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Twinning by pseudo-merohedry is a common phenomenon in small-molecule

crystallography. In cases where twin-component volume fractions are markedly

different, structure solution is often no more difficult than for non-twinned

structures of similar complexity. When twin-component volume fractions are

similar, however, structure solution can be much more of a problem. This paper

presents hints and tips for such cases by means of three worked examples. The

first example presents the most common (and simplest) case of a two-component

pseudo-orthorhombic twin. The second example describes structure solution of

a reticular threefold pseudo-hexagonal twin that benefits from use of an

unconventional space-group setting. The third example covers structure solution

of a reticular fourfold pseudo-tetragonal twin. All three structures are ultimately

shown to be monoclinic crystals that twin as a consequence of unit-cell metrics

that mimic those of higher symmetry crystal systems.

1. Introduction

Twinning in crystallography is the phenomenon by which a

crystalline entity may be composed of two or more crystals

that are mutually related by precise mathematical relation-

ships. The theoretical aspects of twinning (see e.g. Hahn &

Klapper, 2006 and references therein), nomenclature and

classification (Donnay & Donnay, 1959; Nespolo & Ferraris,

2003; Nespolo, 2015, 2019), identification and structure

refinement (Herbst-Irmer & Sheldrick, 1998, 2002; Parsons,

2003; Petrı́ček et al., 2016; Sevvana et al., 2019) for molecular

crystals have been extensively covered in the literature, and

need not be repeated here. Nevertheless, a brief introduction

is warranted. Within a twin, the component parts are mapped

onto each other via twin operations (inversion, rotation,

reflection) that occur with respect to a twin element (point,

axis, plane). The family of symmetrically equivalent twin

operations, i.e. those that result in the same mapping of

component parts onto each other, constitute the twin law. This

definition distinguishes a true twin from a mere aggregate (i.e.

a random conglomerate of two or more pieces). The term

‘twin’ refers to the whole crystalline entity, which is composed

of individuals or components (Nespolo, 2015) related by the

twin law. Although sometimes used interchangeably, the terms

twin domain and individual are not synonymous. An indivi-

dual might comprise a single domain or many domains.

Domains having identical orientations comprise a single

domain state. For a macroscopic twin, ‘domain state’ and

‘individual’ are interchangeable (Nespolo, 2019). Twins have

been classified in different ways (e.g. Donnay & Donnay, 1974;
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Nespolo & Ferraris, 2000; Hahn & Klapper, 2006; Petrı́ček et

al., 2016). Commonly used terms include twin-lattice-symmetry

(TLS), twin-lattice-quasi-symmetry (TLQS), twinning by

merohedry, pseudo-merohedry, non-merohedry etc., with

further sub-divisions possible. Definitions of each are given in

the Online Dictionary of Crystallography (IUCr ODC, 2021).

In the diffraction pattern of a twin, the reciprocal lattices of

domains comprising an individual superimpose exactly,

resulting in the diffraction pattern of that individual.

Diffraction patterns from each individual overlap, to an extent

determined by the twin law and weighted by their relative

irradiated volume fractions, thereby producing the diffraction

pattern of the (whole) twin. The degree of overlap from each

individual thus readily provides, to a first approximation, a

quick and convenient means of assessment. Exact super-

position of individual reciprocal lattices occurs for twinning by

merohedry. Aside from the special case of twinning by

inversion, twinning by merohedry is far more common in

minerals and crystals of inorganic compounds than in organic

or organometallic crystals. Close, but not symmetrically exact

overlap, occurs for twinning by pseudo-merohedry, and is

common in molecular crystals. Indexing of any crystal requires

finding the link between the reciprocal lattice and the coor-

dinate system of the diffractometer, which takes the form of a

mathematical transformation, the orientation matrix (Busing

& Levy, 1967). Similar to non-twinned crystals, a (pseudo-)-

merohedric twin requires just one orientation matrix. In such

cases, all diffraction maxima receive a contribution from each

individual present. The term reticular is used as a modifier for

twinning by (pseudo-)merohedry in particular cases where

only a well-defined fraction of individual reciprocal lattice

points, and hence twin-related diffraction maxima, overlap.

The diffraction pattern of a reticular (pseudo-)merohedric

twin may also be indexed by just a single orientation matrix,

but any individual only contributes to the aforementioned

fraction, the reciprocal of the twin index (Donnay & Donnay,

1959), of the observed diffraction maxima. Any deviation from

exact overlap for twinning by pseudo-merohedry is quantified

by obliquity (Friedel, 1926; Donnay & Donnay, 1959; Wolten,

1966) or by twin misfit (Nespolo & Ferraris, 2007). Twinning by

non-merohedry results in a combination of full, partial, and

non-overlapping diffraction maxima. Indexing of such a twin

requires a separate orientation matrix for each individual.

For novice or otherwise inexperienced crystallographers,

solution and refinement of twinned crystal structures can

appear to be a daunting task. Nevertheless, in the absence of

other problems such as extensive disorder (e.g. Parkin &

Hope, 1998; Hou et al., 2019) or worse, e.g. incommensurate

modulation (van Smaalen et al., 1995; Wagner & Schönleber,

2009), order–disorder phenomena (Dornberger-Schiff, 1956)

etc., once the twinning has been accounted for, completion of

pseudo-merohedric twin structures is nowadays often no more

difficult than non-twinned structures of similar complexity.

Twin laws for twinning by (pseudo-)merohedry may be

derived by coset decomposition of the crystal lattice point

symmetry (Flack, 1987). However, in many cases, plausible

twin operations can be obtained simply by inspection of the

unit cell metrics. In less obvious cases, computer programs

(e.g. Aroyo et al., 2006; Boyle, 2014) have been written to

derive twin laws using the algorithms described by Flack

(1987). Details of structure solution itself, however, particu-

larly tips and tricks for non-trivial cases, have received less

attention. For many small-molecule pseudo-merohedric twins

in which twin component fractions are notably different,

diffraction from the major component is often sufficiently

dominant that structure solution is quite straightforward. This

paper presents, by way of three worked examples of differing

complexity, practical tips and hints for the more problematic

case of crystals twinned by pseudo-merohedry in which the

relative volume fractions of individuals are close to equal.

2. General information

Herbst-Irmer & Sheldrick (1998, 2002) and others (e.g. Rees,

1980; Yeates, 1988) describe a number of general observations

and statistics that have proven useful for the identification and

diagnosis of twinning. In addition, the failure of conventional

direct methods of structure solution has also been noted as a

common consequence of twinning (Parsons, 2003). Nowadays,

most small-molecule structures are solved by dual-space

algorithms of one sort or another (e.g. Oszlányi & Süto��, 2004;

Sheldrick, 2015a). Such methods have proven immensely

successful, such that their failure, persists as a strong indicator

of twinning. Even prior to data collection, evidence of twin-

ning is often apparent from optical microscopy (e.g. Fig. 1).

Re-entrant angles (e.g. Kitamura et al., 1979) between crystal

faces, and optical extinction for transparent crystals viewed

between crossed polarizers clearly indicate the presence of

macroscopic twin domains (Hartshorne & Stuart, 1950;

Nespolo & Ferraris, 2003 and references therein). Depending

on the primary purpose of structure determination, where
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Figure 1
(a) Crystalline samples viewed between (partially) crossed polarizers of
(i) a single crystal, (ii) a twin showing a re-entrant angle and different
optical transmission on either side of a twin plane, and (iii) an aggregate,
also showing re-entrant angles. The twin and aggregate could probably be
cut with a razor blade to yield suitable single-crystal fragments. (b) An
example of multiple domains within a two-individual twin for which
microsurgery would be unlikely to yield a usable single-crystal fragment.
Note: these images are representative examples from the author’s
archives and are unrelated to the three cases discussed in depth in this
paper.



possible, it is often advisable to perform microsurgery to

extricate a single-crystal fragment (Fig. 1a), though this is not

always feasible (Fig. 1b). When modern auto-indexing

routines [e.g. in X-AREA (Stoe & Cie, 2002); CrysAlis PRO

(Rigaku OD, 2017); APEX3 (Bruker, 2016)] return well-

defined unit cells that only partially account for the observed

diffraction maxima, twinning is often the culprit. Post data

collection, reciprocal-lattice slice images a.k.a. ‘pseudo-

precession pictures’ can readily expose twinning by non-

merohedry, but are usually less useful for (pseudo-)mero-

hedric twins (Fig. 2).

3. Twofold pseudo-orthorhombic twinning, a
straightforward example

3.1. Crystal and diffraction data assessment

Crystals of chlorotetrakis(imidazole)copper(II) chloride,

C12H16Cl2CuN8, (Otieno et al., 2001), XUBNIR in the CSD

(Groom et al., 2016), are monoclinic, with space group of type

P21/n and unit-cell parameters a = 8.8434 (2) Å, b =

13.2093 (4) Å, c = 13.8658 (5) Å, � = 90.0072 (18)�. Since the �
angle is so close to 90�, the unit cell is metrically orthorhombic,

even though the underlying symmetry is monoclinic. This

situation corresponds to criterion (a) in the list of classic

symptoms of twinning outlined by Herbst-Irmer & Sheldrick

(1998). The molecular structure of XUBNIR, which consists of

a square-based pyramidal CuII with four N-bound imidazoles,

a bound chlorine ligand and one free chloride anion (Fig. 3),

seems innocuous. Data collection and processing for XUBNIR

were also unremarkable. To allow the reader to follow along, a

dataset is available in the supporting information.

Under the initial assumption that this is a routine structure,

XPREP (Sheldrick, 2008) was used to set up files for structure

solution. Not surprisingly, the program suggests a primitive

orthorhombic unit cell, which has a seemingly respectable

Rsym of 4.2% (Table 1a). Analysis of systematic absences,

however, does not lead to an acceptable orthorhombic space

group (Table 1b). Impossible systematic absences are another

classic symptom of twinning, corresponding to criterion (e)

described by Herbst-Irmer & Sheldrick (1998). XPREP does

suggest 21 screw axes associated with each of a, b, and c, as well

as an n-glide plane perpendicular to b. Thus, given the infor-

mation at hand, even in the absence of any particular

knowledge of the suspected twinning, the obvious way
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Figure 2
Reciprocal-lattice-slice reconstructions (h0l) for (a) a crystal twofold
twinned by non-merohedry, requiring two orientation matrices to account
for all diffraction maxima, and (b) a crystal twinned by pseudo-
merohedry (see structure WUGLES, Section 4), for which a single
orientation matrix accounts for all observed diffraction. The latter gives
little outward indication of it being a twin, other than slight elongation of
diffraction spots at higher 2� angles.

Table 1
Selected annotated output from XPREP for XUBNIR. (a) The unit-cell parameters suggest the orthorhombic crystal system. (b) Systematic absences
are inconsistent with any orthorhombic space group. (c) Assignment as monoclinic gives systematic absences consistent with P21/n.

(a) Search for higher metric symmetry:
Option A: FOM = 0.007 deg. ORTHORHOMBIC P-lattice R(sym) = 0.042 [4007]

Cell: 8.843 13.209 13.866 90.00 90.01 90.00 Volume: 1619.74

Matrix: 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

(b) Space group assignment fails for orthorhombic:
Systematic absence exceptions (for orthorhombic P):

b-- c-- n-- 21-- -c- -a- -n- -21- --a --b --n --21

N 596 595 595 20 366 371 373 29 423 425 424 24

N I>3s 408 464 386 0 179 180 1 0 364 343 315 0

<I> 41.1 24.4 42.4 0.1 39.7 39.1 0.2 0.2 59.7 60.8 35.0 0.1

<I/s> 11.7 13.1 11.3 0.6 10.8 10.7 0.5 0.6 15.3 14.5 12.0 0.4

No acceptable space group - change tolerances or unset chiral flag or possibly change input

lattice type, then recheck cell using H-option

(c) Space group assignment is successful for monoclinic:
Systematic absence exceptions (default overridden to monoclinic):

-21- -a- -c- -n-

N 29 371 366 373

N I>3s 0 180 179 1

<I> 0.2 39.1 39.7 0.2

<I/s> 0.6 10.7 10.8 0.5

Identical indices and Friedel opposites combined before calculating R(sym)

Option Space Group No. Type Axes CSD R(sym) N(eq) Syst. ABS. CFOM

[A] P2(1)/n #14 centro 1 19410 0.023 2646 0.6 / 10.7 4.28



forward is to consider the next lowest symmetry crystal

system, monoclinic. In XPREP, this requires overriding the

default crystal system suggestion (Table 1c), upon which the

program suggests a space group of type P21/n, with Rsym =

2.3%. Other potential monoclinic settings can be sidelined as

possibilities at this point because they are not consistent with

the n-glide and they each give a worse Rsym, similar to that of

the rejected orthorhombic cell.

3.2. Twin operations by inspection of unit-cell parameters for
XUBNIR

The essence of twinning in this structure lies in the differ-

ence between orthorhombic and monoclinic symmetry. For a

primitive monoclinic crystal, there could be twofold rotation,

21 screw, mirror, a or c-axial, or n-diagonal glide planes asso-

ciated only with the b axis (assuming the monoclinic b-unique

convention is respected). For orthorhombic crystals, these

symmetry elements may each be associated with a, b, and c. In

reciprocal space, the translational parts of screw and glide

operations manifest only as systematic absences, so in the

context of twinning, we need only consider the point-

symmetry operations rotation, reflection, and inversion (vide

supra, Section 1). For consideration as twin operations in

XUBNIR, that limits the analysis to mirror and twofold

rotation operations associated with the a and c axes. Such

mirror operations change the sign of just one index, while

twofold rotations flip the sign of two indices. The feasible twin

operations, expressed as (3�3) transformation matrices, are

thus:

m½100� ¼

�1 0 0

0 1 0

0 0 1

2
64

3
75; 2½100� ¼

1 0 0

0 �1 0

0 0 �1

2
64

3
75;

m½001� ¼

1 0 0

0 1 0

0 0 �1

2
64

3
75; 2½001� ¼

�1 0 0

0 �1 0

0 0 1

2
64

3
75:

Matrices m[100] and m[001] describe reflection across mirror

planes perpendicular to a and c while 2[100] and 2[001] describe

180� (i.e. twofold) rotation about a and c, respectively. The

effect of these operations on the unit-cell axes are shown in

Fig. 4a–e. Since the structure is centrosymmetric, m[100] and

2[100] are equivalent for this unit cell, as are m[001] and 2[001].

Similarly, since monoclinic symmetry has either m, 2 or 2/m

point symmetry (by convention associated with the b axis), the

sign of b (i.e. mirror plane perpendicular to b) or signs of a and

c (i.e. twofold rotation about b) can be flipped. Thus, in

reciprocal space for this structure, m[100], 2[100] m[001], 2[001], all

produce the same effect when used as twin matrices to

transform reflection indices, and thereby constitute the twin

law.
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Figure 4
(a) Unit-cell axes for XUBNIR (red = a, green = b, blue = c), and after transformation by: (b) a mirror plane perpendicular to the a axis, (c) a twofold
rotation about the a axis, (d) a mirror plane perpendicular to the c axis, (e) a twofold rotation about the c axis. All five of the unit-cell ‘boxes’ superimpose
because � ’ 90�. Note that the mirror operations change the right-handed coordinate system to left handed, whereas the twofold rotations preserve the
handedness. Diagrams generated using Mercury (Macrae et al., 2020).

Figure 3
An ellipsoid plot of XUBNIR (50% probability), generated using
Mercury (Macrae et al., 2020).



3.3. Structure solution

The structure of XUBNIR does not solve with the correct

space group when using the iterative dual-space method in

SHELXT (Sheldrick, 2015a) or by charge-flipping (Oszlányi

& Süto��, 2004) as implemented in PLATON (Spek, 2020).

Recognizable, albeit rudimentary but ultimately usable solu-

tions are, however, possible using the conventional direct

methods programs SHELXS (Sheldrick, 2008) and SIR

(Altomare et al., 1999), and possibly other programs not

directly intended for twins. Nevertheless, the dual-space

recycling algorithm used in SHELXD (Sheldrick, 2008) can

include two twin components in a straightforward way, and

results in a starting model that is quite easy to complete. The

following instructions file for SHELXD was generated using

XPREP, but has been hand edited to include twin matrix

2[001].

TITL XUBNIR in P2ð1Þ=n

CELL 0:71073 8:8434 13:2093 13:8658 90:0000 90:0072 90:0000

ZERR 4:00 0:0002 0:0004 0:0005 0:0000 0:0018 0:0000

LATT 1

SYMM 0:5�X; 0:5þY; 0:5�Z

SFAC C H N CL CU

UNIT 64 64 16 8 4

TWIN �1 0 0 0 �1 0 0 0 1

FIND 15

PLOP 20 25 28

MIND 1:0 �0:1

NTRY 1000

HKLF 4

END

In the above, 1000 trials (command NTRY) are overkill, but

the structure is small so it runs quite quickly on modern

computers. The default for twin component volume fractions

is 0.5, but can be changed by a BASF parameter, as per

SHELXL (Sheldrick, 2015b). The resulting preliminary model

(Fig. 5a) is fairly complete. It is missing only three atoms and

has the imidazole nitrogen atoms mis-assigned as carbon; all

problems that are easily fixed. A few cycles of model building

and refinement (Fig. 5b–d) proves to be no more complicated

than for a routine (non-twinned) single-crystal structure. The

final model has refined twin component volumes of about 54%

and 46% and an R1 value of 2.5%

4. Threefold pseudo-hexagonal twinning using a non-
conventional space group setting, B21

Crystals of the chiral compound 1-{(R)-1-[(3-oxo-2-iso-

indolinoyl)methyl]-2-propenyl}-5-methyl-2,3-indolinedione,

C21H16N2O4, Fig. 6, (Trost et al., 2020), WUGLES in the CSD

(Groom et al., 2016), form as orange elongated hexagonal

columnar needles. Initial indexing of the diffraction pattern

gives a unit cell that appears to be primitive hexagonal. All

attempts to solve the structure using hexagonal or trigonal

symmetry, however, failed; reminiscent of criterion (d)

described by Herbst-Irmer & Sheldrick (1998). A chemically

reasonable structure was eventually found that had twelve

molecules in the asymmetric unit of a space group of type P21.

Refinement of this Z0 = 12 model as a threefold twin seemed

promising, but became unstable when displacement para-

meters were made anisotropic. Subsequent analysis showed
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Figure 6
An ellipsoid plot (50% probability) of one representative molecule of
WUGLES (out of six independent molecules in the asymmetric unit),
generated using Mercury (Macrae et al., 2020).

Figure 5
Snapshots of model building and refinement of XUBNIR. (a) Initial
structure solution from SHELXD. (b) After isotropic refinement, three
missing atoms are clearly visible as difference-map peaks, and the relative
size of displacement spheres allow most carbon and nitrogen atoms to be
distinguished. (c) After anisotropic refinement, all hydrogen atoms are
clearly present in a difference map. (d) After inclusion of hydrogen
atoms. Diagrams were generated using ShelXle (Hübschle et al., 2011).



that for the pseudo-hexagonal setting, the individuals had to

be B-centred with an asymmetric unit having Z0 = 6, and

threefold twinned, requiring the unconventional space group

(see, for example, Nespolo & Aroyo, 2016) setting B21, and

similar twin component volumes. A thorough description of

the twinning in WUGLES was subsequently given by Nespolo

et al. (2020). Detailed steps involved in structure solution, are

given here. The full dataset is available in the supporting

information.

4.1. Diffraction data analysis for WUGLES using XPREP

On reading the diffraction data into XPREP, the program

suggests two plausible primitive unit cells, one hexagonal with

Rsym = 7.8% and one monoclinic having Rsym = 2.0%

(Table 2a). It also suggests five C-centred orthorhombic and

monoclinic unit cells, but these can be rejected immediately

due to their unacceptable Rsym values of about 30% or so. All

attempts to solve the structure using hexagonal or trigonal

symmetry failed miserably. Indeed, since the Rsym for hexa-

gonal is almost four times that of primitive monoclinic,

XPREP suggests the latter as its default. The next task is to

assign a tentative space group. Systematic absences (Table 2b)

indicate a 21 screw axis parallel to b. Since the compound was

known from the synthesis to be chiral and enantiopure, the

suggestion of P21/m can be rejected, leaving only P21. Without

additional information, this is the best we can do at this stage.

4.2. Suspected threefold twinning and a plausible twin law
for WUGLES

The unit-cell parameters for the as-indexed monoclinic P

setting have a ’ c and � ’120�, so threefold pseudo-mero-

hedric twinning about the b axis is a reasonable supposition

and is consistent with criterion (d) of Herbst-Irmer & Shel-

drick (1998). A threefold rotation requires successive rota-
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Figure 7
(a) A stack of (primitive) unit cells with highlighted axes for WUGLES viewed in projection down the b axis, and after rotation by: (b) 120� and (c) 240�

(eq. �120�) about b. Diagrams generated using XP in SHELXTL (Sheldrick, 2008).

Table 2
Selected annotated output from XPREP for WUGLES. (a) The unit-cell parameters suggest the hexagonal crystal system, but Rsym for primitive
monoclinic is much better (various C-centred orthorhombic and monoclinic cells all had Rsym ’ 30% and are not shown). (b) Systematic absences
indicate only a 21 screw axis.

(a) Search for higher metric symmetry:
Option A: FOM = 0.126 deg. HEXAGONAL P-lattice R(sym) = 0.078 [28182]

Cell: 15.599 15.610 49.062 90.00 90.00 119.90 Volume: 10357.03

Matrix: 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 -1.0000 0.0000

Option E: FOM = 0.000 deg. MONOCLINIC P-lattice R(sym) = 0.020 [20598]

Cell: 15.599 49.062 15.610 90.00 119.90 90.00 Volume: 10357.03

Matrix: 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

(b) Space group assignment for primitive monoclinic:
Systematic absence exceptions (for monoclinic P):

-21- -a- -c- -n-

N 249 2180 2178 2180

N I>3s 2 1136 1066 1208

<I> 0.1 2.8 2.4 3.0

<I/s> 0.6 4.8 4.4 5.1

Identical indices and Friedel opposites combined before calculating R(sym)

Option Space Group No. Type Axes CSD R(sym) N(eq) Syst. ABS. CFOM

[A] P2(1) #4 chiral 1 3543 0.020 20598 0.6 / 4.4 4.41

[B] P2(1)/m #11 centro 1 402 0.020 20598 0.6 / 4.4 3.85



tional increments of 120�, with the third step reproducing the

starting position. For positive rotation (anticlockwise) about b,

this corresponds to the following matrices:

3þ½010� ¼

�1 0 1

0 1 0

�1 0 0

2
64

3
75; 32þ

½010� ¼ 3�½010� ¼

0 0 �1

0 1 0

1 0 �1

2
64

3
75;

33þ
½010� ¼ 1 ¼

1 0 0

0 1 0

0 0 1

2
64

3
75:

The transformational effects of these matrices on the unit-

cell axes are illustrated in Fig. 7.

4.3. Initial structure solution for WUGLES using P21

A single molecule of WUGLES has 27 non-hydrogen

atoms. Given the relatively large volume of the primitive

monoclinic cell [V = 10357.0 (9) Å3], for P21 to be correct, the

asymmetric unit for the pseudo-hexagonal cell could accom-

modate twelve molecules, i.e. 234 (C, N, O) atoms. Perhaps not

surprisingly in view of the expected twinning and large

number of similar sized atoms, neither conventional direct

methods nor iterative dual-space algorithms (SHELXT or

charge flipping in PLATON) are able to readily solve this

structure. The dual-space recycling algorithm in SHELXD,

however, is able to provide a starting model with recognizable

chemical fragments. Although the current version of

SHELXD (v2013/2) is restricted to just two twin components

(rather than the suspected three in WUGLES), its success rate

is higher if two twin components of equal volume are included

(rather than just a single component), i.e. using the transpose

of either the 3þ
½010� or 3�½010� matrices defined above. A further

increase in the success rate is possible via random omission of

some fraction of the atoms during the dual-space recycling

using the command ‘WEED’ in SHELXD, a form of rand-

omized ‘omit’ map (Bhat & Cohen, 1984), which has the effect

of reducing phase bias for non-centrosymmetric structures.

Thus, in the following input file for SHELXD written by

XPREP, the added TWIN and WEED commands enable a

dramatic reduction in the number of trials (command NTRY)

from the default 1000 to about 20.

TITL WUGLES in P2ð1Þ

CELL 1:54178 15:5993 49:062 15:6099 90:000 119:896 90:000

ZERR 24:00 0:0008 0:002 0:0008 0:000 0:002 0:000

LATT �1

SYMM �X; 0:5þY; �Z

SFAC C H N O

UNIT 504 384 48 96

FIND 194

PLOP 259 324 362

MIND 1:0 �0:1

TWIN 0 0 1 0 1 0 �1 0 �1

NTRY 20
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Figure 8
(a) Initial P21, Z0 = 12 structure solution for WUGLES. (b) P21, Z0 = 12
structure after model building and isotropic refinement. Diagrams
generated using Mercury (Macrae et al., 2020).

WEED 0:3

HKLF 4

END

The resulting structure solution prior to any model building

and refinement is shown in Fig. 8a. This model is far from

complete, but aside from a few disconnected parts, there are

many recognizable molecular fragments, including the

expected six- and five-membered rings. A few rounds of model

building and isotropic refinement with threefold twinning

included rapidly generates the whole asymmetric unit for the

P21 cell (Fig. 8b), resulting in an R1 value of about 9.5%.

Under normal circumstances, the next step would be to

complete the structure by including anisotropic displacement

parameters (ADPs) and adding hydrogen atoms. However, all

attempts to refine ADPs for this model were wildly unstable.

A search for missed symmetry using ADDSYM in PLATON,

however, proved to be fruitless. Even with inclusion of an



extensive battery of restraints, there were still hefty correla-

tions between pairs of similar-geometry molecules in the least-

squares refinement. At this stage, therefore, it seemed likely

that the actual asymmetric unit of each individual was only

half as large as required by the current P21 model (i.e. Z0 ought

to be 6, not 12). Possible causes therefore included each

component having a primitive cell with either a or c (but not

both) only half as long, or alternatively, B-centring. Given the

threefold twinning about b, each scenario would result in a

diffraction pattern for the twin that is indexable as apparently

primitive and pseudo-hexagonal. To investigate further, the

‘LIST 8’ command in SHELXL was used to generate

‘detwinned’ data. The resulting SHELXL format fcf file

contains the following information for each reflection: h, k, l,

F2
o, �ðF2

oÞ, F2
c , ’c, d, �shelx. The first five fields may be easily

converted to an ‘HKLF 4’ format data file using the unix

(Linux, MacOS, etc.) utility awk [also available for Windows

via the Cygwin project (Cygwin, 2020)], as follows:

awk ’{printf "%4d%4d%4d%8.2f%8.2f\n",

$1,$2,$3,$4,$5}’ in.fcf > out.hkl

where in.fcf and out.hkl are the input ‘LIST 8’ format fcf file

(after removal of its CIF format header) and output ‘HKLF 4’

format hkl files, respectively. Comparison of intensities for the

full dataset with this ‘detwinned’ data (Table 3a,b) clearly

show that for this unit-cell setting, the individual is B-centred.

Thus, the pseudo-hexagonal unit cell, originally indexed as

primitive using reflections from the whole three-component

twin, actually corresponds to threefold rotational twinning of

B-centred cells of the individuals, each requiring an uncon-

ventional space group, B21. Thus, twinning in WUGLES is by

reticular pseudo-merohedry with zero obliquity (the twin axis

is coincident with the unit-cell b axis), but non-zero twin misfit

(since � is not exactly 120�, twin-related lattice points do not

exactly superimpose). A rigorous analysis is given by Nespolo

et al. (2020). This B-centred cell may, of course, be trans-

formed to a conventional primitive cell with half the volume.

However, such a smaller P21 cell is pseudo-orthorhombic, and

thus the threefold nature of the twinning becomes far less

intuitive than for the larger pseudo-hexagonal cell. Moreover,

refinement using SHELXL would then require conversion of

the ‘HKLF 4’ format twinned datafile to a much larger ‘HKLF

5’ format dataset. That is possible (e.g. by adaptation of the

scheme in Appendix A), but for WUGLES, use of the

unconventional B-centred setting is far more elegant, at least

for refinement using SHELXL. Technical details of the

equivalence of the B21 versus P21 description are described at

length in Nespolo et al. (2020).

4.4. Structure solution and refinement for WUGLES using
B21

The initial (subsequently shown to be incorrect and unref-

inable) P21, Z0 = 12 model in the larger primitive pseudo-

hexagonal unit cell could quite easily be pared down by

removing one member of each symmetry-equivalent pair of

molecules. Nonetheless, given the speed of modern computers,

it is perhaps easier to simply re-solve the structure using the

B21 setting. For SHELXD this requires one trivial edit to the

instructions file, namely, changing the LATT command from

‘LATT -1’ (primitive non-centrosymmetric) to ‘LATT -6’ (B-

centred non-centrosymmetric). Using the previously obtained

detwinned data and the symmetry of B21, SHELXD easily

finds all the non-hydrogen atoms (Fig. 9a). In spite of the

circuitous route taken to solve the structure, subsequent

refinement carried out against the full dataset with threefold

twinning included proceeds smoothly for the B21 model. It

requires no constraints or restraints, even for a fully aniso-

tropic model, with all hydrogen atoms having been found in

difference-Fourier maps and included in the refinement

(Fig. 9b). The absolute configuration could also be determined

from the diffraction data using established methods (Flack,

1983; Hooft et al., 2008; Parsons et al., 2013).

5. Fourfold pseudo-tetragonal twinning via an I-centred
supercell

Not all cases of twinning by pseudo-merohedry can ultimately

be accounted for using the TWIN command in SHELXL. The
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Table 3
Annotated excerpts from XPREP log files for WUGLES. (a) The full dataset of the twin is consistent with a primitive unit cell, though there is a weak
suggestion of B-centring. (b) The ‘detwinned’ diffraction data for WUGLES clearly indicate that the pseudo-hexagonal unit cell of the individual, is B-
centred, not primitive.

(a) Diffraction intensities for the full twinned dataset of WUGLES imply a primitive lattice.
Lattice exceptions: P A B C I F Obv Rev All

N (total) = 0 174957 175199 174948 174780 262552 233389 233137 349710

N (int>3sigma) = 0 132735 128777 132894 132671 197203 177681 177307 266364

Mean intensity = 0.0 7.9 3.8 7.9 7.9 6.5 7.8 7.9 7.9

Mean int/sigma = 0.0 7.2 6.4 7.2 7.2 7.0 7.2 7.3 7.3

Lattice type: P chosen Volume:10357.03

(b) Diffraction intensities for ‘detwinned’ data of WUGLES confirm B-centring.
Lattice exceptions: P A B C I F Obv Rev All

N (total) = 0 21799 21879 21794 21786 32736 29121 29125 43679

N (int>3sigma) = 0 10893 2114 10881 10938 11944 14565 14517 21851

Mean intensity = 0.0 13.2 0.3 13.2 13.2 8.9 13.1 12.9 13.1

Mean int/sigma = 0.0 21.3 1.3 21.3 21.5 14.6 21.2 21.3 21.4

Lattice type: B chosen Volume:10357.03



crystal structure of pinacol monohydrate has primitive

monoclinic symmetry of type P2/n (space group 13), but is

fourfold twinned by virtue of a pseudo-tetragonal I-centred

supercell. The monohydrate phase of crystalline pinacol was

identified by Pushin & Glagoleva (1922), but its structure

(Fig. 10) remained unsolved until 2003 (Hao et al., 2005;

SAXDUR in the CSD).

5.1. Diffraction pattern indexing and data analysis for
SAXDUR

The crystal used for SAXDUR initially indexed to give cell

parameters a = 12.9001 (7) Å, b = 12.8941 (7) Å, c =

12.8917 (9) Å, � = 107.517 (3)�, � = 110.359 (3)�, � =

110.581 (3)�. This triclinic setting was used for data collection

to ensure that no experimental information was inadvertently

lost or skipped, but without making any assumptions about

crystal symmetry. The resulting dataset is available in the

supporting information. The similarity of the above three axis

lengths and of the � and � angles, however, immediately

portend transformation to a higher symmetry cell. A search

for higher symmetry using XPREP returned eight possible

centred cells; one tetragonal-I, one orthorhombic-I, three

monoclinic-I, and their three monoclinic-C equivalents (which

were dismissed as they have � ’ 134�, thereby obscuring the

pseudo-tetragonal symmetry). The I-centred cases are repro-

duced in Table 4. The tetragonal-I cell (option A) was

dismissed due to its much higher Rsym and because systematic

absences were inconsistent with any tetragonal space group

[criterion (e) of Herbst-Irmer & Sheldrick, 1998]. Moreover,

the crystal itself did not exhibit optical extinction character-
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Figure 10
An ellipsoid plot (50% probability) of SAXDUR, generated using
ShelXle (Hübschle et al., 2011). The simplicity of the molecule belies the
complexity of the twinning.

Table 4
A search for higher metric symmetry in SAXDUR using XPREP. Tetragonal-I was dismissed, in part due to its much higher Rsym. All four remaining
cells are pseudo-tetragonal. C-centred equivalents of the monoclinic-I cells are not shown.

Option A: FOM = 0.077 deg. TETRAGONAL I-lattice R(sym) = 0.195 [5588]

Cell: 14.688 14.727 15.244 90.04 90.03 89.99 Volume: 3297.48

Matrix: -1.0000 -1.0000 0.0000 -1.0000 0.0000 -1.0000 0.0000 -1.0000 -1.0000

Option B: FOM = 0.050 deg. ORTHORHOMBIC I-lattice R(sym) = 0.119 [5445]

Cell: 14.688 14.727 15.244 89.96 90.03 90.01 Volume: 3297.48

Matrix: 1.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 1.0000

Option D: FOM = 0.030 deg. MONOCLINIC I-lattice R(sym) = 0.104 [3620]

Cell: 14.727 14.688 15.244 90.03 90.04 89.99 Volume: 3297.48

Matrix: 1.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000

Option F: FOM = 0.044 deg. MONOCLINIC I-lattice R(sym) = 0.099 [3615]

Cell: 14.688 14.727 15.244 89.96 90.03 90.01 Volume: 3297.48

Matrix: 1.0000 1.0000 0.0000 -1.0000 0.0000 -1.0000 0.0000 1.0000 1.0000

Option H: FOM = 0.050 deg. MONOCLINIC I-lattice R(sym) = 0.106 [3625]

Cell: 14.688 15.244 14.727 90.04 90.01 89.97 Volume: 3297.48

Matrix: 1.0000 1.0000 0.0000 0.0000 -1.0000 -1.0000 -1.0000 0.0000 -1.0000

Figure 9
(a) Structure solution using B21, Z0 = 6 for WUGLES, all non-hydrogen
atoms are present. (b) The B21, Z0 = 6 structure with hydrogen atoms and
after full anisotropic refinement and assignment of absolute configura-
tion. Diagrams generated using Mercury (Macrae et al., 2020).



istic of tetragonal symmetry (Hao et al., 2005). For ortho-

rhombic-I, XPREP suggests a space group of type Ibca

(Table 5a), but this also proved to be a dead end. All attempts

to find a chemically reasonable structure for orthorhombic-I

failed, with or without consideration of twinning. This leaves

the three monoclinic-I settings (options D, F, H in Table 4),

each having similar Rsym and cell angles all �90�. As a worst-

case scenario, all three settings would need to be considered,

with only the right one expected to yield a viable structure

model. It makes sense to first consider the setting that gives

the lowest Rsym (option F); with hindsight it also happens to be

the correct choice. This cell has the same transformation

matrix (from the initial primitive cell) as the orthorhombic-I

option and has systematic absences consistent with space

groups of type I2/a and Ia (Table 5b).

5.2. Suspected twinning for SAXDUR

The unit-cell metrics of the chosen I-centred monoclinic cell

are consistent with pseudo-tetragonal four-component twin-

ning about its c axis. For positive rotation, four successive 90�

steps about c are required, yielding the following four

matrices:

4þ½001� ¼

0 �1 0

1 0 0

0 0 1

2
64

3
75; 42þ

½001� ¼

�1 0 0

0 �1 0

0 0 1

2
64

3
75;

43þ
½001� ¼ 1 ¼

0 1 0

�1 0 0

0 0 1

2
64

3
75; 44þ

½001� ¼

1 0 0

0 1 0

0 0 1

2
64

3
75:

Two 90� steps generate a twofold rotation (as for a pseudo-

orthorhombic twin), while the fourth step regenerates the

starting position. The presence of pseudo-tetragonal twinning

would result in significant populations for four individuals, as

opposed to two if it were a pseudo-orthorhombic twin.

5.3. Initial structure ‘solution’ for SAXDUR using I2/a

The following instructions file for SHELXD created by

XPREP has been edited to include matrix 42þ
½001�, but 4þ

½001� or

43þ
½001� could also be tried.

TITL monI in I2=a

CELL 0:71073 14:6876 14:7273 15:2443 90:0000 90:027 90:0000

ZERR 16:00 0:0010 0:0011 0:0011 0:0000 0:005 0:0000

LATT 2

SYMM 0:5�X; Y; �Z

SFAC C H O

UNIT 96 256 48

TWIN �1 0 0 0 �1 0 0 0 1

FIND 15

PLOP 21 26 29

MIND 1:0 �0:1

NTRY 1000

HKLF 4

END

Since the structure is quite small, even a thousand trials

(‘NTRY 1000’) runs quickly. On completion of the SHELXD

run, the resulting model is not complete (Fig. 11a), but shows

enough of the structure to easily build two pinacol molecules

and assign two water oxygens (Fig. 11b). Fourfold twinning

can then be tested by fourfold application of either twin

matrix 4þ
½001� or 43þ

½001�, for example, by including (for the former)

the following commands in an ins file for SHELXL.
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Table 5
Analysis of systematic absences for SAXDUR using XPREP. (a) For orthorhombic-I, systematic absences are consistent with space group Ibca. This
setting, however, was abandoned because no viable structure could be obtained. (b) The lowest Rsym monoclinic-I setting is consistent with either I2/a or
Ia.

(a) Systematic absences for orthorhombic-I (option B):
Systematic absence exceptions:

b-- c-- -c- -a- --a --b

N 417 417 368 368 459 459

N I>3s 2 2 2 2 6 6

<I> 0.3 0.3 0.3 0.3 0.4 0.4

<I/s> 0.5 0.5 0.5 0.5 0.5 0.5

Identical indices and Friedel opposites combined before calculating R(sym)

Option Space Group No. Type Axes CSD R(sym) N(eq) Syst. Abs. CFOM

[A] Ibca #73 centro 1 14 0.119 5445 0.5 / 4.4 9.67

(b) Systematic absences for monoclinic-I (option F, lowest Rsym):
Systematic absence exceptions:

-a-

N 368

N I>3s 2

<I> 0.3

<I/s> 0.5

Identical indices and Friedel opposites combined before calculating R(sym)

Option Space Group No. Type Axes CSD R(sym) N(eq) Syst. ABS. CFOM

[A] I2/a 15 centro 1 3696 0.099 3615 0.5 / 4.4 3.00

[B] Ia 9 non-cen 1 566 0.099 3615 0.5 / 4.4 5.40



TWIN 0 �1 0 1 0 0 0 0 1 4

BASF 0:25 0:25 0:25

The component fractions in the above SHELXL ‘BASF’

command are just initial guesses and will refine. After a few

cycles of least-squares refinement, the model is dramatically

improved. Even anisotropic refinement (with restraints) is

possible, as is addition of riding methyl hydrogens (Fig. 11c).

All of the refined BASF parameters are significant, indicating

that fourfold twinning is appropriate. Consequently, the

R-value drops well into single digits.

5.4. Search for missed symmetry

In spite of the progress, the current I2/a model has

demonstrable problems. A careful inspection reveals hefty

correlation between atoms related through the central bond of

each pinacol molecule, suggestive of missed inversion

symmetry. Thus, a careful check for missing symmetry, visually

and for example, using ADDSYM in PLATON (Spek, 2020) is

warranted. For the latter, PLATON requires a CIF and a

‘LIST 4’ format fcf file, which are written by SHELXL if both

‘ACTA’ and ‘LIST 4’ commands are specified in the SHELXL

ins file. ADDSYM predicts a primitive monoclinic (P2/n) cell

with a volume only a quarter as large as the current I-centred

cell (Fig. 12), and supplies a transformation matrix from the

I2/a setting to P2/n, namely:

TI!P ¼

0:5 0 0:5
0 �0:5 0

0:5 0 �0:5

2
4

3
5:

It also gives the option to save a copy of the transformed

model (option ADDSYM-SHX).

Since the volume of the P2/n cell is only a quarter the size of

the I2/a cell, its asymmetric unit is half as big, which means the
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Figure 11
Preliminary structure for SAXDUR using the I-centred supercell: (a)
Initial SHELXD solution (using two twin components). (b) After model
building and isotropic refinement. (c) With anisotropic displacement
parameters and riding methyl hydrogens (four twin components).
Diagrams generated using ShelXle (Hübschle et al., 2011).

Figure 12
A search for missed symmetry using ADDSYM in PLATON (Spek, 2020) reveals that the symmetry of untwinned individuals in SAXDUR is actually
P2/n rather than I2/a. Thus, the true asymmetric unit contains only half as many atoms as in the I2/a model.



twin index for SAXDUR is 2. Thus, the twinning is reticular;

each individual only contributes to half of the measured

diffraction maxima of the twin. Transformation of the dataset

for P2/n by successive 90� rotations about the fourfold twin

axis (Fig. 13) would therefore generate non-integer reflection

indices for half the data. Normally, that is not a problem as

they’d be simply ignored or deleted; non-integer indices do not

represent actual Bragg peaks. Nevertheless, it causes such

‘impossible’ indices to coincide with actual Bragg maxima

from other individuals. Similar to WUGLES, we should not

simply discard them, but for SAXDUR, there is no setting of

space group 13, conventional or otherwise, that would allow

use of the SHELXL ‘TWIN’ command. The way forward is to

make a data file in SHELXL ‘HKLF 5’ format that preserves

all the information. One approach to creation of such an

‘HKLF 5’ format datafile for SAXDUR is given in a series of

straightforward steps in Appendix A. The resulting datafile is

available in the supporting information.

5.5. Complete refinement of SAXDUR as a fourfold twin
using P2/n

After minor editing, the P2/n model supplied by ADDSYM

in PLATON refines smoothly as a four-component twin

against the ‘HKLF 5’ format dataset without the need for

restraints (Fig. 10). When viewed down the [101] direction of

the P2/n cell, which corresponds to the pseudo-tetragonal c

axis of the I2/a supercell, the approximate fourfold symmetry

is readily apparent (Fig. 14).

6. Conclusions

Any ultimately correct structure determination of a twinned

crystal requires use of the proper space-group symmetry and

complete treatment of the twinning. Once these criteria are

met, final refinement of the structure is usually no more

problematic than a non-twinned structure of similar

complexity. Nevertheless, the route taken to solve the struc-

ture and assign the true space-group symmetry and twin law

might in practice be rather indirect. As such, whatever tools

and tricks are used as means to delivering a valid crystal-

lographic end result are fair game.

APPENDIX A
Manual construction of a SHELXL ‘HKLF 5’ format
datafile for SAXDUR

The SHELX ‘HKLF 5’ format for twinned diffraction data is

well described in the SHELXL manual and elsewhere (see,
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Figure 13
(a) Relationship between the pseudo-tetragonal I-centred supercell (dashed lines) and a primitive monoclinic individual (solid black lines, plus red = a,
green = b, blue = c) of the twin in SAXDUR, viewed slightly off the fourfold twin axis, and after anticlockwise rotations of (b) 90�, (c) 180�, and (d) 270�

about the twin axis. Diagrams generated using VESTA (Momma & Izumi, 2011).

Figure 14
The propensity for pseudo-tetragonal fourfold twinning in SAXDUR is
clearly demonstrated in a packing plot for one individual viewed along
[101], which is the fourfold twin axis relative to the P2/n unit cell.
Diagram generated using Mercury (Macrae et al., 2020).



e.g. the supporting information for Sevvana et al., 2019).

Briefly, each individual is assigned a separate batch number

and twin-related reflections are grouped together sequentially.

Batch numbers are set negative except for the last member of

each group, for which the batch number is positive. There is no

best way to generate such an ‘HKLF 5’ format datafile, but

equivalents should be already merged because the format

mandates suppression of merging within SHELXL. One could

write a short program or script (e.g. Bolte, 2004), but the task

itself is straightforward and does not require programming

skills beyond text file reformatting. The following describes a

logical step-by-step approach to generate an ‘HKLF 5’ format

datafile from an ‘HKLF 4’ format datafile. It uses only

common unix command-line tools awk and paste [these are

available on Windows via the Cygwin project (Cygwin, 2020)]

and is adaptable to other cases. For the pseudo-tetragonal

twinning of SAXDUR in Section 5 above, the four individuals

of the twin are related by successive rotation of 90� about the

c-axis of a pseudo-tetragonal I-centred supercell. A positive

rotation of 90� (anticlockwise about c) is achieved by the

following matrix:

4þ½001� ¼

0 �1 0

1 0 0

0 0 1

2
4

3
5: ðA1Þ

Repeated application generates four matrices. Starting with

the identity matrix, these are:

40þ
½001� ¼

1 0 0

0 1 0

0 0 1

2
4

3
5; ðA2Þ

4þ½001� ¼

0 �1 0

1 0 0

0 0 1

2
4

3
5; ðA3Þ

42þ
½001� ¼

�1 0 0

0 �1 0

0 0 1

2
4

3
5; ðA4Þ

43þ
½001� ¼

0 1 0

�1 0 0

0 0 1

2
4

3
5: ðA5Þ

A1. Split data into separate components

For each of the four individuals, write separate files with

indices transformed by matrices A2–5 using awk. The order

does not matter, but a logical approach is to go stepwise about

the (pseudo) fourfold. From a command-line terminal, issue

the following commands:

awk ’{print $1,$2,$3,$4,$5,1,NR}’ monI.hkl >

step1-1.txt

awk ’{print -$2,$1,$3,$4,$5,2,NR}’ monI.hkl

> step1-2.txt

awk ’{print -$1,-$2,$3,$4,$5,3,NR}’ monI.hkl

> step1-3.txt

awk ’{print $2,-$1,$3,$4,$5,4,NR}’ monI.hkl

> step1-4.txt

In the above, the matrix transformation is accomplished by

manipulation of the fields ($1, $2, $3) within the print

commands. Also note that a batch number (1–4) and the line

number (NR) of each reflection are appended to each line in

the output text files. As stated above, in an ‘HKLF 5’ file, the

last member of a group of twin-related reflections needs a

positive batch number, with the rest negative. That will be

fixed in a later step using these additional fields.

A2. Combine components

The individual files must be combined, with lines interlaced

in sequence. An easy way to achieve this is with the unix utility

paste, which does a ‘parallel merge’. To trick paste into putting

each component on consecutive lines, the delimiter is changed

from the default (tab) to a newline (\n) character:

paste -d"\n" step1-1.txt step1-2.txt step1-

3.txt step1-4.txt > step2.txt

The above writes a file in which contributions to each

measured intensity are grouped, with sequential batch

numbers.

A3. Transform from monoclinic-I to monoclinic-P

Transformation from the I-centred setting to primitive

monoclinic is via the following matrix:

TI!P ¼

0:5 0 0:5
0 �0:5 0

0:5 0 �0:5

2
4

3
5: ðA6Þ

This is the same matrix suggested by ADDSYM in Section

5.4 (Note: for other twinning cases, this matrix would be

different). To apply it, again use awk:

awk ’{print ($1+$3)/2,-$2/2,($1-$3)/

2,$4,$5,$6,$7}’ step2.txt > step3.txt

The index transformation inevitably writes some lines that

have non-integer indices for each individual, which must be

discarded.

A4. Eliminate non-integer indices

The following line of awk only accepts lines that have two

dot ‘.’ characters.

awk -F. ’NF==3’ step3.txt > step4.txt

In the above, the field separator is first changed to a ‘.’

character. Lines in the input file are only transferred to the

output file if the number of fields is 3. This works here because

an ‘HKLF 5’ file should only have two decimal points [in the

F 2 and � (F 2) fields] per reflection. [Note, however, some

hkl files written by PLATON store F 2 and �(F 2) as integers,

and thus should have no decimal points at all, and would

require a modified condition (i.e. ’NF==1’) in the above awk

command.]

A5. Flag last member of each twin-related group

The batch number of the last member of each group of twin-

related reflections must be positive and the rest negative. The

following awk one-liner gets part way there:
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awk ’NR==1{printf "%s", $0; next}; {print " "

$NF; printf "%s", $0}’ step4.txt > step5.txt

The above writes a new file with each line appended with an

extra field containing the (original) line number of the next

reflection in the file.

A6. Generate ’HKLF 5’ format datafile

The final step sets batch numbers for the last member of

each group positive and the rest negative:

awk ’{if ($(NF-1)==$(NF)) {m=-1} else {m=1};

printf "%4d%4d%4d%8.2f%8.2f%4d\n", $1,$2,$3,

$4,$5,$6*m}’ step5.txt > step6.hkl

In the above, (original) line numbers of consecutive

reflections are compared and their batch-number signs

modified, as per the ‘HKLF 5’ format rules. Lastly, it writes an

hkl file formatted as ‘3I4, 2F8.2, I4’. The fastidious might want

to manually edit the file termination line(s), but that is not

necessary for proper SHELXL operation. For convenience,

the above commands are available in the supporting infor-

mation as a plain text file, suitable for copy/paste. They may

also be combined into a single script along with additional

commands to delete intermediate files.
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Oszlányi, G. & Süto��, A. (2004). Acta Cryst. A60, 134–141.
Otieno, T., Hatfield, M. J., Asher, S. L., McMullin, A. I., Patrick, B. O.

& Parkin, S. (2001). Synth. React. Inorg. Met.-Org. Chem. 31, 1587–
1598.

Parkin, S. & Hope, H. (1998). Acta Cryst. B54, 339–344.
Parsons, S. (2003). Acta Cryst. D59, 1995–2003.
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–

259.
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