

Received 9 December 2019 Accepted 9 December 2019

Edited by M. Zeller, Purdue University, USA

Keywords: heterocyclic compounds; pyrazoles; crystal structure; disorder; molecular conformation; hydrogen bonding; supramolecular assembly

CCDC references: 1970925; 1970924

Supporting information: this article has supporting information at journals.iucr.org/e

Two isostructural 3-(5-aryloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(thiophen-2-yl)prop-2-en-1ones: disorder and supramolecular assembly

Mohammed A. E. Shaibah,^a Hemmige S. Yathirajan,^{a*} Nagaraj Manju,^b Balakrishna Kalluraya,^b Ravindranath S. Rathore^c and Christopher Glidewell^d

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore-574 199, India, ^cDepartment of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya-824 236, India, and ^dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK. *Correspondence e-mail: vathirajan@hotmail.com

Two new chalcones containing both pyrazole and thiophene substituents have been prepared and structurally characterized. 3-(3-Methyl-5-phenoxy-1-phenyl-1H-pyrazol-4-yl)-1-(thiophen-2-yl)prop-2-en-1-one, C₂₃H₁₈N₂O₂S (I), and 3-[3methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]-1-(thiophen-2-yl)prop-2-en-1-one, C₂₄H₂₀N₂O₂S (II), are isomorphous as well as isostructural, and in each the thiophene substituent is disordered over two sets of atomic sites having occupancies 0.844 (3) and 0.156 (3) in (I), and 0.883 (2) and 0.117 (2) in (II). In each structure, the molecules are linked into sheets by a combination of C- $H \cdots N$ and $C - H \cdots O$ hydrogen bonds. Comparisons are made with some related compounds.

1. Chemical context

Pyrazole derivatives exhibit a wide range of pharmacological activity (Karrouchi et al., 2018), including analgesic (Vijesh et al., 2013), anticancer (Dawood et al., 2013; Koca et al., 2013), antidepressant (Mathew et al., 2014), antifungal (Zhang et al., 2017), anti-inflammatory (Badawey & El-Ashmawey, 1998) and antimicrobial (Vijesh et al., 2013) activities. In addition, a range of thiophene-based heterocyclic compounds have been shown to exhibit antimicrobial activity (Mabkhot et al., 2016).

With these observations in mind, we have now synthesized two new chalcones containing both pyrazole and thiophene 3-(3-methyl-5-phenoxy-1-phenyl-1Hmoieties. namelv pyrazol-4-yl)-1-(thiophen-2-yl)prop-2-en-1-one, C₂₃H₁₈N₂O₂S (I) (Fig. 1), and 3-[3-methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]-1-(thiophen-2-yl)prop-2-en-1-one,

Figure 1

The molecular structure of compound (I), showing the atom-labelling scheme, and the disorder in the thiophen-2-yl substituent, where the major disorder component has been drawn using full lines and the minor disorder component has been drawn using dashed lines.

 $C_{24}H_{20}N_2O_2S$ (II) (Fig. 2), and here we report their molecular and supramolecular structures.

2. Structural commentary

Compounds (I) and (II) are isomorphous with unit-cell volumes which differ by only *ca* 1% and, with appropriate adjustment of the substituent at atom C352 (H versus CH_3), each structure can be smoothly refined using the atomic coordinates of the other as the starting point.

In each structure, the thienyl group is disordered over two sets of atomic sites having occupancies 0.844 (3) and 0.156 (3) in (I), and 0.883 (2) and 0.117 (2) in (II): in each case, the two disorder components are approximately related by a rotation of *ca* 180° about the C1–C12 bond (Figs. 1 and 2). It is by no means clear why the occupancies of the two disorder components in each compound are so different, particularly as the two disorder components form similar intermolecular hydrogen bonds (Section 3).

Figure 2

The molecular structure of compound (II), showing the atom-labelling scheme, and the disorder in the thiophen-2-yl substituent, where the major disorder component has been drawn using full lines and the minor disorder component has been drawn using dashed lines.

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$) for (I).	

$D - \mathbf{H} \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C14-H14\cdots N32^{i}$	0.93	2.62	3.462 (9)	151
$C25 - H25 \cdot \cdot \cdot N32^{i}$	0.93	2.51	3.33 (5)	148
C314−H314···O1 ⁱⁱ	0.93	2.38	3.305 (3)	175

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x - 1, y, z - 1.

For both compounds, the central space unit between atoms C12 and C34, the pyrazole ring and the major disorder component of the thienyl ring are almost coplanar, and the r.m.s. deviations of the atoms from the mean planes through these units are only 0.055 Å in (I) and 0.102 Å in (II). By contrast, the two pendent aryl rings are markedly displaced from this plane: the dihedral angles between the pyrazole ring and the rings (C311–C316) and (C351–C356) are 29.99 (11) and 78.60 (6)°, respectively, in (I), and 27.90 (11) and 81.13 (6)° in (II). On the other hand, atom C35 is, in each structure, displaced from the plane (O35/C351–C356) by only 0.097 (3) Å in (I) and 0.017 (3) Å in (II). Associated with this near co-planarity, the two exocyclic C–C–O angles at atom C351 differ in each structure by *ca* 9°, as typically found in planar alkoxyarenes (Seip & Seip, 1973; Ferguson *et al.*, 1996).

3. Supramolecular features

The supramolecular assembly of compound (I) depends upon just two hydrogen bonds, one each of $C-H\cdots N$ and $C-H\cdots O$ types (Table 1). The $C-H\cdots O$ hydrogen bonds links molecules which are related by translation to form a C(12)(Etter, 1990; Etter *et al.*, 1990; Bernstein *et al.*, 1995) chain running parallel to the [101] direction (Fig. 3). The $C-H\cdots N$ hydrogen bond links molecules which are related by the 2_1 screw axis along (0.5, y, 0.25) to form a C(10) chain running

Part of the crystal structure of compound (I) showing the formation of a hydrogen-bonded sheet lying parallel to $(10\overline{1})$. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the minor disorder component and the H atoms which are not involved in the motifs shown have been omitted.

research communications

Table 2	
Hydrogen-bond geometry (Å, $^{\circ}$) for (II).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C14-H14\cdots N32^{i}$	0.93	2.55	3.483 (4)	177
$C25-H25\cdots N32^{i}$	0.93	2.69	3.47 (2)	142
$C314-H314\cdots O1^{ii}$	0.93	2.51	3.432 (3)	171

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x - 1, y, z - 1.

parallel to the [010] direction (Fig. 3). The chain formation along [010] is independent of the disorder, since both atom C14 in the major disorder component and atom C25 in the minor component (*cf.* Fig. 1) form similar $C-H\cdots$ N hydrogen bonds. The combination of these two chain motifs generates a sheet in the form of a (4,4) net (Batten & Robson, 1998) built from $R_4^4(35)$ rings and lying parallel to (101). The supramolecular assembly of compound (II) is entirely similar to that in (I), although the $C-H\cdots$ N hydrogen bond formed by the minor disorder component is rather long (Table 2).

In view of the similarities in the hydrogen bonds formed by (I) and (II), and their similar molecular conformations (see Section 2), these isomorphous compounds can be described as isostructural, although it is not always the case that isomorphous pairs are strictly isostructural (Bowes *et al.*, 2003; Acosta *et al.*, 2009; Blanco *et al.*, 2012).

4. Database survey

It is of interest to briefly compare the structures of compounds (I) and (II) reported here with those of some related compounds. 2,5-Bis[(3,5-dimethylpyrazol-1-yl)carbonyl]thiophene (III) crystallizes with Z' = 2 in space group $P2_1/m$ (Guzei et al., 2009): the two independent molecules are weakly linked by a $C-H\cdots O$ hydrogen bond but the only other direction-specific interactions between the molecules are $\pi - \pi$ interactions involving inversion-related pairs of pyrazole rings. In contrast to the simplicity of the molecular constitution of (III) above, in most other structures containing both pyrazole and thiophene units, at least one of the rings is fused. In 3,6dimethyl-1-phenyl-4-(thiophen-2-yl)-8-(thiophen-2-ylmethylene)-5,6,7,8- tetrahydro-1H-pyrazolo[3,4-b][1,6]naphthyridine (IV) (Peng *et al.*, 2009), the molecules are linked into C(11)chains by means of C-H···N hydrogen bonds. The molecules of 2-(3,4-dimethyl-5,5-dioxo-2H,4H-pyrazolo[4,3-c][1,2]benzothiazin-2-yl)-N'-(thiophen-2-ylmethylidene)acetohydrazide (V) (Ahmad *et al.*, 2010) are linked by a combination of N- $H \cdots O$ and $C - H \cdots N$ hydrogen bonds: although the resulting aggregation was described as consisting of dimers, the molecules are, in fact, linked into chains of rings, as clearly illustrated in the original report. A chain of rings, built from a combination of N-H···N and C-H···N hydrogen bonds is also found in the structure of (Z)-ethyl 2-cyano-2-{2-[5,6dimethyl-4-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-3-yl]hydrazinylidene}acetate (VI) (Fun et al., 2011).

In 9-(thiophen-2-yl)-8,9-dihydro-3H-pyrazolo[4,3-f]quinolin-7(6H)-one ethanol monosolvate (VII) (Peng & Jia, 2012), the thiophene ring is disordered over two sets of atomic sites having unequal occupancies, 0.692 (7) and 0.308 (7), much as found here for compounds (I) and (II). The molecular components in (VII) are linked by $N-H\cdots O$ and $O-H\cdots N$ hydrogen bonds to form a complex chain of rings. The thiophene ring in 5,6-dimethyl-4-(thiophen-2-yl)-1-pyrazolo[3,4b]pyridin-3-amine (VIII) (Abdel-Aziz *et al.*, 2012) is also disordered, with occupancies of 0.777 (4) and 0.223 (4), and the molecules are again linked into a chain of rings, this time by two independent $N-H\cdots N$ hydrogen bonds. Finally, we note that in [4-(2-methoxyphenyl)-3-methyl-1-phenyl-6-trifluoromethyl-1*H*-pyrazolo[3,4-*b*]pyridin-5-yl](thiophen-2-yl)methanone (IX) (Rajni Swamy *et al.*, 2014), where the thiophene ring is fully ordered, there are no significant hydrogen bonds of any kind.

5. Synthesis and crystallization

Compounds (I) and (II) were prepared using a three-step procedure, starting from the readily accessible 3-methyl-1-phenyl-1*H*-pyrazole (*A*) (see Fig. 4), which was converted to the corresponding 5-chloro-4-carbaldehyde (*B*) under Vilsmeier–Haack conditions, followed by nucleophilic substitution

Figure 4 The synthetic route to compounds (I) and (II).

Table 3Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$C_{23}H_{18}N_2O_2S$	$C_{24}H_{20}N_2O_2S$
M_r	386.45	400.48
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$
Temperature (K)	296	296
a, b, c (Å)	9.6158 (5), 19.8846 (11), 10.3773 (6)	9.4336 (4), 20.6071 (9), 10.5866 (4)
β (°)	93.712 (2)	93.106 (2)
$V(\dot{A}^3)$	1980.04 (19)	2055.00 (15)
Ζ	4	4
Radiation type	Μο <i>Κα</i>	Μο Κα
$\mu (\text{mm}^{-1})$	0.18	0.18
Crystal size (mm)	$0.20 \times 0.20 \times 0.15$	$0.30 \times 0.20 \times 0.15$
Data collection		
Diffractometer	Bruker Kappa APEXII CCD	Bruker Kappa APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2012)	Multi-scan (SADABS; Bruker, 2012)
$T_{\min}, \overline{T}_{\max}$	0.941, 0.973	0.926, 0.973
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	31970, 3725, 2446	35938, 4735, 2877
R _{int}	0.043	0.040
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.608	0.651
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.117, 1.06	0.045, 0.142, 1.02
No. of reflections	3725	4735
No. of parameters	268	277
No. of restraints	10	10
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.20, -0.14	0.19, -0.23

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2017), SHELXT (Sheldrick, 2015a), SHELX2014 (Sheldrick, 2015b) and PLATON (Spek, 2009).

(Asma et al., 2017) to provide the 5-aryloxy intermediates (C). Condensation with 2-acetylethiophene then gave the products (I) and (II) in yields of 86% and 84%, respectively. Thus the appropriate 3-methyl-5-aryloxy-1-phenyl-1H-pyrazole 4-carbaldehydes (Asma et al., 2017) [1.7 mmol; 445 mg for (I), or 469 mg for (II)] and 2-acetyl thiophene (1.7 mmol, 214 mg) were dissolved in ethanol (20 ml) at 273 K; a solution of potassium hydroxide (2.1 mmol, 112 mg) in ethanol (5 ml) was then added dropwise, and the resulting mixtures were then stirred for 4 h. When the reactions were complete, as judged by thin-layer chromatography, the resulting solid products were collected by filtration, washed with water, dried in air and then recrystallized from ethanol-dimethylformamide (9:1, v/v), to give crystals suitable for single-crystal X-ray diffraction. Compound (I). Yield 86%, m.p. 425-427 K. IR (cm⁻¹) 1667 (C=O), 1591 (C=N). Analysis: found C 71.5, H 4.7, N 7.2%: C₂₃H₁₈N₂O₂S requires C 71.5, H 4.7, N 7.3%. Compound (II). Yield 84%, m.p. 401–405 K. IR (cm⁻¹) 1671 (C=O), 1564 (C=N). Analysis: found C 72.0, H 5.1, N 7.1%: C₂₄H₂₀N₂O₂S requires C 72.0, H 5.0, N 7.0%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized In Table 3. In both compounds, the thienyl unit was disordered over two sets of atomic sites having unequal occupancies. In each case, the bonded distances and the 1,3 non-bonded distances in the minor disorder component were restrained to be the similar to the equivalent distances in the major disorder component, subject to s.u. values of 0.01 Å and 0.02° for bonds and angles, respectively, and the anisotropic displacement parameters for pairs of partial-occupancy atoms occupying essentially the same physical space were constrained to be equal. All H atoms, apart from those in the minor disorder components were located in difference maps, and then treated as riding atoms in geometrically idealized positions, with C-H distances of 0.93 Å (alkenyl, aromatic and thienyl) or 0.96 Å (methyl), and with $U_{iso}(H) = kU_{eq}(C)$, where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms. The H atoms in the minor disorder components were included on the same basis. Subject to these conditions, the occupancies of the disorder components refined to 0.844 (3) and 0.156 (3) in (I), and 0.883 (2) and to 0.117 (2) in (II).

Acknowledgements

MAES thanks the University of Mysore for research facilities.

Funding information

HSY thanks the University Grants Commission, New Delhi for the award of a BSR Faculty Fellowship for three years.

References

- Abdel-Aziz, H. A., Al-Rashood, K. A., Ghabbour, H. A., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o612–o613.
- Acosta, L. M., Bahsas, A., Palma, A., Cobo, J., Hursthouse, M. B. & Glidewell, C. (2009). Acta Cryst. C65, 092–096.
- Ahmad, M., Siddiqui, H. L., Khan, A. H. & Parvez, M. (2010). Acta Cryst. E66, 01265–01266.
- Asma, Kalluraya, B. & Manju, N. (2017). Pharma Chem. 9, 50-54.
- Badawey, E. A. M. & El-Ashmawey, I. M. (1998). *Eur. J. Med. Chem.* **33**, 349–361.
- Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460– 1494.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Blanco, M. C., Palma, A., Cobo, J. & Glidewell, C. (2012). *Acta Cryst.* C68, o195–o198.
- Bowes, K. F., Glidewell, C., Low, J. N., Melguizo, M. & Quesada, A. (2003). *Acta Cryst.* C**59**, 04–08.
- Bruker (2012). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dawood, K. M., Eldebss, T. M. A., El-Zahabi, H. S. A., Yousef, M. H. & Metz, P. (2013). Eur. J. Med. Chem. 70, 740–749.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). *Acta Cryst.* C**52**, 420–423.

- Fun, H.-K., Hemamalini, M., Abdel-Aziz, H. A. & Aboul-Fadl, T. (2011). Acta Cryst. E67, o2145–o2146.
- Guzei, I. A., Spencer, L. C., Tshivashe, M. G. & Darkwa, J. (2009). Acta Cryst. E65, 02743.
- Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Alaizari, F. A. & Ansar, M. (2018). *Molecules*, 23, 134. doi: 10.3390/ molecules23010134.
- Koca, I., Özgür, A., Coşkun, K. A. & Tutar, Y. (2013). *Bioorg. Med. Chem.* **21**, 3859–3865.
- Mabkhot, Y. N., Alatibi, F., El-Sayed, N. N. E., Kheder, N. A. & Al-Showiman, S. S. (2016). *Molecules*, **21**, 1036. doi: 10.3390/ molecules21081036.
- Mathew, B., Suresh, J. & Anbazhagan, S. (2014). *EXCLI J*, **13**, 437–445.
- Peng, J., Han, Z., Ma, N. & Tu, S. (2009). Acta Cryst. E65, 01109– 01110.
- Peng, J. & Jia, R. (2012). Acta Cryst. E68, o2608.
- Rajni Swamy, V., Gunasekaran, P., Krishnakumar, R. V., Srinivasan, N. & Müller, P. (2014). Acta Cryst. E70, 0974–0975.
- Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024-4027.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Vijesh, A. M., Isloor, A. M., Shetty, P., Sundershan, S. & Fun, H.-K. (2013). Eur. J. Med. Chem. 62, 410–415.
- Zhang, J., Tan, D.-J., Wang, T., Jing, S.-S., Kang, Y. & Zhang, Z.-T. (2017). J. Mol. Struct. 1149, 235–242.

Acta Cryst. (2020). E76, 48-52 [https://doi.org/10.1107/S205698901901658X]

Two isostructural 3-(5-aryloxy-3-methyl-1-phenyl-1*H*-pyrazol-4-yl)-1-(thio-phen-2-yl)prop-2-en-1-ones: disorder and supramolecular assembly

Mohammed A. E. Shaibah, Hemmige S. Yathirajan, Nagaraj Manju, Balakrishna Kalluraya, Ravindranath S. Rathore and Christopher Glidewell

Computing details

For both structures, data collection: *APEX2* (Bruker, 2012); cell refinement: *SAINT* (Bruker, 2017); data reduction: *SAINT* (Bruker, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015b) and *PLATON* (Spek, 2009).

3-(3-Methyl-5-phenoxy-1-phenyl-1*H*-pyrazol-4-yl)-1-(thiophen-2-yl)prop-2-en-1-one (I)

Crystal data

 $\begin{array}{l} C_{23}H_{18}N_2O_2S\\ M_r = 386.45\\ \text{Monoclinic, } P2_{1/c}\\ a = 9.6158 \ (5) \ \text{\AA}\\ b = 19.8846 \ (11) \ \text{\AA}\\ c = 10.3773 \ (6) \ \text{\AA}\\ \beta = 93.712 \ (2)^{\circ}\\ V = 1980.04 \ (19) \ \text{\AA}^3\\ Z = 4 \end{array}$

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 7.3910 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2012) $T_{\min} = 0.941, T_{\max} = 0.973$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.117$ S = 1.063725 reflections 268 parameters 10 restraints F(000) = 808 $D_x = 1.296 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3725 reflections $\theta = 2.1-25.6^{\circ}$ $\mu = 0.18 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.20 \times 0.20 \times 0.15 \text{ mm}$

31970 measured reflections 3725 independent reflections 2446 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 25.6^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -10 \rightarrow 11$ $k = -24 \rightarrow 24$ $l = -12 \rightarrow 12$

Primary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0467P)^2 + 0.573P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta \rho_{\text{max}} = 0.20 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.14 \text{ e } \text{\AA}^{-3}$

Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0059 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.6952 (2)	0.38677 (11)	0.5021 (2)	0.0485 (5)	
01	0.76942 (19)	0.43097 (8)	0.55125 (17)	0.0798 (6)	
C2	0.5895 (2)	0.40140 (11)	0.3982 (2)	0.0480 (5)	
H2	0.5376	0.3663	0.3604	0.058*	
C3	0.5660 (2)	0.46399 (10)	0.35662 (19)	0.0451 (5)	
H3	0.6175	0.4976	0.4000	0.054*	
S11	0.82626 (11)	0.29817 (5)	0.67269 (8)	0.0664 (3)	0.844 (3)
C12	0.7111 (2)	0.31696 (10)	0.5460 (2)	0.0484 (5)	0.844 (3)
C13	0.6491 (14)	0.2615 (5)	0.5017 (13)	0.0930 (17)	0.844 (3)
H13	0.5837	0.2612	0.4316	0.112*	0.844 (3)
C14	0.6904 (13)	0.2030 (2)	0.5695 (15)	0.106 (3)	0.844 (3)
H14	0.6547	0.1605	0.5506	0.128*	0.844 (3)
C15	0.7865 (9)	0.2158 (3)	0.6639 (9)	0.080(2)	0.844 (3)
H15	0.8270	0.1831	0.7185	0.096*	0.844 (3)
S21	0.614 (2)	0.2534 (7)	0.484 (2)	0.0930 (17)	0.156 (3)
C22	0.7111 (2)	0.31696 (10)	0.5460 (2)	0.0484 (5)	0.156 (3)
C23	0.813 (2)	0.2935 (10)	0.626 (2)	0.0664 (3)	0.156 (3)
H23	0.8837	0.3205	0.6635	0.080*	0.156 (3)
C24	0.805 (6)	0.2239 (12)	0.647 (6)	0.080(2)	0.156 (3)
H24	0.8581	0.2009	0.7111	0.096*	0.156 (3)
C25	0.713 (8)	0.1950 (8)	0.564 (9)	0.106 (3)	0.156 (3)
H25	0.7042	0.1488	0.5511	0.128*	0.156 (3)
N31	0.31385 (16)	0.49026 (8)	0.08717 (15)	0.0417 (4)	
N32	0.36763 (17)	0.55440 (8)	0.09923 (17)	0.0474 (4)	
C33	0.4603 (2)	0.55130 (10)	0.1990 (2)	0.0444 (5)	
C34	0.4706 (2)	0.48590 (10)	0.25279 (19)	0.0412 (5)	
C35	0.3759 (2)	0.44920 (9)	0.17696 (18)	0.0397 (5)	
C311	0.2118 (2)	0.47606 (10)	-0.01477 (19)	0.0400 (5)	
C312	0.1122 (2)	0.42704 (10)	-0.0019 (2)	0.0480 (5)	
H312	0.1113	0.4020	0.0737	0.058*	
C313	0.0143 (2)	0.41552 (11)	-0.1021 (2)	0.0555 (6)	
H313	-0.0532	0.3826	-0.0937	0.067*	
C314	0.0151 (2)	0.45223 (12)	-0.2146 (2)	0.0609 (7)	
H314	-0.0508	0.4439	-0.2822	0.073*	
C315	0.1141 (3)	0.50138 (13)	-0.2260 (2)	0.0596 (6)	
H315	0.1146	0.5266	-0.3015	0.071*	

C316	0.2127 (2)	0.51353 (11)	-0.1264 (2)	0.0499 (5)
H316	0.2794	0.5468	-0.1345	0.060*
C331	0.5426 (2)	0.61231 (11)	0.2386 (2)	0.0609 (6)
H31A	0.6353	0.6082	0.2102	0.091*
H31B	0.5468	0.6165	0.3309	0.091*
H31C	0.4987	0.6514	0.2001	0.091*
O35	0.35064 (14)	0.38210 (6)	0.17345 (13)	0.0458 (4)
C351	0.2722 (2)	0.35338 (10)	0.2680 (2)	0.0445 (5)
C352	0.2634 (3)	0.28476 (12)	0.2623 (3)	0.0687 (7)
H352	0.3095	0.2609	0.2009	0.082*
C353	0.1856 (3)	0.25194 (15)	0.3483 (4)	0.0947 (10)
H353	0.1786	0.2053	0.3453	0.114*
C354	0.1183 (3)	0.28709 (17)	0.4383 (4)	0.0972 (11)
H354	0.0656	0.2644	0.4965	0.117*
C355	0.1281 (3)	0.35565 (16)	0.4432 (3)	0.0854 (9)
H355	0.0820	0.3793	0.5049	0.102*
C356	0.2065 (2)	0.39028 (12)	0.3568 (2)	0.0603 (6)
H356	0.2138	0.4369	0.3594	0.072*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0522 (13)	0.0469 (13)	0.0450 (12)	-0.0042 (10)	-0.0060 (10)	0.0003 (10)
01	0.0919 (13)	0.0535 (10)	0.0872 (13)	-0.0176 (9)	-0.0475 (10)	0.0094 (9)
C2	0.0493 (12)	0.0441 (12)	0.0491 (12)	-0.0035 (10)	-0.0085 (10)	-0.0002 (10)
C3	0.0465 (12)	0.0443 (12)	0.0437 (12)	-0.0051 (9)	-0.0022 (10)	-0.0015 (9)
S11	0.0811 (6)	0.0537 (5)	0.0608 (6)	-0.0027 (4)	-0.0243 (5)	0.0092 (4)
C12	0.0550 (13)	0.0451 (13)	0.0442 (12)	0.0012 (10)	-0.0038 (10)	-0.0002 (10)
C13	0.138 (7)	0.048 (2)	0.086 (4)	-0.017 (2)	-0.050 (3)	-0.004 (2)
C14	0.167 (6)	0.0398 (17)	0.104 (3)	-0.009 (3)	-0.050 (5)	0.002 (3)
C15	0.113 (4)	0.055 (2)	0.070 (4)	0.007 (2)	-0.016 (3)	0.0186 (17)
S21	0.138 (7)	0.048 (2)	0.086 (4)	-0.017 (2)	-0.050 (3)	-0.004 (2)
C22	0.0550 (13)	0.0451 (13)	0.0442 (12)	0.0012 (10)	-0.0038 (10)	-0.0002 (10)
C23	0.0811 (6)	0.0537 (5)	0.0608 (6)	-0.0027 (4)	-0.0243 (5)	0.0092 (4)
C24	0.113 (4)	0.055 (2)	0.070 (4)	0.007 (2)	-0.016 (3)	0.0186 (17)
C25	0.167 (6)	0.0398 (17)	0.104 (3)	-0.009 (3)	-0.050 (5)	0.002 (3)
N31	0.0402 (9)	0.0369 (9)	0.0473 (10)	0.0007 (7)	-0.0034 (8)	0.0033 (8)
N32	0.0489 (10)	0.0350 (10)	0.0571 (11)	-0.0031 (8)	-0.0054 (9)	0.0051 (8)
C33	0.0428 (11)	0.0390 (12)	0.0509 (13)	-0.0024 (9)	-0.0002 (10)	0.0011 (10)
C34	0.0393 (11)	0.0401 (11)	0.0437 (11)	-0.0002 (9)	-0.0002 (9)	0.0016 (9)
C35	0.0393 (11)	0.0345 (11)	0.0450 (11)	0.0012 (9)	0.0016 (9)	0.0022 (9)
C311	0.0372 (11)	0.0397 (11)	0.0425 (11)	0.0050 (9)	-0.0028 (9)	-0.0025 (9)
C312	0.0471 (12)	0.0425 (12)	0.0534 (13)	0.0040 (10)	-0.0045 (10)	-0.0020 (10)
C313	0.0485 (13)	0.0508 (14)	0.0655 (15)	0.0010 (11)	-0.0082 (11)	-0.0108 (12)
C314	0.0554 (14)	0.0677 (16)	0.0570 (15)	0.0127 (13)	-0.0149 (11)	-0.0184 (13)
C315	0.0631 (15)	0.0706 (16)	0.0441 (13)	0.0090 (13)	-0.0037 (12)	0.0026 (11)
C316	0.0473 (12)	0.0552 (14)	0.0470 (13)	0.0025 (10)	0.0016 (10)	0.0025 (10)
C331	0.0622 (15)	0.0451 (13)	0.0738 (16)	-0.0077 (11)	-0.0082 (12)	0.0016 (12)

O35	0.0525 (9)	0.0332 (8)	0.0515 (9)	-0.0010 (6)	0.0036 (7)	0.0004 (6)
C351	0.0411 (11)	0.0398 (12)	0.0515 (13)	-0.0025 (9)	-0.0047 (10)	0.0105 (10)
C352	0.0714 (16)	0.0420 (14)	0.093 (2)	-0.0053 (12)	0.0095 (15)	0.0076 (13)
C353	0.094 (2)	0.0543 (17)	0.138 (3)	-0.0114 (16)	0.023 (2)	0.0266 (19)
C354	0.093 (2)	0.087 (2)	0.115 (3)	-0.0112 (18)	0.027 (2)	0.046 (2)
C355	0.086 (2)	0.095 (2)	0.0777 (19)	-0.0017 (17)	0.0287 (16)	0.0142 (17)
C356	0.0628 (15)	0.0546 (14)	0.0640 (15)	-0.0025 (12)	0.0093 (12)	0.0034 (12)

Geometric parameters (Å, °)

1.223 (2)	C35—O35	1.356 (2)
1.462 (3)	C311—C316	1.378 (3)
1.466 (3)	C311—C312	1.379 (3)
1.332 (3)	C312—C313	1.376 (3)
0.9300	С312—Н312	0.9300
1.437 (3)	C313—C314	1.377 (3)
0.9300	С313—Н313	0.9300
1.684 (5)	C314—C315	1.375 (3)
1.705 (2)	С314—Н314	0.9300
1.322 (7)	C315—C316	1.378 (3)
1.402 (10)	С315—Н315	0.9300
0.9300	C316—H316	0.9300
1.327 (5)	C331—H31A	0.9600
0.9300	C331—H31B	0.9600
0.9300	C331—H31C	0.9600
1.685 (12)	O35—C351	1.398 (2)
1.404 (14)	C351—C356	1.365 (3)
0.9300	C351—C352	1.368 (3)
1.329 (9)	C352—C353	1.366 (4)
0.9300	С352—Н352	0.9300
0.9300	C353—C354	1.364 (4)
1.349 (2)	С353—Н353	0.9300
1.379 (2)	C354—C355	1.367 (4)
1.424 (2)	C354—H354	0.9300
1.323 (3)	C355—C356	1.391 (3)
1.416 (3)	С355—Н355	0.9300
1.492 (3)	С356—Н356	0.9300
1.374 (3)		
121.57 (19)	C316—C311—N31	118.45 (18)
120.34 (19)	C312—C311—N31	121.18 (18)
118.09 (18)	C313—C312—C311	119.4 (2)
121.35 (19)	C313—C312—H312	120.3
119.3	C311—C312—H312	120.3
119.3	C312—C313—C314	120.7 (2)
127.83 (19)	С312—С313—Н313	119.6
116.1	C314—C313—H313	119.6
116.1	C315—C314—C313	119.5 (2)
	$\begin{array}{c} 1.223 \ (2) \\ 1.462 \ (3) \\ 1.466 \ (3) \\ 1.332 \ (3) \\ 0.9300 \\ 1.437 \ (3) \\ 0.9300 \\ 1.684 \ (5) \\ 1.705 \ (2) \\ 1.322 \ (7) \\ 1.402 \ (10) \\ 0.9300 \\ 1.327 \ (5) \\ 0.9300 \\ 0.9300 \\ 1.327 \ (5) \\ 0.9300 \\ 1.685 \ (12) \\ 1.404 \ (14) \\ 0.9300 \\ 1.329 \ (9) \\ 0.9300 \\ 1.329 \ (9) \\ 0.9300 \\ 1.349 \ (2) \\ 1.379 \ (2) \\ 1.424 \ (2) \\ 1.379 \ (2) \\ 1.424 \ (2) \\ 1.323 \ (3) \\ 1.416 \ (3) \\ 1.492 \ (3) \\ 1.374 \ (3) \\ \end{array}$	1.223 (2) C35-O35 1.462 (3) C311-C316 1.466 (3) C311-C312 1.332 (3) C312-C313 0.9300 C312-H312 1.437 (3) C313-C314 0.9300 C313-H313 1.684 (5) C314-C315 1.705 (2) C314-H314 1.322 (7) C315-C316 1.402 (10) C315-H315 0.9300 C331-H31A 0.9300 C311-H31A 0.9300 C311-H31A 0.9300 C311-H31B 0.9300 C311-H31B 0.9300 C351-C356 0.9300 C351-C352 1.329 (9) C352-C353 0.9300 C353-C354 1.349 (2) C354-C355 1.424 (2) C354-H354 1.323 (3) C355-C356 1.444 (2) C355-H355 1.492 (3) C356-H356 1.492 (3) C356-H356 1.492 (3) C356-H356 1.492 (3) C316-C311-N31 120.34 (19) C312-C311 121.57 (19) C316-C311-N

C15—S11—C12	92.15 (19)	C315—C314—H314	120.3
C13—C12—C1	130.3 (5)	C313—C314—H314	120.3
C13—C12—S11	110.0 (5)	C314—C315—C316	120.4 (2)
C1—C12—S11	119.77 (15)	C314—C315—H315	119.8
C12—C13—C14	114.2 (6)	C316—C315—H315	119.8
C12—C13—H13	122.9	C315—C316—C311	119.7 (2)
C14—C13—H13	122.9	C315—C316—H316	120.2
C15—C14—C13	111.9 (4)	C311—C316—H316	120.2
C15—C14—H14	124.0	C33—C331—H31A	109.5
C13—C14—H14	124.0	C33—C331—H31B	109.5
C14-C15-S11	111.7 (4)	H31A—C331—H31B	109.5
C14—C15—H15	124.1	C33—C331—H31C	109.5
S11—C15—H15	124.1	H31A—C331—H31C	109.5
C24—C23—H23	123.3	H31B-C331-H31C	109.5
$C_{25} - C_{24} - C_{23}$	111 4 (14)	$C_{35} - C_{35} - C_{351}$	119 13 (15)
$C_{25} = C_{24} = H_{24}$	124.3	C356-C351-C352	1223(2)
C_{23} C_{24} H_{24}	124.3	$C_{356} = C_{351} = C_{352}$	122.3(2) 123.30(19)
C_{24} C_{25} S_{21}	110.8(12)	$C_{352} = C_{351} = C_{35}$	123.30(17) 114.3(2)
$C_{24} = C_{25} = H_{25}$	124.6	$C_{353} = C_{357} = C_{351}$	114.5(2) 118.9(3)
S21-C25-H25	124.6	C353—C352—H352	120.5
C_{35} N31 N32	110 54 (15)	C351—C352—H352	120.5
C_{35} N31 C_{311}	130.24(16)	C354 - C353 - C352	120.3 120.4(3)
N32—N31—C311	119 16 (15)	C354—C353—H353	119.8
C33 N32 N31	104.02(15)	C352 C353 H353	119.8
$N_{32} C_{33} C_{34}$	104.92(13) 112.18(17)	$C_{352} = C_{355} = 11555$	119.8
N32 C33 C331	112.10(17) 110.74(18)	$C_{353} = C_{354} = C_{355}$	120.1 (3)
$C_{24} C_{23} C_{231}$	119.74(18) 128.03(10)	$C_{355} = C_{354} = H_{354}$	119.9
$C_{34} = C_{33} = C_{33}$	128.03 (19)	$C_{355} = C_{354} = 11554$	119.9
$C_{35} = C_{34} = C_{35}$	103.00(17) 120.46(18)	$C_{354} = C_{355} = C_{356}$	120.0(3)
$C_{33} = C_{34} = C_{3}$	129.40 (18)	C354—C355—H355	119.7
$C_{33} - C_{34} - C_{3}$	120.01(10) 120.45(17)	C350—C355—H355	119.7
N31-C35-C34	120.43(17)	$C_{331} = C_{330} = C_{333}$	117.0(2)
$N_{31} = C_{35} = C_{34}$	108.75(17) 120.44(17)	C351—C350—H350	121.2
035 - 035 - 034	130.44(17) 120.25(10)	C355—C356—H356	121.2
C310-C311-C312	120.35 (19)		
$O_1 C_1 C_2 C_3$	$2 \circ (2)$	C22 C24 C25 N21	0.9(2)
01 - 01 - 02 - 03	-2.8(3)	$C_{33} = C_{34} = C_{35} = N_{31}$	-0.8(2)
C12 - C1 - C2 - C3	177.0(2)	$C_{3} = C_{34} = C_{35} = N_{31}$	-170.83(19)
C1 = C2 = C3 = C34	1/7.2(2)	$C_{33} - C_{34} - C_{35} - C_{35}$	1/2.0(2)
OI = CI = CI2 = CI3	-1/5.3(10)	$C_3 - C_3 - C_{33} - C_{35}$	-4.1(4)
$C_2 - C_1 - C_{12} - C_{13}$	4.3 (11)	$V_{33} = V_{31} = V_{311} = V_{316}$	-148.8(2)
OI = CI = CI2 = SII	4.0 (3)	N32 - N31 - C311 - C316	27.9 (3)
$C_2 = C_1 = C_{12} = S_{11}$	-1/6.40(16)	$V_{35} = N_{31} = V_{311} = V_{312}$	32.6 (3)
C15 - S11 - C12 - C13	-0.6 (9)	$N_{32} - N_{31} - C_{311} - C_{312}$	-150.69 (18)
C15 - S11 - C12 - C1	180.0 (4)	$C_{316} - C_{311} - C_{312} - C_{313}$	0.5(3)
C1 - C12 - C13 - C14	-1/9.5(10)	N31-C311-C312-C313	1/9.09 (18)
S11—C12—C13—C14	1.1 (17)	C311—C312—C313—C314	0.2 (3)
C12—C13—C14—C15	-1(2)	C312—C313—C314—C315	-0.7 (3)
C13—C14—C15—S11	0.7 (17)	C313—C314—C315—C316	0.6 (3)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(18) 2) (18) 2)
--	--------------------------

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C14—H14…N32 ⁱ	0.93	2.62	3.462 (9)	151
C25—H25…N32 ⁱ	0.93	2.51	3.33 (5)	148
C314—H314…O1 ⁱⁱ	0.93	2.38	3.305 (3)	175

F(000) = 840 $D_{\rm x} = 1.294 \text{ Mg m}^{-3}$

 $\theta = 2.0-28.6^{\circ}$ $\mu = 0.18 \text{ mm}^{-1}$ T = 296 K

Block, colourless $0.30 \times 0.20 \times 0.15 \text{ mm}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 5216 reflections

Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) x-1, y, z-1.

3-[3-Methyl-5-(2-methylphenoxy)-1-phenyl-1*H*-pyrazol-4-yl]-1-(thiophen-2-yl)prop-2-en-1-one (II)

Crystal data

$C_{24}H_{20}N_2O_2S$
$M_r = 400.48$
Monoclinic, $P2_1/c$
<i>a</i> = 9.4336 (4) Å
<i>b</i> = 20.6071 (9) Å
c = 10.5866 (4) Å
$\beta = 93.106(2)^{\circ}$
$V = 2055.00 (15) \text{ Å}^3$
Z=4

Data collection

Bruker Kappa APEXII CCD	35938 measured reflections
diffractometer	4735 independent reflections
Radiation source: fine-focus sealed tube	2877 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.040$
Detector resolution: 7.3910 pixels mm ⁻¹	$\theta_{\rm max} = 27.6^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
φ and ω scans	$h = -12 \rightarrow 11$
Absorption correction: multi-scan	$k = -26 \rightarrow 26$
(SADABS; Bruker, 2012)	$l = -13 \rightarrow 11$
$T_{\min} = 0.926, \ T_{\max} = 0.973$	

Refinement

Refinement on F^2	Primary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from
$wR(F^2) = 0.142$	neighbouring sites
<i>S</i> = 1.02	H-atom parameters constrained
4735 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0624P)^2 + 0.5761P]$
277 parameters	where $P = (F_o^2 + 2F_c^2)/3$
10 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$	Occ. (<1)
C1	0.6834 (2)	0.38495 (10)	0.49061 (18)	0.0484 (5)	
01	0.75006 (19)	0.42752 (8)	0.54834 (16)	0.0747 (5)	
C2	0.5798 (2)	0.39981 (10)	0.38620 (18)	0.0484 (5)	
H2	0.5302	0.3661	0.3455	0.058*	
C3	0.5555 (2)	0.46061 (10)	0.34871 (18)	0.0464 (5)	
H3	0.6047	0.4926	0.3949	0.056*	
S11	0.81442 (11)	0.29803 (4)	0.65506 (8)	0.0669 (3)	0.883 (2)
C12	0.7062 (2)	0.31666 (10)	0.52477 (17)	0.0456 (5)	0.883 (2)
C13	0.6609 (8)	0.2617 (3)	0.4682 (5)	0.0603 (9)	0.883 (2)
H13	0.6001	0.2616	0.3961	0.072*	0.883 (2)
C14	0.7118 (5)	0.20428 (17)	0.5259 (4)	0.0643 (12)	0.883 (2)
H14	0.6912	0.1627	0.4961	0.077*	0.883 (2)
C15	0.7941 (9)	0.21758 (17)	0.6295 (6)	0.0671 (16)	0.883 (2)
H15	0.8357	0.1859	0.6819	0.080*	0.883 (2)
S21	0.6339 (18)	0.2553 (6)	0.4380 (13)	0.0603 (9)	0.117 (2)
C22	0.7062 (2)	0.31666 (10)	0.52477 (17)	0.0456 (5)	0.117 (2)
C23	0.784 (3)	0.2933 (10)	0.623 (2)	0.0669 (3)	0.117 (2)
H23	0.8396	0.3195	0.6777	0.080*	0.117 (2)
C24	0.775 (8)	0.2255 (11)	0.638 (5)	0.0671 (16)	0.117 (2)
H24	0.8252	0.2018	0.7011	0.080*	0.117 (2)
C25	0.685 (5)	0.2001 (8)	0.550 (3)	0.0643 (12)	0.117 (2)
H25	0.6544	0.1573	0.5494	0.077*	0.117 (2)
N31	0.30777 (16)	0.48865 (7)	0.08120 (15)	0.0431 (4)	
N32	0.36119 (18)	0.55036 (8)	0.09699 (16)	0.0492 (4)	
C33	0.4529 (2)	0.54660 (9)	0.19571 (19)	0.0469 (5)	
C34	0.4627 (2)	0.48304 (9)	0.24567 (18)	0.0430 (4)	
C35	0.36867 (19)	0.44824 (9)	0.16871 (17)	0.0405 (4)	
C311	0.20793 (19)	0.47603 (9)	-0.02174 (18)	0.0419 (4)	
C312	0.1090 (2)	0.42664 (10)	-0.0158 (2)	0.0495 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H312	0.1062	0.4009	0.0562	0.059*
C313	0.0145 (2)	0.41597 (11)	-0.1180 (2)	0.0580 (6)
H313	-0.0515	0.3826	-0.1147	0.070*
C314	0.0169 (2)	0.45393 (12)	-0.2241 (2)	0.0624 (6)
H314	-0.0469	0.4462	-0.2926	0.075*
C315	0.1140 (2)	0.50340 (13)	-0.2289 (2)	0.0621 (6)
H315	0.1154	0.5294	-0.3006	0.075*
C316	0.2098 (2)	0.51483 (11)	-0.12766 (19)	0.0506 (5)
H316	0.2751	0.5485	-0.1311	0.061*
C331	0.5357 (3)	0.60493 (10)	0.2386 (2)	0.0625 (6)
H31A	0.6318	0.6008	0.2142	0.094*
H31B	0.5349	0.6085	0.3290	0.094*
H31C	0.4936	0.6430	0.2003	0.094*
O35	0.34553 (14)	0.38351 (6)	0.16246 (12)	0.0470 (3)
C351	0.2552 (2)	0.35450 (10)	0.24627 (19)	0.0488 (5)
C352	0.2429 (2)	0.28766 (11)	0.2301 (2)	0.0614 (6)
C353	0.1516 (3)	0.25613 (15)	0.3056 (3)	0.0874 (10)
H353	0.1404	0.2114	0.2977	0.105*
C354	0.0766 (3)	0.28876 (19)	0.3921 (3)	0.0949 (11)
H354	0.0143	0.2661	0.4410	0.114*
C355	0.0918 (3)	0.35466 (17)	0.4081 (3)	0.0862 (9)
H355	0.0411	0.3763	0.4681	0.103*
C356	0.1842 (2)	0.38895 (13)	0.3332 (2)	0.0656 (6)
H356	0.1968	0.4335	0.3424	0.079*
C357	0.3278 (3)	0.25326 (12)	0.1355 (3)	0.0832 (9)
H35A	0.4265	0.2546	0.1625	0.125*
H35B	0.3141	0.2742	0.0547	0.125*
H35C	0.2971	0.2089	0.1285	0.125*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0519 (12)	0.0483 (12)	0.0442 (11)	-0.0032 (10)	-0.0045 (9)	0.0023 (9)
01	0.0920 (12)	0.0541 (9)	0.0734 (10)	-0.0092 (9)	-0.0381 (9)	0.0023 (8)
C2	0.0481 (11)	0.0482 (12)	0.0476 (11)	-0.0023 (9)	-0.0087 (9)	0.0021 (9)
C3	0.0468 (11)	0.0481 (12)	0.0437 (11)	-0.0023 (9)	-0.0039 (9)	-0.0007 (9)
S11	0.0885 (6)	0.0555 (4)	0.0533 (5)	0.0004 (4)	-0.0283 (3)	0.0057 (3)
C12	0.0471 (11)	0.0492 (11)	0.0399 (10)	0.0002 (9)	-0.0036 (8)	0.0023 (9)
C13	0.071 (3)	0.0556 (17)	0.051 (3)	-0.0026 (16)	-0.0199 (18)	-0.0051 (17)
C14	0.079 (3)	0.0449 (13)	0.068 (2)	-0.0014 (13)	-0.004 (2)	-0.0002 (12)
C15	0.081 (3)	0.0560 (16)	0.0624 (19)	0.0084 (19)	-0.008(2)	0.0112 (16)
S21	0.071 (3)	0.0556 (17)	0.051 (3)	-0.0026 (16)	-0.0199 (18)	-0.0051 (17)
C22	0.0471 (11)	0.0492 (11)	0.0399 (10)	0.0002 (9)	-0.0036 (8)	0.0023 (9)
C23	0.0885 (6)	0.0555 (4)	0.0533 (5)	0.0004 (4)	-0.0283 (3)	0.0057 (3)
C24	0.081 (3)	0.0560 (16)	0.0624 (19)	0.0084 (19)	-0.008(2)	0.0112 (16)
C25	0.079 (3)	0.0449 (13)	0.068 (2)	-0.0014 (13)	-0.004 (2)	-0.0002 (12)
N31	0.0448 (9)	0.0350 (8)	0.0485 (9)	-0.0001 (7)	-0.0054 (7)	0.0033 (7)
N32	0.0528 (10)	0.0345 (9)	0.0591 (10)	-0.0033 (7)	-0.0083 (8)	0.0040 (8)

C33	0.0475 (11)	0.0377 (10)	0.0548 (12)	-0.0009 (9)	-0.0022 (9)	0.0005 (9)
C34	0.0422 (10)	0.0387 (10)	0.0477 (11)	0.0013 (8)	-0.0024 (8)	0.0012 (8)
C35	0.0413 (10)	0.0335 (10)	0.0467 (11)	0.0003 (8)	0.0008 (8)	0.0030 (8)
C311	0.0391 (10)	0.0402 (10)	0.0458 (11)	0.0067 (8)	-0.0027 (8)	-0.0022 (8)
C312	0.0479 (11)	0.0452 (11)	0.0546 (12)	0.0027 (9)	-0.0042 (9)	0.0008 (9)
C313	0.0506 (12)	0.0577 (13)	0.0643 (14)	0.0000 (11)	-0.0091 (10)	-0.0109 (11)
C314	0.0555 (13)	0.0760 (16)	0.0541 (14)	0.0087 (12)	-0.0130 (10)	-0.0127 (12)
C315	0.0601 (14)	0.0776 (16)	0.0479 (12)	0.0094 (12)	-0.0039 (10)	0.0072 (11)
C316	0.0470 (11)	0.0542 (13)	0.0505 (12)	0.0032 (10)	0.0008 (9)	0.0051 (10)
C331	0.0679 (15)	0.0413 (12)	0.0766 (15)	-0.0052 (10)	-0.0124 (12)	-0.0050 (11)
O35	0.0492 (8)	0.0340 (7)	0.0575 (8)	-0.0018 (6)	0.0006 (6)	0.0031 (6)
C351	0.0394 (10)	0.0485 (12)	0.0570 (12)	-0.0034 (9)	-0.0099 (9)	0.0174 (10)
C352	0.0555 (13)	0.0484 (13)	0.0770 (15)	-0.0111 (11)	-0.0283 (12)	0.0223 (12)
C353	0.0746 (18)	0.0729 (19)	0.111 (2)	-0.0286 (15)	-0.0290 (18)	0.0405 (18)
C354	0.0654 (18)	0.108 (3)	0.111 (3)	-0.0234 (18)	-0.0064 (17)	0.059 (2)
C355	0.0606 (16)	0.116 (3)	0.0831 (19)	0.0065 (16)	0.0130 (14)	0.0311 (18)
C356	0.0562 (14)	0.0687 (16)	0.0725 (15)	0.0046 (12)	0.0073 (12)	0.0193 (13)
C357	0.108 (2)	0.0412 (13)	0.097 (2)	-0.0010 (14)	-0.0277 (18)	-0.0037 (13)

Geometric parameters (Å, °)

C1—01	1.223 (2)	C311—C316	1.378 (3)
C1—C12	1.466 (3)	C311—C312	1.385 (3)
C1—C2	1.468 (3)	C312—C313	1.382 (3)
C2—C3	1.330 (3)	С312—Н312	0.9300
С2—Н2	0.9300	C313—C314	1.371 (3)
C3—C34	1.437 (3)	С313—Н313	0.9300
С3—Н3	0.9300	C314—C315	1.373 (3)
S11—C15	1.689 (4)	C314—H314	0.9300
S11—C12	1.7146 (19)	C315—C316	1.384 (3)
C12—C13	1.340 (5)	С315—Н315	0.9300
C13—C14	1.404 (6)	С316—Н316	0.9300
С13—Н13	0.9300	C331—H31A	0.9600
C14—C15	1.337 (3)	C331—H31B	0.9600
C14—H14	0.9300	C331—H31C	0.9600
С15—Н15	0.9300	O35—C351	1.397 (2)
S21—C25	1.692 (11)	C351—C356	1.367 (3)
C23—C24	1.408 (11)	C351—C352	1.392 (3)
С23—Н23	0.9300	C352—C353	1.370 (4)
C24—C25	1.340 (9)	C352—C357	1.495 (4)
C24—H24	0.9300	C353—C354	1.364 (5)
С25—Н25	0.9300	С353—Н353	0.9300
N31—C35	1.351 (2)	C354—C355	1.375 (4)
N31—N32	1.375 (2)	С354—Н354	0.9300
N31—C311	1.425 (2)	C355—C356	1.400 (3)
N32—C33	1.322 (2)	С355—Н355	0.9300
C33—C34	1.414 (3)	С356—Н356	0.9300
C33—C331	1.491 (3)	C357—H35A	0.9600

C34—C35	1.373 (3)	С357—Н35В	0.9600
C35—O35	1.353 (2)	C357—H35C	0.9600
O1—C1—C12	120.05 (18)	C313—C312—H312	120.4
O1—C1—C2	121.99 (19)	C311—C312—H312	120.4
C12—C1—C2	117.96 (17)	C314—C313—C312	120.9 (2)
C3—C2—C1	121.21 (18)	C314—C313—H313	119.6
C3—C2—H2	119.4	С312—С313—Н313	119.6
C1—C2—H2	119.4	C313—C314—C315	119.6 (2)
C2—C3—C34	128.12 (19)	C313—C314—H314	120.2
С2—С3—Н3	115.9	C315—C314—H314	120.2
C34—C3—H3	115.9	C314—C315—C316	120.4 (2)
C15—S11—C12	91.91 (14)	C314—C315—H315	119.8
C_{13} $-C_{12}$ $-C_{1}$	131.5 (3)	C316—C315—H315	119.8
C_{13} C_{12} S_{11}	1094(3)	$C_{311} - C_{316} - C_{315}$	119.7(2)
C1 - C12 - S11	119.10 (15)	C311—C316—H316	120.2
C_{12} C_{13} C_{14}	115.1 (3)	C315—C316—H316	120.2
C_{12} C_{13} H_{13}	122.4	C33—C331—H31A	109.5
C14-C13-H13	122.4	C33—C331—H31B	109.5
C_{15} C_{14} C_{13} C_{15} C_{14} C_{13}	122.4 110.7 (3)	H31A_C331_H31B	109.5
C15 - C14 - H14	124.6	C33_C331_H31C	109.5
C_{13} C_{14} H_{14}	124.0	H31A C331 H31C	109.5
C14-C15-S11	112 9 (3)	H31B_C331_H31C	109.5
C14 $C15$ $H15$	112.9 (5)	$C_{35} = C_{35} = C_{351}$	119.5
C14-C15-1115 S11 C15 H15	123.0	$C_{35} = C_{35} = C_{351}$	119.55(10) 122.8(2)
C_{1}^{2}	123.0	$C_{350} - C_{351} - C_{352}$	123.8(2) 122.94(10)
$C_{24} = C_{23} = 1123$	122.0 110.2(12)	$C_{350} = C_{351} = 0_{35}$	122.94(19) 112.2(2)
$C_{23} - C_{24} - C_{23}$	110.5 (12)	$C_{352} = C_{351} = 0_{35}$	115.5(2) 116.7(2)
$C_{23} = C_{24} = H_{24}$	124.9	$C_{33} = C_{332} = C_{331}$	110.7(3)
$C_{23} - C_{24} - H_{24}$	124.9	$C_{33} = C_{33} = C_{33}$	122.8(3)
$C_{24} = C_{25} = S_{21}$	112.0 (11)	$C_{331} = C_{332} = C_{337}$	120.5(2)
C24—C25—H25	124.0	$C_{354} = C_{353} = C_{352}$	121.5 (3)
S21—C25—H25	124.0	C354—C353—H353	119.2
C_{35} N31 $-N_{32}$	110.55 (15)	С352—С353—Н353	119.2
C35—N31—C311	130.02(10)	$C_{353} = C_{354} = C_{355}$	121.0 (3)
N32 - N31 - C311	118.98 (15)	C353—C354—H354	119.5
C33—N32—N31	105.17(15)	C355—C354—H354	119.5
N32-C33-C34	112.14 (17)	$C_{354} - C_{355} - C_{356}$	119.5 (3)
N32 - C33 - C331	120.20 (18)	C354—C355—H355	120.2
$C_{34} - C_{33} - C_{331}$	127.61 (18)	C356—C355—H355	120.2
$C_{35} - C_{34} - C_{33}$	103.57 (16)	C351—C356—C355	117.5 (3)
C35—C34—C3	129.00 (18)	C351—C356—H356	121.2
C33—C34—C3	127.36 (18)	С355—С356—Н356	121.2
N31—C35—O35	120.86 (16)	С352—С357—Н35А	109.5
N31—C35—C34	108.79 (16)	C352—C357—H35B	109.5
O35—C35—C34	129.88 (17)	H35A—C357—H35B	109.5
C316—C311—C312	120.13 (18)	C352—C357—H35C	109.5
C316—C311—N31	118.65 (18)	H35A—C357—H35C	109.5
C312—C311—N31	121.21 (17)	H35B—C357—H35C	109.5

C313—C312—C311	119.3 (2)		
O1—C1—C2—C3	1.0 (3)	C3—C34—C35—N31	-177.55 (18)
C12—C1—C2—C3	-178.86 (19)	C33—C34—C35—O35	171.48 (19)
C1—C2—C3—C34	177.23 (19)	C3—C34—C35—O35	-5.6 (3)
O1—C1—C12—C13	-170.9 (5)	C35—N31—C311—C316	-150.6 (2)
C2-C1-C12-C13	9.0 (6)	N32—N31—C311—C316	25.9 (3)
O1—C1—C12—S11	6.0 (3)	C35—N31—C311—C312	30.5 (3)
C2-C1-C12-S11	-174.22 (15)	N32—N31—C311—C312	-153.05 (18)
C15—S11—C12—C13	-0.3 (5)	C316—C311—C312—C313	1.3 (3)
C15—S11—C12—C1	-177.8 (4)	N31-C311-C312-C313	-179.78 (18)
C1—C12—C13—C14	176.4 (4)	C311—C312—C313—C314	-0.6 (3)
S11—C12—C13—C14	-0.6 (7)	C312—C313—C314—C315	-0.3 (3)
C12-C13-C14-C15	1.6 (9)	C313—C314—C315—C316	0.4 (3)
C13—C14—C15—S11	-1.8 (9)	C312—C311—C316—C315	-1.2 (3)
C12—S11—C15—C14	1.3 (7)	N31-C311-C316-C315	179.88 (18)
C23—C24—C25—S21	9 (8)	C314—C315—C316—C311	0.3 (3)
C35—N31—N32—C33	-0.9 (2)	N31—C35—O35—C351	-105.1 (2)
C311—N31—N32—C33	-178.00 (16)	C34—C35—O35—C351	83.7 (2)
N31—N32—C33—C34	0.6 (2)	C35—O35—C351—C356	2.2 (3)
N31—N32—C33—C331	178.19 (19)	C35—O35—C351—C352	-179.18 (16)
N32—C33—C34—C35	0.0 (2)	C356—C351—C352—C353	1.2 (3)
C331—C33—C34—C35	-177.5 (2)	O35—C351—C352—C353	-177.45 (18)
N32—C33—C34—C3	177.07 (18)	C356—C351—C352—C357	-178.1 (2)
C331—C33—C34—C3	-0.4 (4)	O35—C351—C352—C357	3.3 (3)
C2—C3—C34—C35	6.2 (4)	C351—C352—C353—C354	0.0 (4)
C2—C3—C34—C33	-170.2 (2)	C357—C352—C353—C354	179.3 (2)
N32—N31—C35—O35	-171.96 (16)	C352—C353—C354—C355	-1.0 (4)
C311—N31—C35—O35	4.7 (3)	C353—C354—C355—C356	0.9 (4)
N32—N31—C35—C34	0.9 (2)	C352—C351—C356—C355	-1.3 (3)
C311—N31—C35—C34	177.56 (18)	O35—C351—C356—C355	177.17 (19)
C33—C34—C35—N31	-0.5 (2)	C354—C355—C356—C351	0.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A	
C14—H14…N32 ⁱ	0.93	2.55	3.483 (4)	177	
C25—H25…N32 ⁱ	0.93	2.69	3.47 (2)	142	
C314—H314…O1 ⁱⁱ	0.93	2.51	3.432 (3)	171	

Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) x-1, y, z-1.