4)	
H1	0.6725	0.4006	0.2373	0.086*	
H2	0.7922	0.3504	0.1977	0.086*	
Н3	0.8222	0.4363	0.2743	0.086*	
C2	0.78276 (15)	0.31277 (12)	0.34146 (11)	0.0450 (4)	
C3	0.85137 (17)	0.22957 (12)	0.33344 (13)	0.0492 (4)	
H4	0.8764	0.2169	0.2714	0.059*	
C4	0.88628 (15)	0.16331 (12)	0.40893 (12)	0.0462 (4)	
C5	0.9672 (2)	0.07864 (15)	0.38836 (14)	0.0672 (5)	
Н5	1.0493	0.0752	0.4389	0.101*	
H6	0.9896	0.0849	0.3222	0.101*	
H7	0.9149	0.0212	0.3907	0.101*	
C6	0.3632 (2)	0.11210 (15)	0.48710 (15)	0.0691 (5)	
H8	0.3797	0.0646	0.5401	0.104*	
H9	0.3758	0.0838	0.4242	0.104*	
H10	0.2717	0.1354	0.4796	0.104*	
C7	0.45930 (16)	0.19273 (13)	0.51387 (11)	0.0476 (4)	
C8	0.41127 (15)	0.27812 (12)	0.54200 (12)	0.0475 (4)	
H11	0.3180	0.2826	0.5391	0.057*	
C9	0.48712 (14)	0.35764 (11)	0.57395 (11)	0.0412 (3)	
C10	0.41684 (16)	0.44556 (13)	0.59729 (13)	0.0554 (4)	
H12	0.3393	0.4283	0.6257	0.083*	
H13	0.3875	0.4817	0.5359	0.083*	
H14	0.4780	0.4838	0.6454	0.083*	
C11	0.93211 (19)	0.33443 (17)	0.72727 (14)	0.0676 (5)	
H15	0.8644	0.3692	0.7556	0.081*	
H16	1.0212	0.3563	0.7615	0.081*	
C12	0.91917 (19)	0.23151 (16)	0.74583 (15)	0.0651 (5)	
H17	0.9887	0.1969	0.7194	0.078*	
H18	0.9335	0.2200	0.8185	0.078*	
C13	0.88618 (18)	0.45547 (14)	0.60157 (16)	0.0671 (5)	
H19	0.9629	0.4929	0.6341	0.101*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H20	0.8076	0.4732	0.6285	0.101*	
H21	0.8691	0.4673	0.5296	0.101*	
C14	1.03600 (16)	0.33196 (16)	0.58256 (16)	0.0651 (5)	
H22	1.0212	0.3449	0.5108	0.098*	
H23	1.0573	0.2652	0.5944	0.098*	
H24	1.1102	0.3704	0.6172	0.098*	
C15	0.68709 (18)	0.21961 (14)	0.75840 (13)	0.0560 (4)	
H25	0.6835	0.2881	0.7660	0.084*	
H26	0.7118	0.1902	0.8243	0.084*	
H27	0.5995	0.1964	0.7251	0.084*	
C16	0.7902 (2)	0.09286 (14)	0.68935 (15)	0.0680 (5)	
H28	0.7024	0.0700	0.6562	0.102*	
H29	0.8137	0.0649	0.7560	0.102*	
H30	0.8568	0.0750	0.6500	0.102*	

Atomic displacement parameters (\mathring{A}^2)

_	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn	0.03590 (11)	0.04475 (13)	0.04087 (12)	0.00666 (7)	0.01186 (8)	-0.00208 (7)
01	0.0628 (7)	0.0534 (7)	0.0470 (6)	0.0178 (6)	0.0187 (5)	0.0051 (5)
O2	0.0555 (6)	0.0545 (7)	0.0465 (6)	0.0158 (5)	0.0204 (5)	0.0024 (5)
O3	0.0488 (6)	0.0496 (7)	0.0592 (7)	-0.0007 (5)	0.0078 (5)	-0.0096 (5)
O4	0.0335 (5)	0.0470 (6)	0.0538 (6)	0.0028 (4)	0.0136 (4)	-0.0040 (5)
N1	0.0353 (6)	0.0602 (9)	0.0557 (8)	-0.0041 (6)	0.0125 (6)	-0.0053 (7)
N2	0.0431 (7)	0.0537 (8)	0.0422 (7)	0.0079 (6)	0.0114 (5)	0.0024 (6)
C1	0.0653 (11)	0.0582 (11)	0.0492 (10)	-0.0021 (9)	0.0114 (8)	0.0046 (8)
C2	0.0406 (8)	0.0525 (10)	0.0417 (8)	-0.0032 (7)	0.0077 (6)	-0.0012 (7)
C3	0.0529 (9)	0.0559 (10)	0.0417 (9)	0.0035 (7)	0.0163 (7)	-0.0050(7)
C4	0.0444 (8)	0.0481 (9)	0.0485 (9)	0.0042 (7)	0.0149 (7)	-0.0079 (7)
C5	0.0817 (13)	0.0620 (12)	0.0632 (11)	0.0230 (10)	0.0271 (10)	-0.0048 (9)
C6	0.0680 (12)	0.0741 (14)	0.0632 (12)	-0.0250 (10)	0.0074 (9)	-0.0086 (10)
C7	0.0474 (8)	0.0576 (10)	0.0356 (8)	-0.0083 (8)	0.0028 (6)	0.0009(7)
C8	0.0323 (7)	0.0653 (11)	0.0451 (9)	-0.0004 (7)	0.0081 (6)	0.0028 (7)
C9	0.0368 (7)	0.0515 (9)	0.0370 (8)	0.0066 (6)	0.0113 (6)	0.0068 (6)
C10	0.0443 (8)	0.0596 (11)	0.0674 (11)	0.0127 (7)	0.0233 (8)	0.0043 (8)
C11	0.0517 (10)	0.0963 (16)	0.0527 (11)	-0.0182 (10)	0.0053 (8)	-0.0141 (10)
C12	0.0449 (9)	0.0990 (16)	0.0484 (10)	0.0056 (9)	0.0017 (8)	0.0119 (10)
C13	0.0529 (10)	0.0562 (11)	0.0935 (14)	-0.0131 (9)	0.0175 (10)	-0.0120 (10)
C14	0.0375 (8)	0.0825 (14)	0.0785 (13)	-0.0044 (8)	0.0194 (8)	-0.0032 (11)
C15	0.0540 (10)	0.0724 (12)	0.0452 (9)	0.0086 (8)	0.0183 (8)	0.0043 (8)
C16	0.0905 (14)	0.0552 (11)	0.0627 (11)	0.0198 (10)	0.0256 (10)	0.0137 (9)

Geometric parameters (Å, °)

Zn—O1	2.0771 (12)	С6—Н9	0.9800
Zn—O2	2.0611 (11)	C6—H10	0.9800
Zn—O3	2.0645 (11)	C6—C7	1.508 (2)
Zn—O4	2.0607 (10)	С7—С8	1.391 (3)

Zn—N1	2.2722 (13)	C8—H11	0.9500
Zn—N2	2.2533 (13)	C8—C9	1.393 (2)
O1—C2	1.2509 (19)	C9—C10	1.507 (2)
O2—C4	1.2578 (19)	C10—H12	0.9800
O3—C7	1.2619 (19)	С10—Н13	0.9800
O4—C9	1.2626 (17)	C10—H14	0.9800
N1-C11	1.467 (2)	С11—Н15	0.9900
N1—C13	1.469 (2)	С11—Н16	0.9900
N1—C14	1473(2)	C_{11} C_{12}	1 495 (3)
N2-C12	1 476 (2)	C12—H17	0.9900
N2C15	1.470(2)	C12_H18	0.9900
N2 C16	1.470(2) 1.468(2)	C12 H10	0.9900
C1 H1	0.0800	C13 H20	0.9800
	0.9800	C13—H20	0.9800
C1 = H2	0.9800	С13—Н21	0.9800
C1 - H3	0.9800	C14—H22	0.9800
	1.512 (2)	C14—H23	0.9800
C2—C3	1.390 (2)	C14—H24	0.9800
C3—H4	0.9500	С15—Н25	0.9800
C3—C4	1.392 (2)	C15—H26	0.9800
C4—C5	1.518 (2)	С15—Н27	0.9800
С5—Н5	0.9800	С16—Н28	0.9800
С5—Н6	0.9800	С16—Н29	0.9800
С5—Н7	0.9800	C16—H30	0.9800
С6—Н8	0.9800		
O1—Zn—O2	87.50 (4)	С7—С6—Н8	109.5
O1—Zn—O3	101.58 (5)	С7—С6—Н9	109.5
01—Zn—O4	88.49 (4)	C7—C6—H10	109.5
O1—Zn—N1	89.28 (5)	O3-C7-C6	115.59 (16)
O1—Zn—N2	168.94 (5)	03-07-08	125.65 (15)
0^{2} $-7n^{2}$ 0^{3}	90.18 (5)	C8-C7-C6	118 76 (16)
02 - 2n - 04	175 16 (4)	C7 - C8 - H11	116.9
$\Omega^2 = Zn = \Omega^4$	93 76 (5)	C7 - C8 - C9	126 12 (15)
$O_2 Z_n N_2$	89 57 (5)	C_{0} C_{8} H_{11}	116.0
$O_2 = Z_1 = N_2$ $O_3 = Z_2 = O_4$	87.96 (<i>1</i>)	$O_{1} = C_{2} = C_{3}$	125.48(15)
$O_3 Z_n N_1$	168 61 (5)	04 - 09 - 010	125.46(15)
$O_3 = Z_1 = N_1$	100.01(5)	$C_{4}^{2} = C_{10}^{2} = C_{10}^{2}$	113.64(13)
$O_3 = Z_1 = N_2$	89.09 (<i>3</i>)	$C_{0} = C_{10} = U_{12}$	110.07 (13)
04 2π N2	88.92 (5)	C_{9} C_{10} H_{12}	109.5
V4 - ZII - N2	94.80 (3)	C9-C10-H13	109.5
N1 - Zn - N2	80.27 (5)	C9—C10—H14	109.5
C2	127.18 (11)	H12—C10—H13	109.5
C4—O2—Zn	126.86 (11)	H12—C10—H14	109.5
C7—O3—Zn	127.15 (11)	H13—C10—H14	109.5
C9—O4—Zn	127.15 (10)	N1—C11—H15	109.3
C11—N1—Zn	105.16 (10)	N1—C11—H16	109.3
C11—N1—C13	110.51 (16)	N1—C11—C12	111.53 (16)
C11—N1—C14	110.95 (15)	H15—C11—H16	108.0
C13—N1—Zn	111.23 (10)	С12—С11—Н15	109.3

C13—N1—C14	107.86 (15)	C12—C11—H16	109.3
C14—N1—Zn	111.17 (11)	N2-C12-C11	111.49 (15)
C12—N2—Zn	105.59 (11)	N2—C12—H17	109.3
C15—N2—Zn	111.69 (10)	N2—C12—H18	109.3
C15—N2—C12	110.50 (15)	C11—C12—H17	109.3
C16—N2—Zn	111.08 (11)	C11—C12—H18	109.3
C16—N2—C12	110.16 (14)	H17—C12—H18	108.0
C16—N2—C15	107.84 (15)	N1—C13—H19	109.5
H1—C1—H2	109.5	N1—C13—H20	109.5
H1—C1—H3	109.5	N1—C13—H21	109.5
H2—C1—H3	109.5	H19—C13—H20	109.5
C2—C1—H1	109.5	H19—C13—H21	109.5
C2—C1—H2	109.5	H20—C13—H21	109.5
С2—С1—Н3	109.5	N1—C14—H22	109.5
O1—C2—C1	116.12 (15)	N1—C14—H23	109.5
O1—C2—C3	126.06 (16)	N1—C14—H24	109.5
C3—C2—C1	117.82 (15)	H22—C14—H23	109.5
С2—С3—Н4	117.4	H22—C14—H24	109.5
C2—C3—C4	125.30 (15)	H23—C14—H24	109.5
C4—C3—H4	117.4	N2—C15—H25	109.5
O2—C4—C3	126.43 (15)	N2—C15—H26	109.5
O2—C4—C5	115.53 (15)	N2—C15—H27	109.5
C3—C4—C5	118.02 (15)	H25—C15—H26	109.5
C4—C5—H5	109.5	H25—C15—H27	109.5
С4—С5—Н6	109.5	H26—C15—H27	109.5
С4—С5—Н7	109.5	N2—C16—H28	109.5
Н5—С5—Н6	109.5	N2—C16—H29	109.5
H5—C5—H7	109.5	N2—C16—H30	109.5
Н6—С5—Н7	109.5	H28—C16—H29	109.5
Н8—С6—Н9	109.5	H28—C16—H30	109.5
H8—C6—H10	109.5	H29—C16—H30	109.5
Н9—С6—Н10	109.5		