

Received 25 May 2021 Accepted 29 July 2021

Edited by V. Jancik, Universidad Nacional Autónoma de México, México

Keywords: crystal structure; iodobismuthate; photovoltaic materials.

CCDC reference: 2100182

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of (C₉H₁₇N₂)₃[Bi₂I₉]

Zoe James, Yunhe Cai and Paz Vaqueiro*

Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6DX, UK. *Correspondence e-mail: p.vaqueiro@reading.ac.uk

Single crystals of tris(2,3,4,6,7,8,9,10-octahydropyrimido[1,2-*a*]azepin-1-ium) tri- μ_2 -iodido-bis[triiodidobismuth(III)], (C₉H₁₇N₂)₃[Bi₂I₉], were prepared by a solvothermal method, heating a mixture of BiI₃, KI, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and ethanol at 443 K for six days. The asymmetric unit of the title compound, which crystallizes in the monoclinic space group $P2_1/c$, contains one $[Bi_2I_9]^{3-}$ anion and three protonated DBUH⁺ moieties. The dinuclear $[Bi_2I_9]^{3-}$ anions, which are composed of face-sharing BiI₆³⁻ octahedra, are packed in columns parallel to the [010] direction, and separated by protonated DBUH⁺ moieties. The optical band gap of $(C_9H_7N_2)_3Bi_2I_9$ is 2.1 eV.

1. Chemical context

In recent years, hybrid bismuth halides have attracted considerable attention owing to their interesting physical properties (Adonin et al., 2016), including luminescence (Adonin et al., 2015), non-linear optical effects (Bi et al., 2008) and thermochromism (García-Fernández et al., 2018). Moreover, the lack of stability and the toxicity of lead halide perovskites has stimulated research efforts into bismuthcontaining halides as stable and environmentally friendly alternatives for photovoltaic applications (Wu et al., 2020). However, bismuth-containing hybrid halides, such as (CH₃NH₃)₃Bi₂I₉ (Eckhardt et al., 2016), often adopt lowdimensional structures, which in most cases result in larger band gaps than those of lead halide perovskites (Wang et al., 2020). Examples of two- or three-dimensional structures are very rare, and include a two-dimensional metal-deficient perovskite, (H₂AEQT)Bi_{2/3}I₄ (AEQT = 5,5""-bis(aminoethyl)-2,2':5',2":5",2"'-quaterthiophene) (Mitzi, 2000) and the two-dimensional mixed halide $(TMP)_{1.5}[Bi_2I_7Cl_2]_4$ (TMP = N,N,N',N'-tetramethylpiperazine) (Li et al., 2017). The vast majority of hybrid bismuth halides contain zero-dimensional units, which are either discrete polynuclear or mononuclear anionic units, depending on the synthetic conditions and the nature of the organic counter-cations (Wu et al., 2009). In these materials, the Bi3+ cation typically adopts a distorted octahedral coordination, either forming mononuclear anions or polynuclear anions in which octahedra share edges or faces. Dinuclear species, such as $[Bi_2I_8]^{2-}$, $[Bi_2I_9]^{3-}$ and $[Bi_2I_{10}]^{4-}$, are one of the most widespread types of bismuth-halide units (Adonin et al., 2016).

2. Structural commentary

The asymmetric unit of $(C_9H_7N_2)_3Bi_2I_9$ comprises three protonated DBUH⁺ cations, one of which is disordered (see

research communications

Refinement), and one $[Bi_2I_9]^{3-}$ anion (Fig. 1). The two Bi^{3+} cations found in the $[Bi_2I_9]^{3-}$ unit are octahedrally coordinated by six iodides, with Bi-I distances ranging between 2.9532 (4) and 3.2788 (4) Å. Each BiI_6^{3-} octahedron shares one face with a second octahedron, forming a dinuclear unit, $[Bi_2I_9]^{3-}$. The Bi-I distances for the bridging μ_2 -I⁻ anions, which range between 3.1405 (5) and 3.2788 (4) Å, are significantly longer than those for the terminal iodides [2.9532 (4) to 2.9908 (5) Å]. The angles for $Bi^{3+} - \mu_2 - I^- - Bi^{3+}$ range from 78.144 (9) to 80.095 (10)°, while those for terminal I^- Bi³⁺- μ_2 -I⁻ take values between 85.283 (13) and 97.725 (12)°. The face-sharing arrangement of BiI_6^{3-} octahedra and the distances and angles are similar to those found in other containing $[Bi_2I_9]^{3-}$ compounds anions, such as (CH₃NH₃)₃Bi₂I₉ (Eckhardt et al., 2016) or (C₃H₅N₂)₃Bi₂I₉ (Węcławik et al., 2016).

3. Supramolecular features

The $[Bi_2I_9]^{3-}$ dinuclear units are packed in columns parallel to the [010] direction (Fig. 2), separated by the protonated DBUH⁺ cations. There are no short I···I distances between the $[Bi_2I_9]^{3-}$ anions, implying that there are limited interactions that could lead to extended electronic delocalization.

As shown in Table 1, there is hydrogen bonding between the amine functional groups in the DBU moieties and the

View of the packing of the title compound along [010]. Key: bismuth, green polyhedra; iodine, large orange spheres; carbon, small grey spheres; nitrogen, small blue spheres. H atoms have been omitted for clarity.

 $[Bi_2I_9]^{3-}$ dinuclear units. It should be noted that H30 does not form a hydrogen bond. This may be related to the fact that N30 is almost equidistant to I2, I5, I7 and I11. In addition, there are also short contacts of the type C-H···I. Hirshfeld surface analysis was performed using *Crystal Explorer 17* (Turner *et al.*, 2017), with standard resolution of the d_{norm} surfaces. A number of short H···I contacts are highlighted in red in the Hirshfeld surfaces for the DBU cations and the $[Bi_2I_9]^{3-}$ anion (Fig. 3). Examination of the fingerprint plots for the DBUH⁺ cations (see supporting information), resolved

Figure 3

Hirshfeld surfaces, mapped with d_{norm} , of the three crystallographically independent DBUH⁺ cations and the $[\text{Bi}_2\text{I}_9]^{3-}$ anion. The red areas correspond to regions where contacts are shorter than the sum of the van der Waals radii.

Figure 1

The asymmetric unit of $(C_9H_7N_2)_3Bi_2I_9$ with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. Only one orientation of the disordered $DBUH^+$ ring is shown.

research communications

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
	2 11		2	2 11 11
$N19-H19\cdots I9^{i}$	0.88	2.81	3.632 (5)	156
$N41 - H41 \cdots I6^{ii}$	0.88	2.91	3.735 (13)	157
$N41 - H41 \cdots I8^{ii}$	0.88	3.21	3.663 (14)	115
$N41A - H41A \cdots I6^{ii}$	0.88	2.62	3.492 (15)	169

Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.

into $H \cdots H$ and $H \cdots I$ contacts, reveals that approximately 30% of the surface area corresponds to $H \cdots I$ contacts, with the remaining area corresponding to $H \cdots H$ interactions.

4. Database survey

A search in the Cambridge Structural Database (CSD Version 2020.3, December 2020; Groom *et al.*, 2016) reveals that there are numerous compounds containing the dinuclear $[Bi_2I_9]^{3-}$ anion, also found in the compound reported here. This includes examples in which the counter-cation is an organic moiety, such as $(CH_3NH_3)_3Bi_2I_9$ (Eckhardt *et al.*, 2016) or $(C_3H_5N_2)_3Bi_2I_9$ (Węcławik *et al.*, 2016), but also compounds in which the counter-cation is a transition-metal or a rare-earth complex, such as $[Co(C_2H_8N_2)_3][Bi_2I_9]$ (Goforth *et al.*, 2005) or $[Ln(DMF)_8][Bi_2I_9]$ (Ln = Y, Tb) (Mishra *et al.*, 2012). The ubiquitous dinuclear $[Bi_2I_9]^{3-}$ anion has also been found in compounds containing two or more anions, including $(C_8H_{18}N_2)_7(BiI_6)_2(Bi_2I_9)_2\cdot 2I_3$ (Zhang *et al.*, 2018), and in inorganic compounds like Cs₃Bi₂I₉ (Arakcheeva *et al.*, 2001).

5. Optical properties and thermal stability

UV-vis diffuse reflectance data (Fig. 4) were collected on hand-picked single crystals, using a Perkin Elmer Lambda 35 UV-vis spectrometer. $BaSO_4$ was used as a standard. The optical band gap, which was estimated from the absorption edge, is 2.1 eV. Thermogravimetric analysis (TGA) was carried out using a TA-TGA Q50 instrument. Measurements

UV-vis diffuse reflectance for the title compound.

Experimental details.	
Crystal data	
Chemical formula	$(C_9H_{17}N_2)_3[Bi_2I_9]$
M _r	2019.79
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
a, b, c (Å)	19.2590 (9), 12.5734 (3), 21.6767 (9)
β (°)	115.861 (5)
$V(Å^3)$	4723.4 (4)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	13.35
Crystal size (mm)	$0.31 \times 0.23 \times 0.07$
Data collection	
Diffractometer	XtaLAB Synergy, Dualflex, HyPix
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2019)
T_{\min}, T_{\max}	0.23, 1.00
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	38319, 13780, 11096
R _{int}	0.034
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.714
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.036, 0.086, 1.08
No. of reflections	13780
No. of parameters	497
No. of restraints	543
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	2.22, -2.57

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL2018/3 (Sheldrick, 2015), ATOMS (Dowty, 2020) and ORIGIN (Edwards, 2002).

(see supporting information) carried out under a flowing nitrogen atmosphere indicate that $(C_9H_7N_2)_3Bi_2I_9$ is stable up to $300^{\circ}C$.

6. Synthesis and crystallization

Table 2

A mixture of BiI₃ (1.1790 g, 2 mmol), KI (0.4490 g, 3 mmol), DBU (0.150 mL, 1 mmol) and ethanol (10 mL) was placed inside the Teflon liner of a 23 mL Parr autoclave. The autoclave was heated in an oven at 443 K for 6 days, using a heating and cooling rate of 0.1 K min⁻¹. Following filtration, the collected solid product consisted of a mixture of red powder and crystals of the title compound. The powder X-ray diffraction pattern of the product (see supporting information), collected using a Bruker D8 Advance powder diffractometer (Cu $K_{\alpha 1}$, $\lambda = 1.5406$ Å), was in excellent agreement with the simulated diffraction pattern, based on the singlecrystal structure determination. Elemental analysis: Calculated values (%) for C₂₇H₅₁N₆Bi₂I₉: C, 16.06; H, 2.55; N, 4.16. Found: C, 16.07; H, 2.42; N, 4.09. IR (ν_{max}) cm⁻¹: 2920, 2850 (C-H); 1640 (C=N).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were positioned geometrically, with C-H = 0.99 Å (for methylene H

atoms) and with N–H = 0.88 Å, and were refined with $U_{iso}(H)$ = 1.2 $U_{eq}(C \text{ or N})$. The disordered DBUH⁺ cation has been refined using geometry (SAME) and U_{ij} restraints (SIMU and RIGU) implemented in *SHELXL*. The ratio between the site occupancies of the two positions was refined to 57.1 (13):42.9 (13)%. The maximum/minimum of the difference electron density is located 1.10 and 1.13 Å from Bi3 and Bi1, respectively. The electron density maxima and minima (2.22 and -2.57 e Å⁻³) close to the heavy bismuth atoms can be ascribed to Fourier truncation ripples and/or non-ideal absorption correction.

Acknowledgements

The University of Reading is acknowledged for access to the Chemical Analysis Facility (CAF). Mr Nick Spencer is thanked for his assistance with the collection of the X-ray diffraction data and Dr Pedro Rivas Ruiz for help with FT–IR and Thermogravimetric analysis.

References

- Adonin, S. A., Sokolov, M. N. & Fedin, V. P. (2016). Coord. Chem. Rev. 312, 1-21.
- Adonin, S. A., Sokolov, M. N., Rakhmanova, M. E., Smolentsev, A. I., Korolkov, I. V., Kozlova, S. G. & Fedin, V. P. (2015). *Inorg. Chem. Commun.* 54, 89–91.
- Arakcheeva, A. V., Chapuis, G. & Meyer, M. (2001). Z. Kristallogr. **216**, 199–205.
- Bi, W., Louvain, N., Mercier, N., Luc, J., Rau, I., Kajzar, F. & Sahraoui, B. (2008). Adv. Mater. 20, 1013–1017.
- Dowty, E. (2020). ATOMS. Shape Software, Kingsport, Tennessee, USA.

- Eckhardt, K., Bon, V., Getzschmann, J., Grothe, J., Wisser, F. M. & Kaskel, S. (2016). *Chem. Commun.* 52, 3058–3060.
- Edwards, P. M. (2002). J. Chem. Inf. Comput. Sci. 42, 1270-1271.
- García-Fernández, A., Marcos-Cives, I., Platas-Iglesias, C., Castro-García, S., Vázquez-García, D., Fernández, A. & Sánchez-Andújar, M. (2018). *Inorg. Chem.* 57, 7655–7664.
- Goforth, A. M., Hipp, R. E., Smith, M. D., Peterson, L. & zur Loye, H.-C. (2005). Acta Cryst. E61, m1531–m1533.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Li, M.-Q., Hu, Y.-Q., Bi, L.-Y., Zhang, H.-L., Wang, Y. & Zheng, Y.-Z. (2017). *Chem. Mater.* **29**, 5463–5467.
- Mishra, S., Jeanneau, E., Iasco, O., Ledoux, G., Luneau, D. & Daniele, S. (2012). *Eur. J. Inorg. Chem.* pp. 2749–2758.
- Mitzi, D. B. (2000). Inorg. Chem. 39, 6107-6113.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
- Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *Crystal Explorer 17.5*. University of Western Australia.
- Wang, Y., Wen, R., Liu, Y., Bi, L.-Y., Yang, M., Sun, H., Zheng, Y.-Z., Zhang, G. & Gao, Z. (2020). *ChemSus Chem*, 13, 2753–2760.
- Węcławik, M., Gągor, A., Jakubas, R., Piecha-Bisiorek, A., Medycki, W., Baran, J., Zieliński, P. & Gałązka, M. (2016). *Inorg. Chem. Front.* 3, 1306–1316.
- Wu, C., Zhang, Q., Liu, G., Zhang, Z., Wang, D., Qu, B., Chen, Z. & Xiao, L. (2020). Adv. Energy Mater. 10, 1902496.
- Wu, L.-M., Wu, X.-T. & Chen, L. (2009). Coord. Chem. Rev. 253, 2787–2804.
- Zhang, Z.-P., Feng, Q.-Y., Wang, Q.-L., Huang, X.-Y., Chen, D. & Zhou, J. (2018). J. Clust Sci. 29, 367–374.

Acta Cryst. (2021). E77, 899-902 [https://doi.org/10.1107/S2056989021007799]

Crystal structure of (C₉H₁₇N₂)₃[Bi₂I₉]

Zoe James, Yunhe Cai and Paz Vaqueiro

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2019); cell refinement: *CrysAlis PRO* (Rigaku OD, 2019); data reduction: *CrysAlis PRO* (Rigaku OD, 2019); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015); molecular graphics: *ATOMS* (Dowty, 2020) and ORIGIN (Edwards, 2002).

Tris(2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepin-1-ium) tri-µ2-iodido-bis[triiodidobismuth(III)]

Crystal data

 $(C_9H_{17}N_2)_3[Bi_2I_9]$ $M_r = 2019.79$ Monoclinic, $P2_1/c$ a = 19.2590 (9) Å b = 12.5734 (3) Å c = 21.6767 (9) Å $\beta = 115.861$ (5)° V = 4723.4 (4) Å³ Z = 4

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) $T_{\min} = 0.23, T_{\max} = 1.00$ 38319 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.086$ S = 1.0813780 reflections 497 parameters 543 restraints F(000) = 3592 $D_x = 2.840 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25746 reflections $\theta = 2-33^{\circ}$ $\mu = 13.35 \text{ mm}^{-1}$ T = 100 KPlate, red $0.31 \times 0.23 \times 0.07 \text{ mm}$

13780 independent reflections 11096 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 30.5^\circ, \ \theta_{min} = 2.4^\circ$ $h = -27 \rightarrow 27$ $k = -13 \rightarrow 17$ $l = -30 \rightarrow 29$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0423P)^2 + 1.9329P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 2.22$ e Å⁻³ $\Delta\rho_{min} = -2.57$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)	
Bil	0.18727 (2)	0.75290 (2)	0.16730 (2)	0.01478 (5)		
Bi3	0.31503 (2)	0.48511 (2)	0.25029 (2)	0.01518 (5)		
I2	0.18622 (2)	0.60345 (3)	0.28735 (2)	0.01778 (8)		
I4	0.19072 (2)	0.52615 (3)	0.09942 (2)	0.01934 (8)		
15	0.37010(2)	0.72314 (3)	0.24092 (2)	0.02467 (9)		
I6	0.24567 (3)	0.27208 (3)	0.24502 (2)	0.02245 (9)		
I7	0.42044 (3)	0.48954 (3)	0.40035 (2)	0.02341 (9)		
18	0.42451 (3)	0.39855 (3)	0.20120 (2)	0.02961 (10)		
19	0.01394 (2)	0.74983 (3)	0.10767 (2)	0.01875 (8)		
I10	0.17891 (3)	0.84909 (3)	0.03995 (2)	0.02861 (10)		
I11	0.21740 (3)	0.95712 (3)	0.24184 (2)	0.02482 (9)		
N12	-0.0295 (3)	0.7605 (4)	0.3236 (2)	0.0195 (10)		
N19	-0.0307 (4)	0.7271 (4)	0.4272 (3)	0.0258 (12)		
H19	-0.027161	0.752892	0.466231	0.031*		
N23	0.4254 (4)	0.8196 (5)	0.5457 (3)	0.0360 (15)		
N30	0.3585 (4)	0.8010 (5)	0.4269 (3)	0.0396 (15)		
H30	0.359982	0.793472	0.387180	0.048*		
C13	-0.0306 (4)	0.8352 (5)	0.2708 (3)	0.0229 (13)		
H13A	-0.066990	0.893757	0.265999	0.028*		
H13B	-0.049722	0.797679	0.226308	0.028*		
C14	0.0479 (4)	0.8816 (5)	0.2876 (3)	0.0270 (15)		
H14A	0.048509	0.907961	0.244777	0.032*		
H14B	0.087103	0.824650	0.306148	0.032*		
C15	0.0701 (5)	0.9724 (5)	0.3392 (3)	0.0278 (15)		
H15A	0.033195	1.031594	0.319000	0.033*		
H15B	0.121944	0.998640	0.347472	0.033*		
C16	0.0714 (4)	0.9420 (5)	0.4083 (3)	0.0221 (13)		
H16A	0.108721	0.883316	0.428703	0.027*		
H16B	0.089943	1.003738	0.439604	0.027*		
C17	-0.0061 (4)	0.9077 (5)	0.4035 (3)	0.0238 (13)		
H17A	-0.006610	0.918916	0.448522	0.029*		
H17B	-0.046909	0.952911	0.369487	0.029*		
C18	-0.0238 (4)	0.7931 (5)	0.3832 (3)	0.0183 (11)		
C20	-0.0438 (5)	0.6139 (5)	0.4146 (3)	0.0389 (19)		
H20A	-0.099868	0.598977	0.392050	0.047*		
H20B	-0.020771	0.574505	0.458548	0.047*		
C21	-0.0072 (5)	0.5788 (5)	0.3692 (4)	0.0374 (18)		
H21A	0.049581	0.584182	0.394607	0.045*		
H21B	-0.020549	0.503466	0.355954	0.045*		

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C22	-0.0347 (5)	0.6463 (5)	0.3062 (3)	0.0283 (15)	
H22A	-0.003083	0.631452	0.281397	0.034*	
H22B	-0.088950	0.627970	0.275421	0.034*	
C24	0.4962 (5)	0.8075 (6)	0.6123 (3)	0.0354 (18)	
H24A	0.518750	0.736198	0.613821	0.043*	
H24B	0 481188	0.811679	0.650508	0.043*	
C25	0.5580 (5)	0.8926 (6)	0.6230(4)	0.0354(17)	
H25A	0.532320	0.962602	0.608853	0.043*	
H25B	0.593503	0.896773	0.672436	0.043*	
C26	0.595505 0.6046(5)	0.8709 (6)	0.572130 0.5832 (4)	0.0383(18)	
H264	0.633464	0.803665	0.5052 (1)	0.046*	
H26R	0.643041	0.003005	0.593145	0.046*	
C27	0.5574 (5)	0.928300	0.593143	0.040	
H27A	0.520801	0.8023 (3)	0.3048 (4)	0.0324 (10)	
1127A 1127P	0.523631	0.950270	0.487390	0.039	
C28	0.393313	0.832180 0.7723(5)	0.483870 0.4815 (4)	0.039° 0.0325 (17)	
	0.4969 (3)	0.7723 (3)	0.4013(4)	0.0323(17)	
П20А	0.480300	0.734439	0.455554	0.039*	
H28B	0.522400	0.708599	0.509803	0.039^{*}	
C29	0.4259 (4)	0.7989 (5)	0.4808(3)	0.0244 (14)	
C31	0.2843 (5)	0.815/(/)	0.4294 (4)	0.0391 (18)	
H3IA	0.265602	0./46/10	0.438399	0.04/*	
H31B	0.245533	0.843192	0.384877	0.047/*	
C32	0.2947 (5)	0.8938 (6)	0.4860 (4)	0.0427 (19)	
H32A	0.306527	0.965247	0.473852	0.051*	
H32B	0.246359	0.898744	0.491447	0.051*	
C33	0.3583 (5)	0.8581 (6)	0.5509 (4)	0.0339 (16)	
H33A	0.373768	0.918258	0.583628	0.041*	
H33B	0.338628	0.800906	0.570454	0.041*	
N34	0.7076 (14)	0.569 (2)	0.4694 (6)	0.018 (2)	0.571 (13)
C35	0.7601 (11)	0.5636 (16)	0.5432 (7)	0.018 (3)	0.571 (13)
H35A	0.813909	0.558906	0.549092	0.022*	0.571 (13)
H35B	0.748948	0.498240	0.562769	0.022*	0.571 (13)
C36	0.7528 (11)	0.6591 (18)	0.5828 (10)	0.025 (3)	0.571 (13)
H36A	0.774972	0.639947	0.631953	0.030*	0.571 (13)
H36B	0.697209	0.673716	0.567634	0.030*	0.571 (13)
C37	0.7915 (15)	0.7619 (14)	0.5756 (10)	0.024 (3)	0.571 (13)
H37A	0.777857	0.819481	0.599494	0.029*	0.571 (13)
H37B	0.848090	0.751928	0.599731	0.029*	0.571 (13)
C38	0.7712 (11)	0.7984 (14)	0.5031 (10)	0.027 (3)	0.571 (13)
H38A	0.802108	0.862452	0.505442	0.032*	0.571 (13)
H38B	0.716141	0.819577	0.481252	0.032*	0.571 (13)
C39	0.7844 (9)	0.7154 (13)	0.4570 (8)	0.024 (3)	0.571 (13)
H39A	0.788929	0.752081	0.418453	0.028*	0.571 (13)
H39B	0.833494	0.677330	0.483789	0.028*	0.571 (13)
C40	0.7199 (12)	0.6369 (17)	0.4291 (7)	0.024 (4)	0.571 (13)
N41	0.6722 (8)	0.6439 (10)	0.3640 (6)	0.031 (3)	0.571 (13)
H41	0.682573	0.690516	0.338939	0.037*	0.571 (13)
C42	0.6022 (8)	0.5786 (10)	0.3302 (6)	0.031 (3)	0.571 (13)

H42A	0.590982	0.566712	0.281668	0.037*	0.571 (13)
H42B	0.557524	0.615825	0.331593	0.037*	0.571 (13)
C43	0.6149 (8)	0.4726 (8)	0.3674 (5)	0.027 (2)	0.571 (13)
H43A	0.565860	0.432290	0.349771	0.033*	0.571 (13)
H43B	0.653090	0.429953	0.358891	0.033*	0.571 (13)
C44	0.6436 (8)	0.4913 (12)	0.4427 (6)	0.020 (3)	0.571 (13)
H44A	0.600588	0.517838	0.451858	0.024*	0.571 (13)
H44B	0.661310	0.422934	0.467339	0.024*	0.571 (13)
N34A	0.7037 (19)	0.565 (3)	0.4637 (9)	0.020 (3)	0.429 (13)
C35A	0.7431 (15)	0.557 (2)	0.5392 (9)	0.018 (4)	0.429 (13)
H35C	0.798368	0.541270	0.553819	0.021*	0.429 (13)
H35D	0.720485	0.498255	0.554487	0.021*	0.429 (13)
C36A	0.7363 (15)	0.660 (2)	0.5737 (12)	0.020 (3)	0.429 (13)
H36C	0.741545	0.643507	0.620154	0.024*	0.429 (13)
H36D	0.684452	0.691150	0.546985	0.024*	0.429 (13)
C37A	0.7984 (19)	0.7428 (19)	0.5793 (12)	0.022 (4)	0.429 (13)
H37C	0.795358	0.804298	0.606510	0.026*	0.429 (13)
H37D	0.850144	0.710386	0.603988	0.026*	0.429 (13)
C38A	0.7887 (14)	0.7819 (16)	0.5091 (12)	0.022 (4)	0.429 (13)
H38C	0.826561	0.839271	0.515949	0.026*	0.429 (13)
H38D	0.736426	0.812666	0.484167	0.026*	0.429 (13)
C39A	0.7998 (11)	0.6933 (16)	0.4645 (11)	0.019 (3)	0.429 (13)
H39C	0.813384	0.726348	0.429756	0.022*	0.429 (13)
H39D	0.843318	0.647143	0.493943	0.022*	0.429 (13)
C40A	0.7293 (14)	0.626 (2)	0.4290 (8)	0.017 (3)	0.429 (13)
N41A	0.6957 (8)	0.6272 (12)	0.3614 (8)	0.018 (3)	0.429 (13)
H41A	0.717128	0.664894	0.340134	0.022*	0.429 (13)
C42A	0.6248 (11)	0.5690 (16)	0.3198 (8)	0.029 (3)	0.429 (13)
H42C	0.637673	0.498814	0.306758	0.035*	0.429 (13)
H42D	0.593866	0.609199	0.277302	0.035*	0.429 (13)
C43A	0.5791 (9)	0.5543 (12)	0.3608 (7)	0.027 (3)	0.429 (13)
H43C	0.558783	0.623766	0.366852	0.032*	0.429 (13)
H43D	0.534828	0.506463	0.335744	0.032*	0.429 (13)
C44A	0.6295 (13)	0.5075 (19)	0.4294 (8)	0.026 (4)	0.429 (13)
H44C	0.602112	0.510448	0.458819	0.031*	0.429 (13)
H44D	0.639682	0.431902	0.423618	0.031*	0.429 (13)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Bi1	0.01519 (11)	0.01399 (10)	0.01444 (10)	0.00064 (8)	0.00580 (9)	0.00318 (7)
Bi3	0.01585 (11)	0.01421 (10)	0.01379 (10)	0.00126 (8)	0.00490 (9)	-0.00033 (7)
I2	0.0225 (2)	0.01701 (17)	0.01585 (16)	0.00304 (14)	0.01026 (16)	0.00337 (12)
I4	0.0213 (2)	0.02260 (18)	0.01239 (16)	0.00069 (15)	0.00570 (16)	-0.00100 (13)
15	0.0158 (2)	0.02024 (18)	0.0350 (2)	-0.00150 (15)	0.00837 (18)	0.00284 (15)
I6	0.0314 (2)	0.01434 (17)	0.01965 (18)	-0.00229 (15)	0.00928 (18)	-0.00232 (13)
I7	0.0242 (2)	0.02374 (19)	0.01498 (17)	0.00049 (16)	0.00181 (17)	0.00064 (14)
18	0.0222 (2)	0.0374 (2)	0.0300 (2)	0.00495 (18)	0.01215 (19)	-0.00864 (17)

I9	0.01549 (19)	0.02433 (18)	0.01576 (17)	0.00086 (15)	0.00617 (16)	0.00014 (13)
I10	0.0275 (2)	0.0353 (2)	0.0234 (2)	-0.00061 (18)	0.01148 (19)	0.01407 (16)
I11	0.0246 (2)	0.01504 (17)	0.0310 (2)	0.00004 (16)	0.00855 (19)	-0.00205 (14)
N12	0.021 (3)	0.022 (2)	0.015 (2)	-0.003 (2)	0.008 (2)	-0.0051 (18)
N19	0.033 (3)	0.026 (3)	0.015 (2)	-0.010 (2)	0.007 (2)	-0.0008 (19)
N23	0.047 (4)	0.038 (3)	0.028 (3)	0.002 (3)	0.020 (3)	-0.001 (2)
N30	0.041 (4)	0.054 (4)	0.023 (3)	0.005 (3)	0.014 (3)	-0.008 (3)
C13	0.029 (4)	0.025 (3)	0.014 (3)	-0.004 (3)	0.010 (3)	-0.002 (2)
C14	0.037 (4)	0.027 (3)	0.021 (3)	-0.012 (3)	0.016 (3)	-0.008 (2)
C15	0.037 (4)	0.022 (3)	0.024 (3)	-0.006 (3)	0.013 (3)	-0.001 (2)
C16	0.029 (4)	0.019 (3)	0.010 (3)	-0.001 (3)	0.001 (3)	-0.003 (2)
C17	0.031 (4)	0.026 (3)	0.019 (3)	0.003 (3)	0.016 (3)	-0.004 (2)
C18	0.012 (3)	0.024 (3)	0.014 (3)	0.001 (2)	0.001 (2)	0.001 (2)
C20	0.055 (6)	0.032 (4)	0.019 (3)	-0.019 (4)	0.006 (4)	0.000 (3)
C21	0.049 (5)	0.016 (3)	0.034 (4)	-0.002 (3)	0.005 (4)	-0.003 (3)
C22	0.039 (4)	0.021 (3)	0.022 (3)	-0.004 (3)	0.011 (3)	-0.007 (2)
C24	0.047 (5)	0.038 (4)	0.022 (3)	0.017 (3)	0.016 (4)	0.011 (3)
C25	0.036 (5)	0.044 (4)	0.026 (3)	0.008 (3)	0.013 (3)	0.002 (3)
C26	0.039 (5)	0.041 (4)	0.038 (4)	0.017 (4)	0.019 (4)	0.006 (3)
C27	0.037 (5)	0.031 (3)	0.038 (4)	0.014 (3)	0.025 (4)	0.008 (3)
C28	0.048 (5)	0.028 (3)	0.026 (3)	0.017 (3)	0.019 (4)	0.007 (3)
C29	0.034 (4)	0.019 (3)	0.020 (3)	0.009 (3)	0.011 (3)	0.003 (2)
C31	0.031 (4)	0.059 (5)	0.027 (4)	-0.010 (4)	0.012 (3)	-0.010 (3)
C32	0.035 (5)	0.057 (5)	0.041 (4)	0.000 (4)	0.021 (4)	-0.013 (4)
C33	0.040 (5)	0.038 (4)	0.028 (4)	0.003 (3)	0.019 (4)	-0.003 (3)
N34	0.024 (5)	0.019 (4)	0.014 (4)	0.002 (4)	0.011 (4)	0.002 (3)
C35	0.021 (7)	0.017 (5)	0.018 (4)	0.001 (5)	0.010 (4)	0.005 (4)
C36	0.028 (7)	0.025 (5)	0.021 (5)	-0.001 (5)	0.010 (5)	-0.004 (4)
C37	0.024 (6)	0.022 (6)	0.027 (5)	0.002 (5)	0.011 (5)	-0.004 (5)
C38	0.025 (7)	0.022 (6)	0.030 (5)	-0.001 (5)	0.010 (5)	0.003 (4)
C39	0.026 (6)	0.028 (6)	0.016 (5)	-0.002(5)	0.008 (5)	0.009 (4)
C40	0.026 (6)	0.027 (6)	0.017 (4)	0.001 (5)	0.009 (4)	0.007 (4)
N41	0.028 (6)	0.038 (6)	0.020 (4)	-0.010 (5)	0.004 (4)	0.010 (4)
C42	0.028 (6)	0.034 (5)	0.015 (5)	-0.002(5)	-0.004(4)	0.007 (4)
C43	0.028 (5)	0.029 (5)	0.019 (4)	0.002 (4)	0.004 (4)	0.004 (3)
C44	0.018 (5)	0.022 (5)	0.017 (4)	0.004 (4)	0.005 (4)	0.003 (4)
N34A	0.025 (5)	0.018 (6)	0.014 (4)	-0.001 (5)	0.007 (4)	0.003 (4)
C35A	0.020 (8)	0.018 (6)	0.015 (4)	-0.004 (6)	0.007 (5)	-0.003 (4)
C36A	0.023 (7)	0.024 (5)	0.016 (6)	-0.005 (6)	0.012 (6)	-0.003 (5)
C37A	0.027 (7)	0.017 (7)	0.024 (5)	-0.005 (6)	0.013 (5)	-0.007 (5)
C38A	0.022 (8)	0.013 (6)	0.028 (6)	0.004 (6)	0.009 (6)	0.005 (5)
C39A	0.020 (7)	0.017 (7)	0.020 (6)	0.001 (5)	0.009 (5)	0.005 (5)
C40A	0.018 (6)	0.018 (6)	0.017 (4)	0.006 (5)	0.009 (4)	0.002 (4)
N41A	0.018 (6)	0.022 (5)	0.015 (4)	0.003 (5)	0.007 (4)	0.000 (4)
C42A	0.028 (7)	0.043 (7)	0.014 (5)	-0.006 (5)	0.007 (4)	-0.004 (5)
C43A	0.023 (6)	0.036 (6)	0.019 (5)	-0.005 (5)	0.007 (4)	0.003 (5)
C44A	0.030 (7)	0.022 (7)	0.020 (5)	-0.007 (6)	0.005 (5)	0.002 (5)

Geometric parameters (Å, °)

Bi1—I10	2.9532 (4)	C31—H31B	0.9900	
Bi1—I11	2.9534 (4)	C32—C33	1.476 (11)	
Bi1—I9	3.0085 (5)	C32—H32A	0.9900	
Bi1—I5	3.1911 (5)	C32—H32B	0.9900	
Bi1—I2	3.2169 (4)	С33—Н33А	0.9900	
Bi1—I4	3.2224 (4)	C33—H33B	0.9900	
Bi3—I8	2.9530 (5)	N34—C40	1.318 (11)	
Bi3—I6	2.9730 (4)	N34—C35	1.475 (12)	
Bi3—I7	2.9908 (5)	N34—C44	1.475 (13)	
Bi3—I4	3.1405 (5)	C35—C36	1.516 (12)	
Bi3—I5	3.2111 (4)	C35—H35A	0.9900	
Bi3—I2	3.2788 (4)	C35—H35B	0.9900	
N12—C18	1.313 (7)	C36—C37	1.533 (13)	
N12—C13	1.473 (7)	C36—H36A	0.9900	
N12—C22	1.477 (7)	C36—H36B	0.9900	
N19—C18	1.314 (7)	C37—C38	1.516 (13)	
N19—C20	1.451 (8)	С37—Н37А	0.9900	
N19—H19	0.8800	С37—Н37В	0.9900	
N23—C29	1.308 (7)	C38—C39	1.543 (13)	
N23—C33	1.430 (10)	C38—H38A	0.9900	
N23—C24	1.500 (10)	C38—H38B	0.9900	
N30—C29	1.379 (9)	C39—C40	1.493 (13)	
N30—C31	1.465 (10)	С39—Н39А	0.9900	
N30—H30	0.8800	C39—H39B	0.9900	
C13—C14	1.510 (9)	C40—N41	1.308 (12)	
С13—Н13А	0.9900	N41—C42	1.472 (14)	
C13—H13B	0.9900	N41—H41	0.8800	
C14—C15	1.523 (8)	C42—C43	1.521 (14)	
C14—H14A	0.9900	C42—H42A	0.9900	
C14—H14B	0.9900	C42—H42B	0.9900	
C15—C16	1.536 (8)	C43—C44	1.497 (16)	
C15—H15A	0.9900	C43—H43A	0.9900	
C15—H15B	0.9900	C43—H43B	0.9900	
C16—C17	1.512 (9)	C44—H44A	0.9900	
C16—H16A	0.9900	C44—H44B	0.9900	
C16—H16B	0.9900	N34A—C40A	1.319 (13)	
C17—C18	1.502 (8)	N34A—C35A	1.476 (13)	
C17—H17A	0.9900	N34A—C44A	1.477 (15)	
C17—H17B	0.9900	C35A—C36A	1.525 (14)	
C20—C21	1.505 (11)	C35A—H35C	0.9900	
C20—H20A	0.9900	C35A—H35D	0.9900	
C20—H20B	0.9900	C36A—C37A	1.549 (16)	
C21—C22	1.495 (9)	C36A—H36C	0.9900	
C21—H21A	0.9900	C36A—H36D	0.9900	
C21—H21B	0.9900	C37A—C38A	1.530 (14)	
C22—H22A	0.9900	C37A—H37C	0.9900	

C22—H22B	0.9900	C37A—H37D	0.9900
C24—C25	1.541 (11)	C38A—C39A	1.551 (15)
C24—H24A	0.9900	C38A—H38C	0.9900
C24—H24B	0.9900	C38A—H38D	0.9900
C25—C26	1.517 (10)	C39A—C40A	1.492 (14)
C25—H25A	0.9900	С39А—Н39С	0.9900
C25—H25B	0.9900	C39A—H39D	0.9900
C26—C27	1.542 (11)	C40A—N41A	1.317 (13)
C26—H26A	0.9900	N41A—C42A	1.462 (15)
C26—H26B	0.9900	N41A—H41A	0.8800
C27—C28	1.519 (11)	C42A—C43A	1.510 (16)
C27—H27A	0.9900	C42A—H42C	0.9900
C27—H27B	0.9900	C42A—H42D	0.9900
C28—C29	1.497 (10)	C43A—C44A	1.497 (18)
C28—H28A	0.9900	C43A—H43C	0.9900
C28—H28B	0.9900	C43A—H43D	0.9900
C31—C32	1.515 (10)	C44A—H44C	0.9900
C31—H31A	0.9900	C44A—H44D	0.9900
I10—Bi1—I11	94.180 (13)	С32—С31—Н31А	109.9
I10—Bi1—I9	90.328 (14)	N30—C31—H31B	109.9
I11—Bi1—I9	99.358 (13)	C32—C31—H31B	109.9
I10—Bi1—I5	96.536 (14)	H31A—C31—H31B	108.3
I11—Bi1—I5	85.283 (13)	C33—C32—C31	109.6 (7)
I9—Bi1—I5	171.439 (12)	С33—С32—Н32А	109.7
I10—Bi1—I2	168.049 (13)	C31—C32—H32A	109.7
I11—Bi1—I2	97.725 (12)	С33—С32—Н32В	109.7
I9—Bi1—I2	86.722 (12)	C31—C32—H32B	109.7
I5—Bi1—I2	85.519 (12)	H32A—C32—H32B	108.2
I10—Bi1—I4	86.507 (12)	N23—C33—C32	115.5 (6)
I11—Bi1—I4	168.754 (14)	N23—C33—H33A	108.4
I9—Bi1—I4	91.859 (12)	С32—С33—Н33А	108.4
I5—Bi1—I4	83.488 (12)	N23—C33—H33B	108.4
I2—Bi1—I4	82.022 (10)	С32—С33—Н33В	108.4
I8—Bi3—I6	91.922 (13)	H33A—C33—H33B	107.5
I8—Bi3—I7	98.404 (15)	C40—N34—C35	120.7 (11)
I6—Bi3—I7	97.988 (12)	C40—N34—C44	122.0 (10)
I8—Bi3—I4	91.439 (13)	C35—N34—C44	117.2 (10)
I6—Bi3—I4	88.991 (12)	N34—C35—C36	113.0 (13)
I7—Bi3—I4	167.695 (12)	N34—C35—H35A	109.0
I8—Bi3—I5	90.760 (13)	С36—С35—Н35А	109.0
I6—Bi3—I5	173.004 (14)	N34—C35—H35B	109.0
I7—Bi3—I5	88.005 (12)	C36—C35—H35B	109.0
I4—Bi3—I5	84.482 (12)	H35A—C35—H35B	107.8
I8—Bi3—I2	172.288 (13)	C35—C36—C37	116.2 (12)
I6—Bi3—I2	92.465 (12)	С35—С36—Н36А	108.2
I7—Bi3—I2	87.263 (12)	С37—С36—Н36А	108.2
I4—Bi3—I2	82.301 (11)	С35—С36—Н36В	108.2

I5—Bi3—I2	84.183 (11)	С37—С36—Н36В	108.2
Bi1—I2—Bi3	78.144 (9)	H36A—C36—H36B	107.4
Bi3—I4—Bi1	80.095 (10)	C38—C37—C36	116.3 (13)
Bi1—I5—Bi3	79.516 (11)	С38—С37—Н37А	108.2
C18—N12—C13	122.1 (5)	С36—С37—Н37А	108.2
C18—N12—C22	121.5 (5)	С38—С37—Н37В	108.2
C13—N12—C22	116.4 (4)	С36—С37—Н37В	108.2
C18—N19—C20	123.2 (5)	Н37А—С37—Н37В	107.4
C18—N19—H19	118.4	C37—C38—C39	115.2 (12)
C20—N19—H19	118.4	С37—С38—Н38А	108.5
C29—N23—C33	122.4 (7)	С39—С38—Н38А	108.5
C29—N23—C24	121.9 (6)	С37—С38—Н38В	108.5
C33—N23—C24	115.6 (5)	С39—С38—Н38В	108.5
C29—N30—C31	120.1 (6)	H38A—C38—H38B	107.5
C29—N30—H30	119.9	C40—C39—C38	111.4 (12)
C31—N30—H30	119.9	С40—С39—Н39А	109.3
N12—C13—C14	112.7 (5)	С38—С39—Н39А	109.3
N12—C13—H13A	109.0	С40—С39—Н39В	109.3
C14—C13—H13A	109.0	С38—С39—Н39В	109.3
N12—C13—H13B	109.0	H39A—C39—H39B	108.0
C14—C13—H13B	109.0	N41—C40—N34	120.9 (11)
H13A—C13—H13B	107.8	N41—C40—C39	117.4 (11)
C13—C14—C15	113.4 (5)	N34—C40—C39	121.4 (11)
C13—C14—H14A	108.9	C40—N41—C42	124.0 (11)
C15—C14—H14A	108.9	C40—N41—H41	118.0
C13—C14—H14B	108.9	C42—N41—H41	118.0
C15—C14—H14B	108.9	N41—C42—C43	108.9 (10)
H14A—C14—H14B	107.7	N41—C42—H42A	109.9
C14—C15—C16	114.2 (5)	C43—C42—H42A	109.9
C14—C15—H15A	108.7	N41—C42—H42B	109.9
C16—C15—H15A	108.7	C43—C42—H42B	109.9
C14—C15—H15B	108.7	H42A—C42—H42B	108.3
C16—C15—H15B	108.7	C44—C43—C42	109.7 (10)
H15A—C15—H15B	107.6	C44—C43—H43A	109.7
C17—C16—C15	114.2 (5)	C42—C43—H43A	109.7
С17—С16—Н16А	108.7	C44—C43—H43B	109.7
C15—C16—H16A	108.7	C42—C43—H43B	109.7
C17—C16—H16B	108.7	H43A—C43—H43B	108.2
C15—C16—H16B	108.7	N34—C44—C43	112.3 (10)
H16A—C16—H16B	107.6	N34—C44—H44A	109.2
C18 - C17 - C16	112.6 (5)	C43 - C44 - H44A	109.2
C18—C17—H17A	109.1	N34—C44—H44B	109.2
C16—C17—H17A	109.1	C43—C44—H44B	109.2
C18—C17—H17B	109.1	H44A - C44 - H44B	107.9
C16—C17—H17B	109.1	C40A - N34A - C35A	121.9 (14)
H17A - C17 - H17B	107.8	C40A = N34A = C44A	121.3(13) 121.3(13)
N12—C18—N19	121 7 (5)	C35A = N34A = C44A	1164(14)
N12 - C18 - C17	121.7(5) 1200(5)	N344 - C354 - C364	112.3(17)
1112-010-01/	120.0 (3)		112.3 (17)

N19—C18—C17	118.3 (5)	N34A—C35A—H35C	109.1
N19—C20—C21	108.6 (6)	С36А—С35А—Н35С	109.1
N19—C20—H20A	110.0	N34A—C35A—H35D	109.1
C21—C20—H20A	110.0	C36A—C35A—H35D	109.1
N19—C20—H20B	110.0	H35C—C35A—H35D	107.9
C21—C20—H20B	110.0	C35A—C36A—C37A	112.2 (16)
H20A—C20—H20B	108.4	C35A—C36A—H36C	109.2
C22—C21—C20	110.6 (6)	C37A—C36A—H36C	109.2
C22—C21—H21A	109.5	C35A—C36A—H36D	109.2
C20—C21—H21A	109.5	C37A—C36A—H36D	109.2
C22—C21—H21B	109.5	H36C—C36A—H36D	107.9
C20—C21—H21B	109.5	C38A—C37A—C36A	112.5 (17)
H21A—C21—H21B	108.1	С38А—С37А—Н37С	109.1
N12—C22—C21	111.1 (5)	С36А—С37А—Н37С	109.1
N12—C22—H22A	109.4	C38A—C37A—H37D	109.1
C21—C22—H22A	109.4	C36A—C37A—H37D	109.1
N12—C22—H22B	109.4	H37C—C37A—H37D	107.8
C21—C22—H22B	109.4	C37A—C38A—C39A	113.5 (14)
H22A—C22—H22B	108.0	C37A—C38A—H38C	108.9
N23—C24—C25	113.1 (5)	C39A—C38A—H38C	108.9
N23—C24—H24A	109.0	C37A—C38A—H38D	108.9
C25—C24—H24A	109.0	C39A—C38A—H38D	108.9
N23—C24—H24B	109.0	H38C—C38A—H38D	107.7
C25—C24—H24B	109.0	C40A—C39A—C38A	112.6 (15)
H24A—C24—H24B	107.8	C40A—C39A—H39C	109.1
C26—C25—C24	113.6 (6)	С38А—С39А—Н39С	109.1
С26—С25—Н25А	108.9	C40A—C39A—H39D	109.1
С24—С25—Н25А	108.9	C38A—C39A—H39D	109.1
C26—C25—H25B	108.9	H39C—C39A—H39D	107.8
C24—C25—H25B	108.9	N41A—C40A—N34A	120.9 (13)
H25A—C25—H25B	107.7	N41A—C40A—C39A	117.7 (14)
C25—C26—C27	115.3 (7)	N34A—C40A—C39A	121.3 (13)
С25—С26—Н26А	108.4	C40A—N41A—C42A	123.8 (13)
C27—C26—H26A	108.4	C40A—N41A—H41A	118.1
С25—С26—Н26В	108.4	C42A—N41A—H41A	118.1
С27—С26—Н26В	108.4	N41A—C42A—C43A	108.9 (12)
H26A—C26—H26B	107.5	N41A—C42A—H42C	109.9
C28—C27—C26	114.4 (6)	C43A—C42A—H42C	109.9
С28—С27—Н27А	108.7	N41A—C42A—H42D	109.9
С26—С27—Н27А	108.7	C43A—C42A—H42D	109.9
C28—C27—H27B	108.7	H42C-C42A-H42D	108.3
C26—C27—H27B	108.7	C44A - C43A - C42A	110.0 (15)
H27A—C27—H27B	107.6	C44A - C43A - H43C	109.7
C_{29} C_{28} C_{27}	113.2 (5)	C42A - C43A - H43C	109.7
C29—C28—H28A	108.9	C44A—C43A—H43D	109.7
C27—C28—H28A	108.9	C42A - C43A - H43D	109.7
C29—C28—H28B	108.9	H43C - C43A - H43D	108.2
C27—C28—H28B	108.9	N34A—C44A—C43A	112 0 (14)
C27 C20 1120D	100.7		112.0 (17)

H28A—C28—H28B	107.7	N34A—C44A—H44C	109.2
N23—C29—N30	120.6 (6)	C43A—C44A—H44C	109.2
N23—C29—C28	121.7 (6)	N34A—C44A—H44D	109.2
N30-C29-C28	117.6 (5)	C43A—C44A—H44D	109.2
N30-C31-C32	108.9 (6)	H44C—C44A—H44D	107.9
N30-C31-H31A	109.9		
C18—N12—C13—C14	74.6 (7)	C40—N34—C35—C36	71 (3)
C22—N12—C13—C14	-105.1 (6)	C44—N34—C35—C36	-111 (2)
N12-C13-C14-C15	-79.8 (7)	N34—C35—C36—C37	-77.1 (19)
C13—C14—C15—C16	58.5 (8)	C35—C36—C37—C38	52 (2)
C14—C15—C16—C17	-62.5 (8)	C36—C37—C38—C39	-55 (2)
C15—C16—C17—C18	82.5 (6)	C37—C38—C39—C40	80.1 (16)
C13—N12—C18—N19	173.0 (6)	C35—N34—C40—N41	-178(2)
C22—N12—C18—N19	-7.4 (10)	C44—N34—C40—N41	5 (5)
C13—N12—C18—C17	-9.3 (9)	C35—N34—C40—C39	-3 (4)
C22—N12—C18—C17	170.3 (6)	C44—N34—C40—C39	179 (2)
C20-N19-C18-N12	1.0 (11)	C38—C39—C40—N41	108 (2)
C20—N19—C18—C17	-176.7 (7)	C38—C39—C40—N34	-67(3)
C16—C17—C18—N12	-61.7 (8)	N34—C40—N41—C42	0 (4)
C16—C17—C18—N19	116.1 (6)	C39—C40—N41—C42	-174.6 (15)
C18—N19—C20—C21	29.8 (10)	C40—N41—C42—C43	-29 (2)
N19—C20—C21—C22	-53.0 (8)	N41—C42—C43—C44	50.9 (15)
C18—N12—C22—C21	-18.5 (9)	C40—N34—C44—C43	21 (4)
C13—N12—C22—C21	161.1 (6)	C35—N34—C44—C43	-156.7 (18)
C20—C21—C22—N12	48.4 (9)	C42—C43—C44—N34	-48 (2)
C29—N23—C24—C25	70.8 (8)	C40A—N34A—C35A—C36A	69 (4)
C33—N23—C24—C25	-107.4 (7)	C44A—N34A—C35A—C36A	-105(3)
N23—C24—C25—C26	-78.4 (8)	N34A—C35A—C36A—C37A	-84 (2)
C24—C25—C26—C27	58.7 (8)	C35A—C36A—C37A—C38A	65 (3)
C25—C26—C27—C28	-61.5 (8)	C36A—C37A—C38A—C39A	-64 (3)
C26—C27—C28—C29	80.3 (7)	C37A—C38A—C39A—C40A	81 (2)
C33—N23—C29—N30	-8.1 (10)	C35A—N34A—C40A—N41A	176 (3)
C24—N23—C29—N30	173.8 (6)	C44A—N34A—C40A—N41A	-10 (6)
C33—N23—C29—C28	171.9 (6)	C35A—N34A—C40A—C39A	0 (6)
C24—N23—C29—C28	-6.2 (10)	C44A—N34A—C40A—C39A	173 (3)
C31—N30—C29—N23	-6.3 (10)	C38A—C39A—C40A—N41A	117 (2)
C31—N30—C29—C28	173.7 (6)	C38A—C39A—C40A—N34A	-66 (4)
C27—C28—C29—N23	-62.7 (8)	N34A—C40A—N41A—C42A	6 (5)
C27—C28—C29—N30	117.3 (7)	C39A—C40A—N41A—C42A	-177.6 (18)
C29—N30—C31—C32	37.4 (9)	C40A—N41A—C42A—C43A	26 (3)
N30—C31—C32—C33	-53.5 (9)	N41A—C42A—C43A—C44A	-51 (2)
C29—N23—C33—C32	-12.0 (10)	C40A—N34A—C44A—C43A	-18(5)
C24—N23—C33—C32	166.2 (6)	C35A—N34A—C44A—C43A	156 (3)
C31—C32—C33—N23	42.8 (9)	C42A—C43A—C44A—N34A	49 (3)
	× /		× /

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N19—H19…I9 ⁱ	0.88	2.81	3.632 (5)	156
N41—H41····I6 ⁱⁱ	0.88	2.91	3.735 (13)	157
N41—H41····I8 ⁱⁱ	0.88	3.21	3.663 (14)	115
$N41A$ — $H41A$ ··· $I6^{ii}$	0.88	2.62	3.492 (15)	169

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) x, -y+3/2, z+1/2; (ii) -x+1, y+1/2, -z+1/2.