

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 29 July 2019 Accepted 13 January 2020

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India

Keywords: substituted arenes; pentafluorothio; functionalized aromatic rings; organometallic synthesis; crystal structure.

CCDC reference: 1943767

Supporting information: this article has supporting information at journals.iucr.org/e

Structural characterization and Hirshfeld surface analysis of 2-iodo-4-(pentafluoro- λ^6 -sulfanyl)-benzonitrile

Jean C. González Espiet,^a Juan A. Cintrón Cruz^a and Dalice M. Piñero Cruz^{b*}

^aDepartment of Chemistry, University of Puerto Rico-Rio Piedras Campus, PO Box 23346, San Juan, 00931-3346, Puerto Rico, and ^bDepartment of Chemistry and the Molecular Sciences Research Center, University of Puerto Rico-Rio Piedras Campus, PO Box 23346, San Juan, 00931-3346, Puerto Rico. *Correspondence e-mail: dalice.pinero@upr.edu

The title compound, $C_7H_3F_5INS$, a pentafluorosulfanyl (SF₅) containing arene, was synthesized from 4-(pentafluorosulfanyl)benzonitrile and lithium tetramethylpiperidide following a variation to the standard approach, which features simple and mild conditions that allow direct access to tri-substituted SF5 intermediates that have not been demonstrated using previous methods. The molecule displays a planar geometry with the benzene ring in the same plane as its three substituents. It lies on a mirror plane perpendicular to [010] with the iodo, cyano, and the sulfur and axial fluorine atoms of the pentafluorosulfanyl substituent in the plane of the molecule. The equatorial F atoms have symmetryrelated counterparts generated by the mirror plane. The pentafluorosulfanyl group exhibits a staggered fashion relative to the ring and the two hydrogen atoms ortho to the substituent. S-F bond lengths of the pentafluorosulfanyl group are unequal: the equatorial bond facing the iodo moiety has a longer distance [1.572 (3) Å] and wider angle compared to that facing the side of the molecules with two hydrogen atoms [1.561 (4) Å]. As expected, the axial S-F bond is the longest [1.582 (5) Å]. In the crystal, in-plane $C-H\cdots F$ and $N\cdots I$ interactions as well as out-of-plane $F \cdots C$ interactions are observed. According to the Hirshfeld analysis, the principal intermolecular contacts for the title compound are $F \cdots H$ (29.4%), $F \cdots I$ (15.8%), $F \cdots N$ (11.4%), $F \cdots F$ (6.0%), $N \cdot \cdot \cdot I$ (5.6%) and $F \cdot \cdot C$ (4.5%).

1. Chemical context

Organic compounds containing the trifluoromethyl (CF_3) or pentafluorothio (or pentafluoro- λ^6 -sulfanyl, SF₅) groups play an important role in organofluorine chemistry because of their special properties including low surface energy, hydrophobicity, high chemical resistance, high thermal stability and high electronegativity (Kirsch et al., 1999, 2014; Iida et al., 2015; Beier et al., 2011). SF₅, coined as the 'super-trifluoromethyl' group, is often preferred to CF₃ as it is more electronegative, lipophilic and chemically stable, and possesses a higher steric effect (Bowden et al., 2000). The current interest in the field of drug discovery of fluorinated substituents is based on the possibility of improving both the metabolic stability and bioavailability of receptor binders upon the incorporation of susbtituents with one or more fluorine atoms (Altomonte et al., 2014; Savoie & Welch, 2015; Sowaileh et al., 2017). In fact, several blockbuster drugs include such a group, demonstrating the prominent role of the trifluoromethyl group in the area of drug discovery (O'Hagan, 2010; Müller et al., 2007; Purser et al., 2008). New molecules incorporating the SF₅ group are thus potential alternatives to already existing biologically active molecules containing the CF₃ substitution.

research communications

Additionally, the chemical robustness of SF_5 has been explored in other areas such as polymer chemistry (Zhou *et al.*, 2016). Despite the popularity of the title compound, an important precursor in organofluorine chemistry, its crystallographic characterization, which is an important milestone in the synthesis of next-generation materials containing this motif, has not been reported. Herein, we describe a variation to the synthetic approach and give details of its simple crystallization through slow evaporation methods, yielding X-ray diffraction-quality single crystals.

The title compound was obtained as part of our studies toward the synthesis of functionalized arenes containing the SF₅ moiety. Its synthesis involves a one-pot reaction in which the interaction of the cyano group in 4-(pentafluorosulfanyl)benzonitrile to the Lewis acidic lithium cation in lithium tetramethylpiperidide (LiTMP) allows deprotonation from the nearest ortho-H atom on the arene. The SF5-containing organolithium species is then quenched with iodine to yield the title compound. This reaction pathway was proposed by Iida et al. (2015) for the synthesis of SF₅-substituted zinc phthalocyanines. We modified the synthesis by adding tetramethylethylenediamine (TMEDA), an amine additive that serves to break up the lithiated base aggregates, allowing for accelerated reactivity because of the increased basicity. This variation improves the total yield of the title compound by 8%.

2. Structural commentary

Fig. 1 shows the molecular structure of the title compound, which crystallizes in the space group *Pnma*. Its asymmetric unit comprises a single molecule lying on a mirror plane perpendicular to [010] with the iodo, cyano, and the sulfur and

Figure 1

Molecular structure of the title compound, including atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Atoms generated by the mirror plane [symmetry code: (i) x, $-y + \frac{3}{2}$, z] are depicted in dark green.

Table 1Selected bond lengths and angles.

$S1-F1_{(eq)}$ and $S1F1_{(eq)}^{i}$	1.561 (4)
$S1-F2_{(eq)}$ and $S1-F2_{(eq)}^{i}$ $S1-F3_{(ax)}$	1.572 (3) 1.582 (5)
$\begin{array}{c} C4 - S1 - F2_{(eq)} \\ C4 - S1 - F1_{(eq)} \end{array}$	92.0 (2) 92.2 (2)

Symmetry code: (i) x, $-y + \frac{3}{2}$, z.

axial fluorine atoms of the pentafluorosulfanyl substituent in the plane of the molecule. The fluorine atoms of the pentafluorosulfanyl group in the equatorial positions lie above and below the plane in a staggered fashion relative to the two hydrogen atoms ortho to the substituent; of those, two of the four fluorine atoms are generated symmetrically by the mirror plane. The S1-F_(eq) bond distances differ from each other depending on which side of the molecule the bond is located (Table 1). The S1-F2_(eq) bond and its symmetry equivalent S1-F2 $_{(eq)}^{i}$ [symmetry code: (i) x, $-y + \frac{3}{2}$, z] are on the same side as the iodine atom and exhibit a longer bond distance of 1.572 (3) Å in comparison to $S1-F1_{(eq)}$ and $S1-F1_{(eq)}^{i}$, which are further away from the iodine and have a shorter bond length distance of 1.561 (4) Å. The $S1-F3_{(ax)}$ bond length of 1.582 (5) Å is the longest and is consistent with those in similar structures [1.588 (2) and 1.573 (3) Å; Du et al., 2016].

3. Supramolecular features

The packing of the title compound is consolidated through a series of intermolecular interactions, which can be classified as being in-plane and out-of-plane (Table 2). Each molecule acts as a C-H donor through the *meta*- and *para*-hydrogen atoms of the phenyl ring counter to the iodine atom. Two C-H···F

In plane contacts. A view along the b axis of crystal packing of the title compound, with short-contact interactions shown as dashed lines.

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$\begin{array}{c} C5{-}H5{\cdot}{\cdot}{\cdot}F3^{i}\\ C6{-}H6{\cdot}{\cdot}{\cdot}F3^{ii} \end{array}$	0.93	2.57	3.501 (1)	174
	0.93	2.56	3.476 (1)	169

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + \frac{3}{2}$; (ii) $x - 1, -y + \frac{3}{2}, z$.

hydrogen bonds, C5–H5···F3 and C6–H6···F3 with H···F distances of 2.5 and 2.6 Å, respectively, create an in-plane network (Table 2 and Fig. 2). Both the H5 and H6 atoms are highly acidic because of the electron-withdrawing effects of the –SF₅ and –CN substituents. Additionally, significant inplane halogen-bonding interactions $[N1\cdots I1(\frac{1}{2}+x,\frac{3}{2}-y,\frac{1}{2}-z)$ = 3.408 (10) Å] are observed (Metrangolo *et al.*, 2005). Out-ofplane intermolecular interactions arise primarily from F··· π ring interactions at one of the 'corners' of the ring (Fig. 3) with an F2···C3(2 - x, $-\frac{1}{2} + y, 1 - z$) distance of 3.124 (5) Å.

4. Hirshfeld surface analysis

The Hirshfeld surface (Spackman & Jayatilaka, 2009) for the title compound mapped over d_{norm} is shown in Fig. 4 while Fig. 5 shows the associated two-dimensional fingerprint plots (McKinnon et al., 2007), both generated with Crystal-Explorer17 (Turner et al., 2017). Red spots on the Hirshfeld surface mapped over d_{norm} in the colour range -0.4869 to 1.4157 arbitrary units confirm the previously mentioned main intermolecular contacts. The fingerprint plots are given for all contacts and those delineated into $F \cdots H/H \cdots F$ (29.4%; Fig. 5b), $F \cdots I/I \cdots F$ (15.8%; Fig. 5c), $F \cdots N/N \cdots F$ (11.4%; Fig. 5d), $H \cdots N/N \cdots H$ (6.3%; Fig. 5e), $I \cdots N/N \cdots I$ (5.6%; Fig. 5f), $C \cdots F/F \cdots C$ (4.5%; Fig. 5g), $C \cdots H/H \cdots C$ (4.5%; Fig. 5h), $I \cdots H/H \cdots I$ (3.3%; Fig. 5i), $C \cdots N/N \cdots C$ (1.6%; Fig. 5*j*), C···C (9.5%; Fig. 5*k*), F···F (6.0%; Fig. 5*l*) and I···I (2.2%; Fig. 5m) interactions. Thus, the Hirshfeld surface analysis indicates that the most significant contributions arise from $F \cdot \cdot \cdot H$ and $F \cdot \cdot \cdot I$ contacts.

5. Database survey

A search of the Cambridge Structural Database (Version 5.39, updated May 2017; Groom *et al.*, 2016) revealed no matching compounds with the title compound substructure and the

Figure 3

Out-of-plane contacts. Partial packing diagram for the the title compound viewed along the *a* axis. $F \cdots \pi$ interactions are shown as dashed lines.

Figure 4

A view of the Hirshfeld surface of the title compound mapped over d_{norm} with the four main intermolecular contacts in the crystal lattice.

three substituents. However, a search for SF_5 aryl compounds fragment revealed about 85 hits: 77 of these structures were reported in the last 10 years, which shows the increasing interest in the SF_5 group. Most of these compounds are used as reagents in the synthesis and modification of pharmaceuticals, such as the antimalarial agent mefloquine (Wipf *et al.*, 2009) and the anti-obesity drug fenfluramine (Welch *et al.*, 2007).

6. Synthesis and crystallization

All solvents and reagents were purified prior to being used. 4-(Pentafluorosulfanyl)benzonitrile was obtained commercially and used without further purification. A solution of 2.5 M *n*-butyl lithium in hexanes was used. Column chromatography was carried out on a column packed with silica gel 70–230 mesh.

The synthesis of the title compound was performed through the regioselective ortho-lithiation of 4-(pentafluorosulfanyl)benzonitrile with lithium tetramethylpiperidide (LiTMP) in THF as solvent, favouring the formation of the *ortho* product (1,2,4-substituted arene) over the *meta* product (1,3,4-substituted arene). The *ortho*-metalated product was subsequently quenched with I₂ to afford the iodinated trisubstituted arene. A dry 50 mL Schlenk tube was charged with 4 mL of dry THF and 300 μ L of 2,2,6,6-tetramethyl piperidine (1.75 mmol, 2 eq.) and 262 μ L of *N*,*N*,*N*,*N*-tetramethylethylendiamine (1.75 mmol) were added under an inert atmosphere. The

Figure 5 Full (*a*) and indivi

Full (a) and individual (b)–(m) two-dimensional fingerprint plots showing the 12 intermolecular contacts present in the crystal structure.

research communications

solution was cooled to 273 K and 700 μ L of 2.5 *M n*-butyl lithium in hexane (1.75 mmol, 2 eq.) were added slowly. The reaction mixture was stirred at 273 K for 30 minutes and then cooled to 195 K. A solution containing 200 mg of 4-(penta-fluorosulfanyl)benzonitrile (0.872 mmol, 1 eq.) in 4 mL THF was added dropwise: the solution changed from pale yellow to dark brown upon formation of the metalated intermediary. After stirring for 1 h at 195 K, a solution of 244 mg I₂ (0.960 mmol, 1.2 eq.) in 4 mL THF was added dropwise and stirred for 2 h. The mixture was then warmed to room temperature and stirred for 1 h.

The reaction was quenched with water and THF was removed under reduced pressure, followed by extraction with diethyl ether. The combined organic phase was washed with aqueous 0.1 M HCl, 0.1 M Na₂S₂O₃ and brine, then dried over MgSO₄. The crude product was purified by column chromatography (9:1, hexane:ethyl acetate) to yield 71 mg (46%) of the pure arene product as a yellow solid (m.p. 367-369 K). Block-like yellow crystals suitable for X-ray diffraction were obtained by slow evaporation of a saturated CH₂Cl₂ solution of the 2-iodo-4-(pentafluoro- λ^6 -sulfanyl)benzonitrile at room temperature over a period of four days. NMR analyses were performed on a Bruker AV-500 spectrometer using chloroform-d as solvent (CDCl₃). The solvent signals at 7.26 and 77.00 ppm were used as internal standards for proton and carbon, respectively. ¹H NMR (500 MHz, Chloroform-d) δ 8.31 (d, J = 2.1 Hz, 1H), 7.89 (dd, J = 8.6, 2.1 Hz, 1H), 7.75 (d, J = 8.6 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ , 98.22, 117.83, 124.10, 126.16, 134.39, 136.82, 156.15.

7. Refinement

Data collection, crystal data and structure refinement parameters are summarized in Table 3. H atoms were included in geometrically calculated positions and refined as riding atoms with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Funding information

The authors acknowledge financial support by the NSF– CREST Center for Innovation, Research and Education in Environmental Nanotechnology (CIRE2N) grant No. HRD-1736093. The single crystal x-ray diffractometer was acquired through the support of the National Science Foundation under the Major Research Instrumentation Award No. CHE-1626103.

References

- Altomonte, S., Baillie, G. L., Ross, R. A., Riley, J. & Zanda, M. (2014). *RSC Adv.* 4, 20164–20176.
- Beier, P., Pastýříková, T. & Iakobson, G. (2011). J. Org. Chem. 76, 4781–4786.
- Bowden, R. D., Comina, P. J., Greenhall, M. P., Kariuki, B. M., Loveday, A. & Philp, D. (2000). *Tetrahedron*, 56, 3399–3408.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Du, J., Hua, G., Beier, P., Slawin, A. M. Z. & Woollins, J. D. (2016). Struct. Chem. 28, 723–733.

Table	3	
Experi	mental	details.

Crystal data	
Chemical formula	C ₇ H ₃ F ₅ INS
M _r	355.06
Crystal system, space group	Orthorhombic, Pnma
Temperature (K)	300
a, b, c (Å)	8.0634 (1), 7.7088 (1), 16.4410 (3)
$V(Å^3)$	1021.96 (3)
Ζ	4
Radiation type	Cu Ka
$\mu (\text{mm}^{-1})$	26.99
Crystal size (mm)	$0.26 \times 0.17 \times 0.12$
Data collection	
Diffractometer	SuperNova, Single source at offset/ far, HyPix3000
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2018)
T_{\min}, T_{\max}	0.287, 1.000
No. of measured, independent and	9403, 1020, 953
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.082
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.605
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.111, 1.03
No. of reflections	1020
No. of parameters	85
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} ~ {\rm \AA}^{-3})$	0.74, -1.78

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Iida, N., Tanaka, K., Tokunaga, E., Mori, S., Saito, N. & Shibata, N. (2015). Chem. Open. 4, 698–702.
- Kirsch, P. & Bremer, M. (2014). Chimia, 68, 363-370.
- Kirsch, P., Bremer, M., Heckmeier, M. & Tarumi, K. (1999). Angew. Chem. Int. Ed. 38, 1989–1992.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). *Chem. Commun.* pp. 3814–3816.
- Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.
- Müller, K., Faeh, C. & Diederich, F. (2007). Science, 317, 1881-1886.
- O'Hagan, D. (2010). J. Fluor. Chem. 131, 1071-1081.
- Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. (2008). Chem. Soc. Rev. 37, 320–330.
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Savoie, P. R. & Welch, J. T. (2015). Chem. Rev. 115, 1130-1190.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Sowaileh, M. F., Hazlitt, R. A. & Colby, D. A. (2017). *Med. Chem.* 12, 1481–1490.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19– 32.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17*. University of Western Australia. http://hirshfeldsurface. net
- Welch, J. T. & Lim, D. S. (2007). Bioorg. Med. Chem. 15, 6659-6666.
- Wipf, P., Mo, T., Geib, S. J., Caridha, D., Dow, G. S., Gerena, L., Roncal, N. & Milner, E. E. (2009). Org. Biomol. Chem. 7, 4163– 4165.
- Zhou, Y., Wang, J., Gu, Z., Wang, S., Zhu, W., Aceña, J. L., Soloshonok, V. A., Izawa, K. & Liu, H. (2016). *Chem. Rev.* **116**, 422–518.

supporting information

Acta Cryst. (2020). E76, 231-234 [https://doi.org/10.1107/S2056989020000365]

Structural characterization and Hirshfeld surface analysis of 2-iodo-4-(penta-fluoro- λ^6 -sulfanyl)benzonitrile

Jean C. González Espiet, Juan A. Cintrón Cruz and Dalice M. Piñero Cruz

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2018); cell refinement: *CrysAlis PRO* (Rigaku OD, 2018); data reduction: *CrysAlis PRO* (Rigaku OD, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

2-Iodo-4-(pentafluoro- λ^6 -sulfanyl)benzonitrile

Crystal data	
$C_7H_3F_5INS$ $M_r = 355.06$ Orthorhombic, <i>Pnma</i> a = 8.0634 (1) Å b = 7.7088 (1) Å c = 16.4410 (3) Å $V = 1021.96 (3) Å^3$ Z = 4 V(200) = 664	$D_x = 2.308 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 6922 reflections $\theta = 2.7-68.4^{\circ}$ $\mu = 26.99 \text{ mm}^{-1}$ T = 300 K Irregular, clear light yellow $0.26 \times 0.17 \times 0.12 \text{ mm}$
P(000) – 004 Data collection	
SuperNova, Single source at offset/far, HyPix3000 diffractometer ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) $T_{min} = 0.287, T_{max} = 1.000$ 9403 measured reflections	1020 independent reflections 953 reflections with $I > 2\sigma(I)$ $R_{int} = 0.082$ $\theta_{max} = 68.8^{\circ}, \ \theta_{min} = 5.4^{\circ}$ $h = -9 \rightarrow 9$ $k = -9 \rightarrow 9$ $l = -19 \rightarrow 19$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.111$ S = 1.03 1020 reflections 85 parameters 0 restraints	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.071P)^2 + 1.8371P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.74$ e Å ⁻³ $\Delta\rho_{min} = -1.77$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. **Refinement**. ShelXL

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
I1	0.67725 (6)	0.750000	0.31142 (3)	0.0540 (3)
S1	0.97572 (19)	0.750000	0.62917 (9)	0.0398 (4)
F3	1.1407 (6)	0.750000	0.6812 (3)	0.0641 (14)
F2	1.0576 (4)	0.6065 (5)	0.5743 (2)	0.0641 (9)
F1	0.9063 (5)	0.8925 (6)	0.68738 (19)	0.0819 (13)
C4	0.7869 (8)	0.750000	0.5682 (4)	0.0356 (13)
C3	0.8020 (7)	0.750000	0.4841 (4)	0.0335 (13)
H3	0.905856	0.750000	0.459508	0.040*
C2	0.6572 (8)	0.750000	0.4373 (4)	0.0352 (13)
C1	0.5034 (8)	0.750000	0.4752 (4)	0.0467 (16)
C7	0.3514 (9)	0.750000	0.4290 (5)	0.056 (2)
C5	0.6348 (10)	0.750000	0.6059 (5)	0.065 (3)
Н5	0.628167	0.750000	0.662401	0.078*
N1	0.2295 (10)	0.750000	0.3943 (6)	0.080 (2)
C6	0.4948 (10)	0.750000	0.5606 (5)	0.072 (3)
H6	0.391926	0.750000	0.586180	0.087*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
I1	0.0575 (4)	0.0786 (4)	0.0259 (3)	0.000	-0.00566 (16)	0.000
S 1	0.0409 (8)	0.0534 (9)	0.0250 (8)	0.000	-0.0044 (6)	0.000
F3	0.055 (3)	0.097 (4)	0.040 (3)	0.000	-0.020 (2)	0.000
F2	0.0622 (18)	0.0697 (19)	0.0605 (18)	0.0256 (16)	-0.0188 (15)	-0.0192 (17)
F1	0.081 (3)	0.110 (3)	0.055 (2)	0.022 (2)	-0.0146 (16)	-0.044 (2)
C4	0.038 (3)	0.045 (3)	0.024 (3)	0.000	-0.002 (3)	0.000
C3	0.037 (3)	0.038 (3)	0.026 (3)	0.000	0.000 (2)	0.000
C2	0.047 (4)	0.033 (3)	0.025 (3)	0.000	-0.003 (2)	0.000
C1	0.038 (3)	0.066 (4)	0.036 (4)	0.000	-0.003 (3)	0.000
C7	0.046 (4)	0.081 (6)	0.042 (5)	0.000	-0.004 (3)	0.000
C5	0.047 (4)	0.121 (8)	0.027 (4)	0.000	0.002 (3)	0.000
N1	0.049 (4)	0.121 (7)	0.071 (5)	0.000	-0.016 (4)	0.000
C6	0.036 (4)	0.139 (9)	0.042 (4)	0.000	0.014 (3)	0.000

Geometric parameters (Å, °)

I1—C2	2.076 (6)	С3—Н3	0.9300
S1—F3	1.582 (5)	C3—C2	1.399 (8)

supporting information

S1—F2	1.572 (3)	C2—C1	1.388 (9)
$S1$ — $F2^{i}$	1.572 (3)	C1—C7	1.442 (10)
S1—F1 ⁱ	1.561 (4)	C1—C6	1.406 (11)
S1—F1	1.561 (4)	C7—N1	1.136 (10)
S1—C4	1.823 (7)	С5—Н5	0.9300
C4—C3	1.388 (9)	C5—C6	1.353 (11)
C4—C5	1.374 (10)	С6—Н6	0.9300
F3—S1—C4	179.4 (3)	C5—C4—C3	121.8 (6)
F2 ⁱ —S1—F3	87.52 (18)	С4—С3—Н3	120.8
F2—S1—F3	87.52 (18)	C4—C3—C2	118.4 (6)
F2 ⁱ —S1—F2	89.4 (3)	С2—С3—Н3	120.8
F2—S1—C4	92.04 (19)	C3—C2—I1	118.9 (5)
$F2^{i}$ — $S1$ — $C4$	92.04 (19)	C1—C2—I1	121.2 (5)
F1 ⁱ —S1—F3	88.3 (2)	C1—C2—C3	119.9 (6)
F1—S1—F3	88.3 (2)	C2—C1—C7	121.6 (6)
$F1$ — $S1$ — $F2^{i}$	90.4 (2)	C2—C1—C6	119.5 (6)
F1—S1—F2	175.8 (2)	C6—C1—C7	118.9 (7)
F1 ⁱ —S1—F2	90.4 (2)	N1—C7—C1	178.4 (9)
$F1^{i}$ — $S1$ — $F2^{i}$	175.8 (2)	C4—C5—H5	120.1
$F1^{i}$ — $S1$ — $F1$	89.5 (4)	C6—C5—C4	119.8 (7)
$F1^{i}$ — $S1$ — $C4$	92.2 (2)	C6—C5—H5	120.1
F1—S1—C4	92.2 (2)	C1—C6—H6	119.7
C3—C4—S1	118.3 (5)	C5—C6—C1	120.6 (7)
C5—C4—S1	119.8 (5)	С5—С6—Н6	119.7
I1—C2—C1—C7	0.000 (2)	$F1^{i}$ —S1—C4—C5	44.79 (18)
I1—C2—C1—C6	180.000 (2)	C4—C3—C2—I1	180.000 (1)
S1—C4—C3—C2	180.000 (2)	C4—C3—C2—C1	0.000 (2)
S1—C4—C5—C6	180.000 (2)	C4—C5—C6—C1	0.000 (3)
F2—S1—C4—C3	-44.74 (15)	C3—C4—C5—C6	0.000 (3)
$F2^{i}$ —S1—C4—C3	44.74 (15)	C3—C2—C1—C7	180.000 (2)
$F2^{i}$ —S1—C4—C5	-135.26 (15)	C3—C2—C1—C6	0.000 (2)
F2—S1—C4—C5	135.26 (15)	C2-C1-C6-C5	0.000 (3)
$F1^{i}$ —S1—C4—C3	-135.21 (18)	C7—C1—C6—C5	180.000 (2)
F1—S1—C4—C3	135.21 (18)	C5—C4—C3—C2	0.000 (2)
F1—S1—C4—C5	-44.79 (18)		

Symmetry code: (i) x, -y+3/2, z.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C5—H5…F3 ⁱⁱ	0.93	2.57	3.501 (1)	174
C6—H6…F3 ⁱⁱⁱ	0.93	2.56	3.476 (1)	169

Symmetry codes: (ii) x-1/2, -y+3/2, -z+3/2; (iii) x-1, -y+3/2, z.

Non-covarent intermolecular interactions (A)					
N1—I1	3.408		F2—C3′	3.408	
F3—H5	3.123		F3—H6	2.573, 2.558	
Hydrogen-bond and	l short-contact geome	try (Å, °)			
D—H···A/D···A	D—H	H···A	$D \cdots A$	D—H···A	
C5—H5…F3	0.93	2.57	3.501 (1)	174	
F2···C3	_	_	3.123 (1)	_	
C6—H6…F3	0.93	2.56	3.476 (1)	169	
N1…I1	_	_	3.408 (1)	-	

Non-covalent intermolecular interactions (Å)

Percentage contributions of interatomic contacts to the Hirshfeld surface

Contact	% contribution	Contact	% contribution
F…H/H…F	29.4	С…С	9.5
F…I/I…F	15.8	F…F	6.0
$F \cdots N / N \cdots F$	11.4	I…I	2.2
$H \cdots N / N \cdots H$	6.3		
I…N/N…I	5.6		
C…F/F…C	4.5		
C…H/H…C	4.5		
I…H/H…I	3.3		
C…N/N…C	1.6		