CRYSTALLOGRAPHIC COMMUNICATIONS

Received 27 July 2021
Accepted 17 August 2021

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: supramolecular chemistry; N -(pyri-dine-2-carbonyl)pyridine-2-carboxamide; fluorine moieties; crystal structure.

CCDC references: 2103652; 2103651; 2103650

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of three \mathbf{N}-(pyridine-2-carbon$\mathrm{yl})$ pyridine-2-carboxamides as potential ligands for supramolecular chemistry

Xiaowen Xu, ${ }^{\text {a }}$ Richard Hoogenboom ${ }^{\text {a }}$ and Kristof Van Hecke ${ }^{\text {b }}$

${ }^{\text {a }}$ Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium, and ${ }^{\text {b } X S t r u c t, ~ D e p a r t m e n t ~ o f ~}$ Chemistry, Ghent University, Krijgslaan 281-S3, B-9000 Ghent, Belgium. *Correspondence e-mail:
Kristof.VanHecke@UGent.be

The synthesis and single-crystal X-ray structures of three N-(pyridine-2-carbonyl)pyridine-2-carboxamide imides, with or without F atoms on the 3 -position of the pyridine rings are reported, namely, N -(pyridine-2-carbonyl)pyridine-2-carboxamide, $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2} \quad$ (1), $\quad N$-(3-fluoropyridine-2-carbonyl)pyridine-2-carboxamide, $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{FN}_{3} \mathrm{O}_{2}$ (2), and 3-fluoro- N -(3-fluoro-pyridine-2-carbonyl)pyridine-2-carboxamide, $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$ (3). The abovementioned compounds were synthesized by a mild, general procedure with an excellent yield, providing straightforward access to symmetrical and/or asymmetrical heterocyclic ureas. The crystal structures of $\mathbf{1}$ and $\mathbf{2}$ are isomorphous, showing similar packing arrangements, i.e. double layers of parallel (face-to-face) molecules alternating with analogous, but perpendicularly oriented, double layers. In contrast, the crystal structure of 3, containing a fluoro- group at the 3-position of both pyridine rings, shows molecular arrangements in a longitudinal, tubular manner along the c axis, with the aromatic pyridine and carbonyl/fluorine moieties facing towards each other.

1. Chemical context

N -(Pyridine-2-carbonyl)pyridine-2-carboxamide systems and their derivatives have been shown to be very useful intermediates for the construction of molecular building blocks, able to self-assemble into a wide range of super-architectures taking advantage of acceptor-donor-donor-acceptor (ADDA) arrays of hydrogen-bonding sites (Corbin et al., 2001). Further interest in this family of compounds has involved the investigation of their metal coordination complexes, which possess strong luminescence characteristics (Das et al., 2018), as well as their electrochemical (Gasser et al., 2012), magnetic (Kajiwara et al., 2010) and catalytic properties (Chowdhury et al., 2007). Consequently, the synthesis of N -(pyridine-2-carbonyl)pyridine-2-carboxamide, containing different functional groups, at a large scale and in a high yield is of great importance in the field of supramolecular chemistry. Previously reported studies have shown the conversion of 2-aminopyridine to $\mathbf{1}$ in a single step (Gerchuk \& Taits, 1950; Corbin et al., 2001). However, the utilized reaction conditions were, to some extent, harsh and the reported yield of the compound was rather low ($<32 \%$), presumably because of the inferior nucleophilicity of the $-\mathrm{NH}_{2}$ groups at the 2-position of the pyridine rings. Moreover, the use of this procedure is limited to the synthesis of symmetrical imides. The synthesis of high-yield asymmetrical imides, bearing different functional groups on the pyridine rings, is still challenging.

1: $R_{1}=H ; R_{2}=H$
2: $R_{1}=F ; R_{2}=H$
3: $R_{1}=F ; R_{2}=F$
Herein, we report the single-crystal X-ray structural analysis of the imides N-(pyridine-2-carbonyl)pyridine-2carboxamide (1) $\left(R_{1}=\mathrm{H}, R_{2}=\mathrm{H}\right), N$-(3-fluoropyridine-2-carbonyl)pyridine-2-carboxamide (2) $\left(R_{1}=\mathrm{F}, R_{2}=\mathrm{H}\right)$ and 3-fluoro- N -(3-fluoropyridine-2-carbonyl)pyridine-2-carbox-

Figure 1
Molecular structures of (a) 1, (b) $\mathbf{2}$ and (c) 3, showing thermal displacement ellipsoids drawn at the 50% probability level and the atom-labelling scheme. The disorder in $\mathbf{2}(b)$ is shown in yellow. The carbon atoms in the asymmetric unit of $\mathbf{3}(c)$ are shown in green. Intramolecular hydrogen bonds are indicated.
amide (3) $\left(R_{1}=\mathrm{F}, R_{2}=\mathrm{F}\right)$, prepared via a simple, straightforward synthesis method that does not involve high pressure nor harsh conditions and can be carried out on a large scale.

2. Structural commentary

The structure of $\mathbf{1}$, although determined at a different temperature of 200 K , has previously been deposited in the CSD (refcode COJNAT; Castaneda \& Gabidullin, 2019). Compound 1 crystallizes in the non-centrosymmetric orthorhombic space group $P n a 2_{1}$, with the asymmetric unit consisting of one N-(pyridine-2-carbonyl)pyridine-2-carboxamide molecule. The molecular structure of $\mathbf{1}$ is found almost completely planar, with a dihedral angle of $6.1(2)^{\circ}$ between the best planes through the two pyridine rings (Fig. 1a).

The structure of $\mathbf{2}$ is isomorphous with 1, although the 3-fluoro- N-(pyridine-2-carbonyl)pyridine-2-carboxamide molecules are rotated 90° with respect to $\mathbf{1}$ (Fig. 2). Similarly to $\mathbf{1}$, the asymmetric unit contains one planar 3 -fluoro- N -(pyridine-2-carbonyl)pyridine-2-carboxamide molecule, which shows a dihedral angle of $5.2(2)^{\circ}$ between the best planes through the two pyridine rings. Here, the fluoro group is found disordered over both pyridine rings, i.e. a transverse disorder by 180° rotation along the axis through the imide $\mathrm{N}-\mathrm{H}$ function occurs, showing refined occupancy factors of 0.563 (8) and 0.437 (8) for the first (F1A) and second fluoro (F1B) site, respectively (Fig. 1b).

Figure 2
Unit-cell fit of the structures of $\mathbf{1}$ and $\mathbf{2}$, showing a 90° rotation of the molecules of 2 (in green). Hydrogen atoms and disorder of the fluorine atoms are omitted for clarity.

Compound $\mathbf{3}$ crystallizes in the centrosymmetric monoclinic space group $I 2 / a$, with the asymmetric unit consisting of only half of a total 3-fluoro- N -(3-fluoro-pyridine-2-carbonyl)-pyridine-2-carboxamide molecule. The second half is generated by symmetry, i.e. a twofold axis runs through the $\mathrm{N}-\mathrm{H}$ imide atoms. In contrast to the previous structures of $\mathbf{1}$ and $\mathbf{2}$, the molecular structure of $\mathbf{3}$ is not planar, with a dihedral angle of $29.73(11)^{\circ}$ between the best planes through the two pyridine rings (Fig. 1c).

3. Supramolecular features

Despite the presence of two pyridine rings in the molecular structure of $\mathbf{1}$, only weak $\pi-\pi$ interactions are present in the crystal packing, with rather large centroid-centroid distances ranging from 4.969 (2) to 5.497 (2) \AA. However, clear $\mathrm{C}=\mathrm{O} \cdots \pi$ contacts are observed in the crystal packing [C6$\mathrm{O} 1 \cdots C g 1(x, y,-1+z)=3.861(3) \AA ; C g 1$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 5 / \mathrm{N} 1 \mathrm{ring}]$. Intramolecular potential hydrogen bonds are found between the imide $\mathrm{N} 2-\mathrm{H} 2$ hydrogen atom and both pyridine nitrogen atoms $[\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1=2.15$ (6) \AA; $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 3=2.15(5) \AA$, while non-classical intermolecular hydrogen bonds can be observed between the first pyridine rings and carbonyl O 2 atoms of symmetry-equivalent molecules $\left[\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\mathrm{i}}=2.48 \AA\right.$ A symmetry code: (i) $\frac{1}{2}-x$,

Figure 3
Packing in the structure of $\mathbf{1}$, showing (a) the perpendicularly oriented molecules, viewed down the a axis and (b) the double layers of paralleloriented (face-to-face) molecules, interchanged with analogous double layers, perpendicular to the former layers.

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for $\mathbf{1}$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1$	$0.90(5)$	$2.15(6)$	$2.614(5)$	$111(4)$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 3$	$0.90(5)$	$2.15(5)$	$2.637(4)$	$113(5)$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.95	2.48	$3.343(5)$	152
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~N} 1^{\mathrm{ii}}$	0.95	2.51	$3.393(5)$	154

Symmetry codes: (i) $-x+\frac{1}{2}, y+\frac{1}{2}, z+\frac{3}{2}$; (ii) $-x,-y+1, z-\frac{1}{2}$.
$\left.\frac{1}{2}+y,-\frac{3}{2}+z\right]$, while these first pyridine rings are further connected to each other via similar hydrogen bonds with the pyridine N 1 atoms $\left[\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~N} 1^{i i}=2.51 \mathrm{~A}\right.$; symmetry code: (ii) $\left.-x, 1-y,-\frac{1}{2}+z\right]$ (Table 1). As such, in the packing, double layers of parallel (face-to-face) molecules of $\mathbf{1}$ are observed, parallel with the (100) plane, alternating with analogous double layers, oriented perpendicular to the former layers (Fig. 3).

For the structure of $\mathbf{2}$, analogous to $\mathbf{1}$, only weak $\pi-\pi$ interactions are present in the crystal packing between the 3-fluoro-pyridine rings, with centroid-centroid distances in the range 4.915 (3) to 5.473 (3) \AA, while $\mathrm{C}=\mathrm{O} \cdots \pi$ contacts are also observed in the crystal packing [C6-O1 $\cdots C g 1(x, y,-1+$ $z)=3.865(4) \AA$; $C g 1$ is the centroid of the C1-C5/N1 ring]. Analogous to $\mathbf{1}$, intramolecular potential hydrogen bonds
(a)

(b)

Figure 4
Packing in the structure of 2, showing (a) the perpendicularly oriented molecules, viewed down the a axis and (b) the double layers of paralleloriented (face-to-face) molecules, interchanged with analogous double layers, perpendicular to the former layers. $\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{~F} 1 A$ hydrogen bonds are indicated. Hydrogen atoms and disorder of the fluorine atoms are omitted for clarity.

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$ for 2.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1$	$0.92(5)$	$2.16(6)$	$2.614(6)$	$109(4)$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 3$	$0.92(5)$	$2.11(6)$	$2.622(5)$	$114(5)$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.95	2.43	$3.320(6)$	156
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{~F} 1 B^{\mathrm{i}}$	0.95	2.40	$3.049(8)$	125
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~N} 1^{\text {ii }}$	0.95	2.53	$3.420(6)$	156
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{~F} 1 A^{\text {iii }}$	0.95	2.45	$3.169(7)$	132

Symmetry codes:
(i) $-x+\frac{1}{2}, y+\frac{1}{2}, z+\frac{3}{2}$;
(ii) $-x+1,-y+2, z+\frac{1}{2}$;
(iii)
between the imide $\mathrm{N} 2-\mathrm{H} 2$ hydrogen atom and both pyridine nitrogen atoms are observed $[\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1=2.16$ (6) \AA; $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 3=2.11(6) \AA$, while non-classical intermolecular hydrogen bonds occur between the first pyridine rings and carbonyl O 2 atoms of symmetry-equivalent molecules $\left[\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\mathrm{i}}=2.43 \AA\right.$; symmetry code: (i) $\frac{1}{2}-x, \frac{1}{2}+y$,
(a)

(b)

Figure 5
Packing in the structure of $\mathbf{3}$, showing (a) the longitudinal tubular arrangement of the molecules along the c axis and (b) the aromatic pyridine and the carbonyl/fluorine moieties facing towards each other. $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~F} 1$ and $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{~F} 1$ hydrogen bonds are indicated. Hydrogen atoms are omitted for clarity.

Table 3
Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$ for 3.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1$	$0.84(4)$	$2.27(2)$	$2.671(2)$	$110(1)$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.84(4)$	$2.27(2)$	$2.671(2)$	$110(1)$
$\mathrm{C} 4-\mathrm{H} 4 \cdots 1^{\mathrm{ii}}$	0.95	2.49	$3.135(3)$	125
$\mathrm{C} 5-\mathrm{H} 5 \cdots 1^{\mathrm{ii}}$	0.95	2.61	$3.207(3)$	122
$\mathrm{C} 3-\mathrm{H} 3 \cdots 1^{\mathrm{iii}}$	0.95	2.58	$3.398(3)$	145
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~F}^{\mathrm{ii}}$	0.95	2.66	$3.604(3)$	176

Symmetry codes: (i) $-x+\frac{1}{2}, y,-z+1$; (ii) $-x, y-\frac{1}{2},-z+\frac{1}{2}$; (iii) $-x,-y+1,-z$.
$\left.\frac{3}{2}+z\right]$, while these first pyridine rings are further connected to each other via similar hydrogen bonds with the pyridine N 1 atoms [C5-H5 $\cdot \mathrm{N} 1^{\mathrm{ii}}=2.53 \AA$; symmetry code: (ii) $1-x$, $\left.2-y, \frac{1}{2}+z\right]$. Additionally, $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds are observed with the two disordered fluorine moieties [C3$\mathrm{H} 3 \cdots \mathrm{~F} 1 B^{\mathrm{i}}=2.40 \AA ; \mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{~F} 1 A^{\mathrm{iii}}=2.45 \AA$; symmetry code: (iii) $\left.\frac{1}{2}+x, \frac{3}{2}-y,-1+z\right]$ (Table 2). However, in the packing, analogous to 1, alternating double layers of parallel (face-to-face) molecules of $\mathbf{2}$ are observed, parallel with the (100) plane (Fig. 4). Hence, the extra $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ bonds do not alter the overall architecture.

For 3, besides weak $\pi-\pi$ interactions between the pyridine rings [centroid-centroid distances in the range 4.3776 (13)5.9437 (13) \AA], one strong $\pi-\pi$ contact is observed between the pyridine ring and its symmetry-equivalent $\left[C g \cdots C g\left(\frac{1}{2}-x\right.\right.$, $\left.\frac{1}{2}-y, \frac{1}{2}-z\right)=3.6334$ (13) $\AA ; C g$ is the centroid of the C1-C5/ N1 ring]. Analogous to $\mathbf{1}$ and 2, intramolecular potential hydrogen bonds are observed between the imide $\mathrm{N} 2-\mathrm{H} 2$ hydrogen atom and the pyridine nitrogen atom [$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1$ $=2.265$ (15) Å], while non-classical intermolecular hydrogen bonds between the pyridine rings and carbonyl O1 atoms of symmetry-equivalent molecules are found $\left[\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 1^{\mathrm{ii}}=\right.$ $2.49 \AA$; symmetry code: (ii) $\left.-x,-\frac{1}{2}+y, \frac{1}{2}-z\right]$ (Table 3). Additionally, although significantly longer, other hydrogen bonds are formed between the pyridine ring and the carbonyl O 1 atom $\left[\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 1^{\mathrm{ii}}=2.61 \AA\right.$] and $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds are observed with the fluorine moieties $\left[\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~F} 1^{\text {ii }}\right.$ $=2.66 \AA$; C $3-\mathrm{H} 3 \cdots \mathrm{~F} 1^{\mathrm{iii}}=2.58 \AA$; symmetry codes: (iii) $-x$, $1-y,-z]$. This gives rise to a different packing assembly, i.e. the molecules are arranged in a longitudinal, tubular manner along the c-axis direction, while the aromatic pyridine and the carbonyl/fluorine moieties, face towards each other (Fig. 5).

4. Database survey

A survey of compounds related to $\mathbf{1 , 2}$ and $\mathbf{3}$, deposited with the Cambridge Structural Database (CSD 2021.1, version 5.42 updates May 2021; Groom et al., 2016) resulted in three other compounds with refcodes COJNAT, WUXQOW and ZAVVAV.

As previously mentioned, COJNAT (Castaneda \& Gabidullin, 2019) represents the same structure as $\mathbf{1}$, although determined at 200 K . When fitting the molecular structures of COJNAT and $\mathbf{1}$, an r.m.s.d. of $0.0107 \AA$ is obtained.

The structure with refcode WUXQOW (Sahu et al., 2010) represents an analogous structure to $\mathbf{1}$, but featuring quinoline moieties instead of pyridine rings, i.e. N, N-bis(quinolin-2ylcarbonyl)amine. Similarly to $\mathbf{1}$, the molecular structure is also found to be almost completely planar, with a dihedral angle of $1.34(4)^{\circ}$ between the best planes through the two quinoline moieties.

The structure with refcode ZAVVAV (Zebret et al., 2012) represents another N-(pyridine-2-carbonyl)pyridine-2carboxamide system, in this case featuring two methoxy substituents, one on each pyridine ring, i.e. methyl 6-(\{[6-(methoxycarbonyl)pyridin-2-yl]carbonyl\}carbamoyl)pyridine-2-carboxylate. Here, because of steric hindrance of the substituents, the planes defined by the two pyridine rings are distorted by $14.52(11)^{\circ}$.

5. Synthesis and crystallization

The known compound $\mathbf{1}$ was prepared in excellent yield by the reaction between 2-pyridinecarbonyl chloride and 2-pyridinecarboxamide under mild conditions. By introducing a fluoro group at the 3-position of 2-pyridinecarbonyl chloride and/or 2-pyridinecarboxamide, the new compounds 2 and $\mathbf{3}$ could be obtained, also in excellent yield. Details for the synthesis of the precursors and the products are given below. Unless otherwise stated, all reagents were used as received.

3-Fluoropyridine-2-carboxylic acid

The preparation of 3-fluoropyridine-2-carboxylic acid was performed according to a previously reported procedure (Eller et al., 2006). Commercially available lithium 3-fluoropicolinate ($1.47 \mathrm{~g}, 10 \mathrm{mmol}$) was recrystallized from a mixture of $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ (9:1), which was acidified with several drops of concentrated $\mathrm{HCl}(36.5 \%)$ to afford 3 -fluoropyridine-2-carboxylic acid. Yield: 91%. ${ }^{1}$ H NMR (300 MHz, DMSO- d_{6}) $\delta 8.49$ $(d, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.81(m, 1 \mathrm{H}), 7.64-7.70(m, 1 \mathrm{H})$. ${ }^{13}$ C NMR (101 MHz, DMSO- d_{6}) $\delta 164.35,159.27,145.26$, 138.65, 128.27, 125.59.

2-Pyridinecarbonyl chloride

The preparation of 2-pyridinecarbonyl chloride was performed according to a previously reported procedure (Aluri et al., 2011). 2-Pyridinecarboxylic acid ($1.23 \mathrm{~g}, 10 \mathrm{mmol}$) and $\mathrm{SOCl}_{2}(11.9 \mathrm{~g}, 100 \mathrm{mmol})$ were dissolved in 100 ml of dry toluene with 10 drops of DMF. The reaction mixture was refluxed at 383.15 K for 3 h . The reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. The resulting viscous residue was used directly in the next step without further purification.

3-Fluoropyridine-2-carbonyl chloride

The preparation of 3-fluoropyridine-2-carbonyl chloride was performed according to a previously reported procedure (Aluri et al., 2011). 3-Fluoropyridin-2-carboxylic acid (1.41 g, $10 \mathrm{mmol})$ and $\mathrm{SOCl}_{2}(11.9 \mathrm{~g}, 100 \mathrm{mmol})$ were dissolved in 100 ml of dry toluene with 10 drops of DMF. The reaction mixture was refluxed at 383 K for 3 h . The reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. The resulting viscous residue was used directly in the next step without further purification.

2-Pyridinecarboxamide

The preparation of 2-pyridinecarboxamide was performed according to a previously reported procedure (Cai et al., 2014). 20 ml of $\mathrm{NH}_{3} /$ methanol solution $\left(\mathrm{NH}_{3} \mathrm{ca} 7 \mathrm{~N}\right.$ in methanol solution) was slowly added to 2-pyridinecarbonyl chloride at 273 K under stirring. The resulting reaction mixture was allowed to warm to room temperature and stirred overnight. The solvent was removed under reduced pressure and the residue was purified by a silica column with an eluent of hexane/ethyl acetate (5/1) to afford the product. Yield: 88%. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 8.63(d, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.11$ $(s, 1 \mathrm{H}), 8.06-7.94(m, 2 \mathrm{H}), 7.64(s, 1 \mathrm{H}), 7.63-7.55(m, 1 \mathrm{H})$.

3-Fluoropyridin-2-carboxamide

20 ml of $\mathrm{NH}_{3} /$ methanol $\left(\mathrm{NH}_{3}\right.$ ca 7 N in methanol solution) was added slowly to 3-fluoropyridin-2-carbonyl chloride at 273 K under stirring. The resulting reaction mixture was allowed to warm to room temperature and stirred overnight. The solvent was removed under reduced pressure and the residue was purified by silica column with an eluent of hexane/ ethyl acetate (5/1) to afford the product. Yield 85%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.34(d t, J=4.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(s, 1 \mathrm{H})$, 7.54-7.40 ($m, 2 \mathrm{H}$), $6.30(s, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 164.96, 164.91, 158.20, 144.12, 144.07, 137.26, 128.42, 128.37, 126.36, 126.16.

\boldsymbol{N}-(Pyridine-2-carbonyl)pyridine-2-carboxamide (1)

2-Pyridinecarbonyl chloride ($212.32 \mathrm{mg}, 1.5 \mathrm{mmol}$) and 2pyridinecarboxamide ($170.98 \mathrm{mg}, 1.4 \mathrm{mmol}$) were dissolved in toluene (20 ml). The resulting reaction mixture was refluxed at 383 K overnight. The solvent was removed under reduced pressure and the residue was purified by a silica column with an eluent of hexane/ethyl acetate (3/1) to afford the product. Yield: 91%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.03(s, 1 \mathrm{H}), 8.75$ $(d d d, J=4.8,1.7,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.35(d t, J=7.9,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.94$ $(t d, J=7.7,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(d d d, J=7.6,4.8,1.2 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.65,149.15,148.67,137.73$, 127.50, 123.49.
\boldsymbol{N}-(3-Fluoropyridine-2-carbonyl)pyridine-2-carboxamide (2)

3-Fluoropyridin-2-carboxamide ($238.47 \mathrm{mg}, 1.5 \mathrm{mmol}$) and 2-pyridinecarboxamide ($170.98 \mathrm{mg}, 1.4 \mathrm{mmol}$) were dissolved in toluene (20 ml). The resulting reaction mixture was refluxed at 383 K overnight. The solvent was removed under reduced pressure and the residue was purified by a silica column with an eluent of hexane/ethyl acetate (3/1) to afford the product. Yield: 89%. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 12.72(s, 1 \mathrm{H}$), 8.81 ($d d d, J=4.8,1.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(d t, J=4.5,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.22(d t, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(t d, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.02$ $(d d d, J=11.3,8.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.85(m, 1 \mathrm{H}), 7.78$ ($d d d, J$ $=7.5,4.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) 161.88, 160.91, 159.53, 159.47, 158.21, 148.97, 148.16, 144.99, 144.93, 138.66, 135.97, 135.92, 130.72, 130.67, 128.35, 127.45, 127.26, 122.94 .

3-Fluoro- \boldsymbol{N}-(3-fluoropyridine-2-carbonyl)pyridine-2-carboxamide (3)

3-Fluoropyridin-2-carboxamide ($238.47 \mathrm{mg}, 1.5 \mathrm{mmol}$) and 3-fluoropyridin-2-carbonyl chloride ($196.04 \mathrm{mg}, 1.4 \mathrm{mmol}$) were dissolved in toluene $(20 \mathrm{ml})$. The resulting reaction

research communications

Table 4
Experimental details.

	1	2	3
Crystal data			
Chemical formula	$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$	$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{FN}_{3} \mathrm{O}_{2}$	$\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{\text {r }}$	227.22	245.21	263.21
Crystal system, space group	Orthorhombic, Pna2 ${ }_{1}$	Orthorhombic, $\mathrm{Pna2}_{1}$	Monoclinic, $12 / a$
Temperature (K)	100	100	100
$a, b, c(\AA)$	16.2689 (6), 12.8086 (7), 4.9983 (2)	$\begin{aligned} & 16.6058(10), 12.9096(7), \\ & 4.9153(3) \end{aligned}$	6.7062 (3), 14.1190 (5), 11.2074 (5)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90, 90, 90	90, 90, 90	90, 97.140 (4), 90
$V\left(\AA^{3}\right)$	1041.56 (8)	1053.71 (11)	1052.94 (8)
Z	4	4	4
Radiation type	$\mathrm{Cu} K \alpha$	$\mathrm{Cu} K \alpha$	$\mathrm{Cu} K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.85	1.03	1.22
Crystal size (mm)	$0.20 \times 0.12 \times 0.06$	$0.26 \times 0.10 \times 0.05$	$0.11 \times 0.09 \times 0.06$
Data collection			
Diffractometer	SuperNova, Dual, Cu at zero, Atlas	SuperNova, Dual, Cu at zero, Atlas	SuperNova, Dual, Cu at zero, Atlas
Absorption correction	Gaussian (CrysAlis PRO; Rigaku OD, 2015)	Gaussian (CrysAlis PRO; Rigaku OD, 2015)	Gaussian (CrysAlis PRO; Rigaku OD, 2015)
$T_{\text {min }}, T_{\text {max }}$	$0.187,0.563$	$0.983,0.995$	$0.993,0.996$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	8626, 2028, 1831	5774, 1798, 1567	5200, 1083, 856
$R_{\text {int }}$	0.076	0.054	0.069
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.627	0.629	0.628
Refinement			
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.060, 0.170, 1.07	0.055, 0.152, 1.03	0.055, 0.161, 1.04
No. of reflections	2028	1798	1083
No. of parameters	157	176	88
No. of restraints	1	1	0
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.32,-0.30$	0.28, -0.28	$0.29,-0.32$
Absolute structure	Flack x determined using 673 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$ (Parsons et al., 2013)	Flack x determined using 450 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$ (Parsons et al., 2013)	-
Absolute structure parameter	0.0 (3)	0.2 (3)	-

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).
mixture was refluxed at 383 K overnight. The solvent was removed under reduced pressure and the residue was purified by a silica column with an eluent of hexane/ethyl acetate (3/1) to afford the product. Yield: 80%. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 12.53(s, 1 \mathrm{H}), 8.64(d t, J=4.5,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.02$ $(d d d, J=11.3,8.5,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.91-7.80(m, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) 160.75, 159.72, 159.66, 158.05, 156.16, 144.97, 144.92, 136.12, 136.08, 130.62, 130.56, 127.36, 127.17.

Crystals of 1, 2, and 3, suitable for single-crystal X-ray diffraction analysis were prepared by slow evaporation of a $10 \mathrm{mg} \mathrm{ml}^{-1}$ acetonitrile solution at room temperature. All crystals appeared as colourless blocks.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. For all structures, the imide $\mathrm{N}-\mathrm{H}$ hydrogen atoms could be located from a difference electrondensity Fourier map, and were further refined with isotropic temperature factors fixed at 1.2 times $U_{\text {eq }}$ of the parent atoms.

For the structure of 2, the 3-fluoropyridine atom is disordered at both pyridine sites, showing final occupancy factors of
0.563 (8) and 0.437 (8), for the first and second site, respectively.

Funding information

Funding for this research was provided by: Fonds Wetenschappelijk Onderzoek (grant No. AUGE/11/029); Bijzonder Onderzoeksfonds UGent (grant No. 01N03217); Bijzonder Onderzoeksfonds UGent (grant No. 01SC1717); China Scholarship Council (scholarship No. 201506780014).

References

Aluri, B. R., Niaz, B., Kindermann, M. K., Jones, P. G. \& Heinicke, J. (2011). Dalton Trans. 40, 211-224.

Cai, S., Chen, C., Shao, P. \& Xi, C. (2014). Org. Lett. 16, 3142-3145.
Castaneda, R. \& Gabidullin, B. (2019). CSD Communication (CCDC 1945074). CCDC, Cambridge, England.

Chowdhury, H., Rahaman, S. H., Ghosh, R., Sarkar, S. K., Fun, H.-K. \& Ghosh, B. K. (2007). J. Mol. Struct. 826, 170-176.
Corbin, P. S., Zimmerman, S. C., Thiessen, P. A., Hawryluk, N. A. \& Murray, T. J. (2001). J. Am. Chem. Soc. 123, 10475-10488.
Das, K., Dolai, S., Vojtíšek, P. \& Manna, S. C. (2018). Polyhedron, 149, 7-16.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Eller, G. A., Wimmer, V., Haring, A. W. \& Holzer, W. (2006). Synthesis, pp. 4219-4229.
Gasser, G., Mari, C., Burkart, M., Green, S. J., Ribas, J., StoeckliEvans, H. \& Tucker, J. H. R. (2012). New J. Chem. 36, 1819-1827.
Gerchuk, M. \& Taits, S. (1950). Zh. Obshch. Khim. 20, 910-916.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Kajiwara, T., Tanaka, H., Nakano, M., Takaishi, S., Nakazawa, Y. \& Yamashita, M. (2010). Inorg. Chem. 49, 8358-8370.

Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
Sahu, R., Padhi, S. K., Jena, H. S. \& Manivannan, V. (2010). Inorg. Chim. Acta, 363, 1448-1454.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Zebret, S., Dupont, N., Besnard, C., Bernardinelli, G. \& Hamacek, J. (2012). Dalton Trans. 41, 4817-4823.

supporting information

Acta Cryst. (2021). E77, 958-964 [https://doi.org/10.1107/S2056989021008562]

Crystal structures of three N -(pyridine-2-carbonyl) pyridine-2-carboxamides as potential ligands for supramolecular chemistry

Xiaowen Xu, Richard Hoogenboom and Kristof Van Hecke

Computing details

For all structures, data collection: CrysAlis $P R O$ (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

N -(Pyridine-2-carbonyl)pyridine-2-carboxamide (1)

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=227.22$
Orthorhombic, $\mathrm{Pna2}_{1}$
$a=16.2689$ (6) \AA
$b=12.8086$ (7) \AA
$c=4.9983$ (2) \AA
$V=1041.56(8) \AA^{3}$
$Z=4$
$F(000)=472$

Data collection

SuperNova, Dual, Cu at zero, Atlas diffractometer
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source
Mirror monochromator
Detector resolution: 10.4839 pixels mm^{-1}
ω scans
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2015)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060$
$w R\left(F^{2}\right)=0.170$
$S=1.07$
2028 reflections
157 parameters
1 restraint
$D_{\mathrm{x}}=1.449 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 4719 reflections
$\theta=4.2-74.0^{\circ}$
$\mu=0.85 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, clear colourless
$0.20 \times 0.12 \times 0.06 \mathrm{~mm}$
$T_{\min }=0.187, T_{\max }=0.563$
8626 measured reflections
2028 independent reflections
1831 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.076$
$\theta_{\text {max }}=75.3^{\circ}, \theta_{\text {min }}=4.4^{\circ}$
$h=-14 \rightarrow 20$
$k=-15 \rightarrow 15$
$l=-5 \rightarrow 6$

Primary atom site location: structure-invariant direct methods
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1236 P)^{2}+0.0215 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.30$ e \AA^{-3}

Absolute structure: Flack x determined using 673 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013)
Absolute structure parameter: 0.0 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.29400(14)$	$0.3937(2)$	$0.2999(6)$	$0.0362(7)$
O2	$0.22855(16)$	$0.2512(2)$	$0.7000(6)$	$0.0343(7)$
N1	$0.10762(18)$	$0.4562(3)$	$-0.0277(7)$	$0.0301(7)$
N2	$0.16131(17)$	$0.3339(2)$	$0.3528(7)$	$0.0299(7)$
N3	$0.01890(19)$	$0.2587(3)$	$0.5153(7)$	$0.0335(8)$
C1	$0.1883(2)$	$0.4642(3)$	$0.0217(8)$	$0.0288(8)$
C2	$0.2393(2)$	$0.5328(3)$	$-0.1112(8)$	$0.0322(8)$
H2A	0.296091	0.536690	-0.068626	0.039^{*}
C3	$0.2060(2)$	$0.5956(3)$	$-0.3071(9)$	$0.0372(9)$
H3	0.239464	0.643907	-0.401515	0.045^{*}
C4	$0.1232(2)$	$0.5872(3)$	$-0.3640(9)$	$0.0372(9)$
H4	0.098806	0.628601	-0.500275	0.045^{*}
C5	$0.0767(2)$	$0.5170(3)$	$-0.2176(8)$	$0.0344(8)$
H5	0.019566	0.512061	-0.255151	0.041^{*}
C6	$0.2213(2)$	$0.3943(3)$	$0.2372(8)$	$0.0279(8)$
C7	$0.1662(2)$	$0.2696(3)$	$0.5753(8)$	$0.0284(8)$
C8	$0.0840(2)$	$0.2245(3)$	$0.6517(8)$	$0.0290(8)$
C9	$-0.0551(2)$	$0.2220(3)$	$0.5853(10)$	$0.0361(9)$
H9	-0.101987	0.245492	0.489110	0.043^{*}
C10	$-0.0664(2)$	$0.1513(3)$	$0.7923(9)$	$0.0371(9)$
H10	-0.119977	0.127904	0.838484	0.045^{*}
C11	$0.0010(3)$	$0.1157(4)$	$0.9290(9)$	$0.0410(10)$
H11	-0.004963	0.066767	1.070577	0.049^{*}
C12	$0.0785(2)$	$0.1526(3)$	$0.8565(9)$	$0.0368(9)$
H12	0.126414	0.128826	0.946242	0.044^{*}
H2	$0.110(3)$	$0.341(4)$	$0.286(12)$	0.044^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0224(11)$	$0.0457(15)$	$0.0404(17)$	$0.0004(11)$	$-0.0002(11)$	$0.0017(13)$
O2	$0.0291(12)$	$0.0387(14)$	$0.0352(15)$	$0.0032(10)$	$-0.0065(10)$	$0.0041(12)$
N1	$0.0235(13)$	$0.0340(15)$	$0.0328(17)$	$0.0006(11)$	$-0.0019(12)$	$-0.0011(13)$
N2	$0.0235(13)$	$0.0350(15)$	$0.0312(17)$	$0.0004(11)$	$-0.0032(12)$	$0.0022(13)$
N3	$0.0286(14)$	$0.0353(16)$	$0.0365(19)$	$-0.0011(11)$	$0.0011(13)$	$0.0023(15)$

supporting information

C1	$0.0270(15)$	$0.0290(16)$	$0.0302(19)$	$0.0025(13)$	$0.0024(14)$	$-0.0040(14)$
C2	$0.0270(16)$	$0.0333(18)$	$0.036(2)$	$-0.0007(13)$	$0.0064(15)$	$-0.0024(16)$
C3	$0.0379(19)$	$0.0334(18)$	$0.040(2)$	$0.0007(15)$	$0.0100(17)$	$0.0029(17)$
C4	$0.0424(19)$	$0.0361(18)$	$0.033(2)$	$0.0081(17)$	$0.0016(17)$	$-0.0015(16)$
C5	$0.0308(16)$	$0.0393(18)$	$0.033(2)$	$0.0036(15)$	$0.0007(16)$	$-0.0005(17)$
C6	$0.0214(15)$	$0.0318(17)$	$0.0304(19)$	$0.0016(12)$	$-0.0011(13)$	$-0.0024(15)$
C7	$0.0303(16)$	$0.0281(16)$	$0.0269(18)$	$0.0034(13)$	$-0.0011(14)$	$0.0002(14)$
C8	$0.0283(16)$	$0.0296(17)$	$0.0292(19)$	$0.0010(13)$	$-0.0011(13)$	$-0.0032(15)$
C9	$0.0262(16)$	$0.0390(19)$	$0.043(2)$	$-0.0019(15)$	$0.0023(16)$	$0.0022(16)$
C10	$0.0350(17)$	$0.0367(18)$	$0.040(2)$	$-0.0063(15)$	$0.0072(16)$	$-0.0006(17)$
C11	$0.043(2)$	$0.041(2)$	$0.038(3)$	$-0.0062(16)$	$0.0010(18)$	$0.0060(18)$
C12	$0.0346(17)$	$0.041(2)$	$0.035(2)$	$-0.0004(15)$	$-0.0030(15)$	$0.0069(17)$

Geometric parameters ($\mathrm{A},{ }^{\circ}$)

O1-C6	1.224 (4)	C3-C4	1.380 (6)
O2-C7	1.214 (4)	C4-H4	0.9500
N1-C1	1.339 (4)	C4-C5	1.385 (6)
N1-C5	1.327 (5)	C5-H5	0.9500
N2-C6	1.373 (5)	C7-C8	1.506 (5)
N2-C7	1.385 (5)	C8-C12	1.380 (6)
N2-H2	0.90 (5)	C9-H9	0.9500
N3-C8	1.333 (5)	C9-C10	1.387 (6)
N3-C9	1.339 (5)	C10-H10	0.9500
C1-C2	1.379 (5)	C10-C11	1.370 (6)
C1-C6	1.499 (5)	C11-H11	0.9500
C2-H2A	0.9500	C11-C12	1.394 (6)
$\mathrm{C} 2-\mathrm{C} 3$	1.378 (6)	C12-H12	0.9500
C3-H3	0.9500		
C5-N1-C1	117.3 (3)	O1-C6-C1	122.3 (3)
C6-N2-C7	129.2 (3)	N2-C6-C1	112.6 (3)
C6-N2-H2	116 (3)	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{N} 2$	125.1 (3)
C7-N2-H2	114 (3)	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 8$	122.5 (3)
C8-N3-C9	117.8 (4)	N2-C7-C8	112.4 (3)
N1-C1-C2	123.3 (4)	N3-C8-C7	116.7 (3)
N1-C1-C6	115.9 (3)	N3-C8-C12	123.1 (4)
C2-C1-C6	120.7 (3)	C12-C8-C7	120.1 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.7	N3-C9-H9	118.6
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	118.6 (3)	N3-C9-C10	122.9 (4)
C3-C2-H2A	120.7	C10-C9-H9	118.6
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.5	C9-C10-H10	120.5
C2-C3-C4	119.0 (4)	C11-C10-C9	118.9 (4)
C4-C3-H3	120.5	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10$	120.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	120.8	C10-C11-H11	120.6
C3-C4-C5	118.3 (4)	C10-C11-C12	118.7 (4)
C5-C4-H4	120.8	C12-C11-H11	120.6
N1-C5-C4	123.5 (4)	C8-C12-C11	118.6 (4)

$\mathrm{N} 1-\mathrm{C} 5-\mathrm{H} 5$	118.3
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	118.3
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{N} 2$	$125.1(3)$
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 3$	$173.6(4)$
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 12$	$-5.5(5)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.8(6)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{O} 1$	$179.4(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 2$	$-1.1(5)$
$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 3$	$-5.8(5)$
$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 12$	$175.2(4)$
$\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 12-\mathrm{C} 11$	$-1.6(6)$
$\mathrm{N} 3-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-1.1(7)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$-0.1(6)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.3(6)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{O} 1$	$-1.5(5)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 2$	$178.0(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$1.1(6)$

C8-C12-H12
 $\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$
 120.7
 120.7

C3-C4-C5-N1
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$
C5-N1- $\mathrm{C} 1-\mathrm{C} 6$
C6-N2- $\mathrm{C} 7-\mathrm{O} 2$
C6-N2-C7-C8
C6-C1-C2-C3
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 6-\mathrm{O} 1$
C7-N2-C6-C1
C7-C8-C12-C11
C8-N3-C9-C10
C9-N3-C8-C7
C9-N3-C8-C12
C9-C10-C11-C12
C10-C11-C12-C8
-1.0 (6)
1.0 (6)
-179.9 (3)
-4.7 (6)
174.7 (3)
-179.8 (3)
7.6 (6)
-171.9 (3)
177.4 (4)
0.3 (6)
-178.0 (3)
1.0 (6)
0.5 (7)
0.7 (7)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1$	$0.90(5)$	$2.15(6)$	$2.614(5)$	$111(4)$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 3$	$0.90(5)$	$2.15(5)$	$2.637(4)$	$113(5)$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.95	2.48	$3.343(5)$	152
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~N}^{1 i}$	0.95	2.51	$3.393(5)$	154

Symmetry codes: (i) $-x+1 / 2, y+1 / 2, z-3 / 2$; (ii) $-x,-y+1, z-1 / 2$.
N -(3-Fluoropyridine-2-carbonyl)pyridine-2-carboxamide (2)

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{FN}_{3} \mathrm{O}_{2}$
$M_{r}=245.21$
Orthorhombic, Pna2 ${ }_{1}$
$a=16.6058(10) \AA$
$b=12.9096$ (7) \AA
$c=4.9153$ (3) A
$V=1053.71(11) \AA^{3}$
$Z=4$
$F(000)=504$

Data collection

SuperNova, Dual, Cu at zero, Atlas diffractometer
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source
Mirror monochromator
Detector resolution: 10.4839 pixels mm^{-1} ω scans
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2015)
$D_{\mathrm{x}}=1.546 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 2360 reflections
$\theta=3.4-74.8^{\circ}$
$\mu=1.03 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, clear colourless
$0.26 \times 0.10 \times 0.05 \mathrm{~mm}$
$T_{\text {min }}=0.983, T_{\text {max }}=0.995$
5774 measured reflections
1798 independent reflections
1567 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.054$
$\theta_{\text {max }}=75.9^{\circ}, \theta_{\text {min }}=5.3^{\circ}$
$h=-19 \rightarrow 20$
$k=-15 \rightarrow 16$
$l=-6 \rightarrow 5$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.152$
$S=1.03$
1798 reflections
176 parameters
1 restraint
Primary atom site location: structure-invariant direct methods
Hydrogen site location: mixed

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$	Occ. (<1)
O2	$0.27904(19)$	$0.7427(2)$	$0.1952(8)$	$0.0338(8)$	
O1	$0.21184(17)$	$0.8809(3)$	$0.5995(8)$	$0.0359(8)$	
N3	$0.4847(2)$	$0.7588(3)$	$0.3876(9)$	$0.0309(9)$	
N2	$0.3438(2)$	$0.8296(3)$	$0.5407(9)$	$0.0271(8)$	
N1	$0.3932(2)$	$0.9540(3)$	$0.9257(8)$	$0.0269(8)$	
C12	$0.4327(3)$	$0.6517(4)$	$0.0372(11)$	$0.0407(12)$	
H12	0.387317	0.626086	-0.059309	0.049^{*}	$0.563(8)$
C8	$0.4221(3)$	$0.7223(3)$	$0.2426(10)$	$0.0267(9)$	
C9	$0.5586(3)$	$0.7247(3)$	$0.3242(12)$	$0.0358(11)$	
H9	0.603043	0.749297	0.427390	0.043^{*}	
C10	$0.5730(3)$	$0.6555(4)$	$0.1156(11)$	$0.0393(11)$	
H10	0.626396	0.634525	0.073279	0.047^{*}	
C11	$0.5087(3)$	$0.6176(4)$	$-0.0299(12)$	$0.0433(13)$	0.052^{*}
H11	0.516473	0.569153	-0.172922	$0.0270(9)$	
C7	$0.3403(2)$	$0.7643(3)$	$0.3213(10)$	$0.0257(9)$	
C6	$0.2827(2)$	$0.8864(3)$	$0.6609(9)$	$0.0247(9)$	
C1	$0.3139(2)$	$0.9587(3)$	$0.8767(10)$	$0.0300(10)$	
C2	$0.2642(3)$	$1.0262(3)$	$1.0150(10)$	0.036^{*}	$0.437(8)$
H2A	0.208315	1.028822	0.973723	$0.0351(11)$	
C3	$0.2959(3)$	$1.0902(3)$	$1.2140(12)$	0.042^{*}	
H3	0.262391	1.137086	1.310847	$0.0341(10)$	$0.437(8)$
C4	$0.3766(3)$	$1.0842(3)$	$1.2677(11)$	0.031^{*}	
H4	0.400053	1.126025	1.405499	0.036^{*}	$0.046(2)$
C5	$0.4234(3)$	$1.0164(3)$	$1.1188(10)$	$0.0368(16)$	0.044^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O2	$0.0306(15)$	$0.0302(14)$	$0.0407(19)$	$-0.0041(12)$	$-0.0077(16)$	$-0.0028(15)$
O1	$0.0223(15)$	$0.0426(17)$	$0.043(2)$	$-0.0018(12)$	$-0.0037(15)$	$0.0012(16)$
N3	$0.0279(18)$	$0.0288(17)$	$0.036(2)$	$-0.0004(13)$	$-0.0008(17)$	$-0.0003(17)$
N2	$0.0239(17)$	$0.0283(17)$	$0.029(2)$	$-0.0004(13)$	$-0.0022(15)$	$-0.0039(15)$
N1	$0.0249(17)$	$0.0281(16)$	$0.028(2)$	$-0.0030(13)$	$-0.0019(15)$	$-0.0021(15)$
C12	$0.055(3)$	$0.034(2)$	$0.033(3)$	$0.006(2)$	$-0.009(3)$	$-0.003(2)$
C8	$0.029(2)$	$0.0221(16)$	$0.029(2)$	$-0.0005(14)$	$-0.0027(18)$	$0.0019(17)$
C9	$0.033(2)$	$0.028(2)$	$0.047(3)$	$0.0026(17)$	$0.003(2)$	$-0.001(2)$
C10	$0.045(2)$	$0.030(2)$	$0.043(3)$	$0.0102(19)$	$0.012(2)$	$0.005(2)$
C11	$0.061(3)$	$0.036(2)$	$0.033(3)$	$0.010(2)$	$0.004(3)$	$-0.004(2)$
C7	$0.031(2)$	$0.0227(18)$	$0.027(2)$	$-0.0036(15)$	$-0.003(2)$	$0.0033(17)$
C6	$0.0198(18)$	$0.0282(18)$	$0.029(3)$	$-0.0029(15)$	$-0.0016(17)$	$0.0038(19)$
C1	$0.0218(18)$	$0.0222(16)$	$0.030(2)$	$-0.0014(14)$	$-0.0005(19)$	$0.0011(16)$
C2	$0.028(2)$	$0.0232(18)$	$0.039(3)$	$0.0010(15)$	$0.006(2)$	$0.0045(19)$
C3	$0.043(3)$	$0.0250(19)$	$0.037(3)$	$-0.0003(17)$	$0.009(2)$	$-0.003(2)$
C4	$0.044(3)$	$0.0276(19)$	$0.030(2)$	$-0.0053(18)$	$0.005(2)$	$-0.002(2)$
C5	$0.030(2)$	$0.0301(19)$	$0.031(2)$	$-0.0040(16)$	$-0.001(2)$	$-0.002(2)$
F1B	$0.036(4)$	$0.053(4)$	$0.050(5)$	$-0.002(3)$	$-0.012(3)$	$-0.025(4)$
F1A	$0.020(2)$	$0.028(2)$	$0.062(4)$	$0.0007(16)$	$0.002(2)$	$0.001(2)$

Geometric parameters $\left(\stackrel{A}{A},{ }^{\circ}\right)$

O2-C7	1.224 (5)	C9-C10	1.381 (7)
O1-C6	1.217 (5)	C10-H10	0.9500
N3-C8	1.346 (6)	C10-C11	1.376 (8)
N3-C9	1.340 (6)	C11-H11	0.9500
N2-C7	1.370 (6)	C6-C1	1.505 (6)
N2-C6	1.384 (6)	$\mathrm{C} 1-\mathrm{C} 2$	1.380 (6)
N2-H2	0.92 (6)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9500
N1-C1	1.341 (5)	$\mathrm{C} 2-\mathrm{C} 3$	1.384 (7)
N1-C5	1.342 (6)	C2-F1A	1.327 (6)
C12-H12	0.9500	C3-H3	0.9500
C12-C8	1.372 (7)	C3-C4	1.369 (7)
C12-C11	1.376 (7)	C4-H4	0.9500
C12-F1B	1.262 (8)	C4-C5	1.381 (6)
C8-C7	1.511 (6)	C5-H5	0.9500
C9-H9	0.9500		
C9-N3-C8	118.0 (4)	O2-C7-C8	122.4 (4)
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 6$	129.1 (4)	N2-C7-C8	112.6 (3)
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{H} 2$	113 (4)	O1-C6-N2	124.9 (4)
C6-N2-H2	118 (4)	O1-C6- C 1	122.9 (4)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	117.9 (4)	N2-C6- ${ }^{-} 1$	112.2 (3)
C8-C12-H12	119.8	N1-C1-C6	115.9 (3)
C8-C12-C11	120.5 (5)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	121.9 (4)

C11-C12-H12	119.8
F1B-C12-C8	127.5 (6)
F1B-C12-C11	111.7 (6)
N3-C8-C12	121.5 (4)
N3-C8-C7	115.7 (4)
C12-C8-C7	122.8 (4)
N3-C9-H9	118.5
N3-C9-C10	122.9 (5)
C10-C9-H9	118.5
C9-C10-H10	120.6
C11-C10-C9	118.8 (5)
C11-C10-H10	120.6
C12-C11-H11	120.9
C10-C11-C12	118.3 (5)
C10-C11-H11	120.9
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{N} 2$	125.0 (4)
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	178.5 (4)
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	-1.9 (7)
N3-C8-C7-O2	175.2 (4)
N3-C8-C7-N2	-3.2 (5)
N3-C9-C10-C11	-1.7 (8)
N2-C6- $\mathrm{C} 1-\mathrm{N} 1$	-2.6 (5)
N2-C6-C1-C2	177.0 (4)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-1.2 (7)
N1-C1-C2-F1A	179.2 (4)
C12-C8-C7-O2	-4.7 (6)
$\mathrm{C} 12-\mathrm{C} 8-\mathrm{C} 7-\mathrm{N} 2$	176.8 (4)
C8-N3-C9-C10	1.0 (7)
C8-C12-C11-C10	0.6 (8)
C9-N3-C8-C12	0.6 (7)
C9-N3-C8-C7	-179.4 (4)
C9-C10-C11-C12	0.9 (7)
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 8-\mathrm{N} 3$	-1.3 (7)

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$122.2(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.1
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$119.8(4)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.1
$\mathrm{~F} 1 \mathrm{~A}-\mathrm{C} 2-\mathrm{C} 1$	$124.6(5)$
$\mathrm{F} 1 \mathrm{~A}-\mathrm{C} 2-\mathrm{C} 3$	$115.6(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.8
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$118.4(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.8
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	120.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.0(4)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	120.5
$\mathrm{~N} 1-\mathrm{C} 5-\mathrm{C} 4$	$123.0(4)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{H} 5$	118.5
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	118.5

$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 8-\mathrm{C} 7$	$178.6(4)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 6-\mathrm{O} 1$	$6.0(7)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 1$	$-172.9(4)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 7-\mathrm{O} 2$	$-2.1(7)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$	$176.3(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$179.2(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{F} 1 \mathrm{~A}$	$-0.4(7)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$0.2(6)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.0(7)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$1.2(7)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$-1.3(7)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$-179.3(4)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$1.1(6)$
$\mathrm{F} 1 \mathrm{~B}-\mathrm{C} 12-\mathrm{C} 8-\mathrm{N} 3$	$-175.0(6)$
$\mathrm{F} 1 \mathrm{~B}-\mathrm{C} 12-\mathrm{C} 8-\mathrm{C} 7$	$5.0(9)$
$\mathrm{F} 1 \mathrm{~B}-\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10$	$175.1(6)$
F1A-C2-C3-C4	$179.6(5)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{~N} 1$	$0.92(5)$	$2.16(6)$	$2.614(6)$	$109(4)$
$\mathrm{N} 2 — \mathrm{H} 2 \cdots \mathrm{~N} 3$	$0.92(5)$	$2.11(6)$	$2.622(5)$	$114(5)$
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.95	2.43	$3.320(6)$	156
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{~F} 1 B^{\mathrm{i}}$	0.95	2.40	$3.049(8)$	125
$\mathrm{C} 5 — \mathrm{H} 5 \cdots \mathrm{~N} 1^{\mathrm{ii}}$	0.95	2.53	$3.420(6)$	156
$\mathrm{C} 10 — \mathrm{H} 10 \cdots \mathrm{~F} 1 A^{\mathrm{iii}}$	0.95	2.45	$3.169(7)$	132

Symmetry codes: (i) $-x+1 / 2, y+1 / 2, z+3 / 2$; (ii) $-x+1,-y+2, z+1 / 2$; (iii) $x+1 / 2,-y+3 / 2, z-1$.

3-Fluoro-N-(3-fluoropyridine-2-carbonyl)pyridine-2-carboxamide (3)

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$

$$
M_{r}=263.21
$$

$$
\begin{aligned}
& F(000)=536 \\
& D_{\mathrm{x}}=1.660 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation, } \lambda=1.54184 \AA \\
& \text { Cell parameters from } 1899 \text { reflections } \\
& \theta=5.0-74.9^{\circ} \\
& \mu=1.22 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Block, clear colourless } \\
& 0.11 \times 0.09 \times 0.06 \mathrm{~mm}
\end{aligned}
$$

Monoclinic, $12 / a$
$a=6.7062$ (3) A
$b=14.1190(5) \AA$
$c=11.2074(5) \AA$
$\beta=97.140$ (4) ${ }^{\circ}$
$V=1052.94(8) \AA^{3}$
$Z=4$

Data collection

SuperNova, Dual, Cu at zero, Atlas diffractometer
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source
Mirror monochromator
Detector resolution: 10.4839 pixels mm^{-1}
ω scans
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2015)

$$
\begin{aligned}
& T_{\min }=0.993, T_{\max }=0.996 \\
& 5200 \text { measured reflections } \\
& 1083 \text { independent reflections } \\
& 856 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.069 \\
& \theta_{\max }=75.4^{\circ}, \theta_{\min }=5.1^{\circ} \\
& h=-7 \rightarrow 8 \\
& k=-17 \rightarrow 17 \\
& l=-14 \rightarrow 13
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.161$
$S=1.04$
1083 reflections
88 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0954 P)^{2}+0.7955 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.32$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
F1	$0.1012(3)$	$0.49942(9)$	$0.14190(14)$	$0.0349(5)$
O1	$0.1649(3)$	$0.53996(11)$	$0.37977(16)$	$0.0296(5)$
N1	$0.0596(3)$	$0.29674(13)$	$0.33292(17)$	$0.0204(5)$
N2	0.250000	$0.41071(19)$	0.500000	$0.0218(6)$
C2	$0.0612(4)$	$0.41086(16)$	$0.1771(2)$	$0.0245(6)$
C1	$0.0945(3)$	$0.38567(15)$	$0.2979(2)$	$0.0217(5)$
C5	$-0.0104(3)$	$0.23375(15)$	$0.2494(2)$	$0.0208(5)$
H5	-0.037842	0.171355	0.274533	0.025^{*}

C4	$-0.0453(3)$	$0.25475(16)$	$0.1273(2)$	$0.0233(5)$
H4	-0.094044	0.207588	0.070604	0.028^{*}
C3	$-0.0075(4)$	$0.34557(16)$	$0.0902(2)$	$0.0247(6)$
H3	-0.028177	0.362470	0.007558	0.030^{*}
C6	$0.1711(3)$	$0.45473(15)$	$0.3944(2)$	$0.0213(5)$
H2	0.250000	$0.351(3)$	0.500000	0.026^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	$0.0551(11)$	$0.0191(7)$	$0.0292(9)$	$-0.0062(6)$	$-0.0002(7)$	$0.0071(6)$
O1	$0.0404(10)$	$0.0157(8)$	$0.0316(10)$	$0.0016(7)$	$0.0006(8)$	$0.0023(7)$
N1	$0.0190(9)$	$0.0171(9)$	$0.0254(10)$	$0.0017(7)$	$0.0038(7)$	$0.0014(7)$
N2	$0.0254(13)$	$0.0141(12)$	$0.0262(15)$	0.000	$0.0042(11)$	0.000
C2	$0.0262(11)$	$0.0165(10)$	$0.0309(13)$	$0.0012(9)$	$0.0042(10)$	$0.0048(9)$
C1	$0.0203(11)$	$0.0167(11)$	$0.0278(12)$	$0.0022(8)$	$0.0023(9)$	$0.0021(9)$
C5	$0.0188(10)$	$0.0174(10)$	$0.0270(12)$	$0.0007(8)$	$0.0058(9)$	$0.0008(8)$
C4	$0.0213(11)$	$0.0223(11)$	$0.0258(12)$	$0.0025(8)$	$0.0014(9)$	$-0.0022(9)$
C3	$0.0276(11)$	$0.0239(12)$	$0.0222(12)$	$0.0039(9)$	$0.0014(10)$	$0.0028(9)$
C6	$0.0222(11)$	$0.0162(10)$	$0.0259(12)$	$0.0014(8)$	$0.0051(9)$	$0.0009(9)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

F1-C2	1.348 (2)	C2-C3	1.378 (3)
O1-C6	1.214 (3)	C1-C6	1.498 (3)
N1-C1	1.344 (3)	C5-H5	0.9500
N1-C5	1.334 (3)	C5-C4	1.391 (3)
N2- $\mathrm{C}^{\text {i }}{ }^{\text {i }}$	1.383 (3)	C4-H4	0.9500
N2-C6	1.383 (3)	C4-C3	1.381 (3)
N2-H2	0.85 (4)	C3-H3	0.9500
C2-C1	1.391 (3)		
C5-N1-C1	118.5 (2)	N1-C5-C4	123.4 (2)
C6 ${ }^{\text {i }}$ - $\mathrm{N} 2-\mathrm{C} 6$	126.6 (3)	C4-C5-H5	118.3
C6 ${ }^{\text {i }}$ - $\mathrm{N} 2-\mathrm{H} 2$	116.71 (13)	C5-C4-H4	120.7
C6-N2-H2	116.71 (13)	C3-C4-C5	118.6 (2)
F1-C2-C1	120.5 (2)	C3-C4-H4	120.7
F1-C2-C3	118.4 (2)	C2-C3-C4	117.8 (2)
C3-C2-C1	121.1 (2)	C2-C3-H3	121.1
N1-C1-C2	120.7 (2)	C4-C3-H3	121.1
N1-C1-C6	117.0 (2)	O1-C6-N2	124.3 (2)
C2-C1-C6	122.3 (2)	O1-C6-C1	123.0 (2)
N1-C5-H5	118.3	N2-C6-C1	112.68 (19)
$\mathrm{F} 1-\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	-178.3 (2)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	1.0 (4)
F1-C2-C1-C6	1.3 (4)	$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-1.0 (3)
F1-C2-C3-C4	179.1 (2)	$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	179.41 (19)
N1-C1-C6-O1	-162.6 (2)	C5-C4-C3-C2	-0.6 (3)

supporting information

$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 2$	$17.9(3)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$-0.6(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{O} 1$	$17.8(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 2$	$-161.7(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$1.4(3)$

$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$-0.2(4)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$179.3(2)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 6-\mathrm{O} 1$	$1.68(18)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 1$	$-178.8(2)$

Symmetry code: (i) $-x+1 / 2, y,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1$	$0.84(4)$	$2.27(2)$	$2.671(2)$	$110(1)$
$\mathrm{N} 2 — \mathrm{H} 2 \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.84(4)$	$2.27(2)$	$2.671(2)$	$110(1)$
$\mathrm{C} 4-\mathrm{H} 4 \cdots 1^{\mathrm{ii}}$	0.95	2.49	$3.135(3)$	125
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O}^{\mathrm{ii}}$	0.95	2.61	$3.207(3)$	122
$\mathrm{C} 3 — \mathrm{H} 3 \cdots 1^{\mathrm{iii}}$	0.95	2.58	$3.398(3)$	145
$\mathrm{C} 5 — \mathrm{H} 5 \cdots \mathrm{~F}^{\mathrm{ii}}$	0.95	2.66	$3.604(3)$	176

Symmetry codes: (i) $-x+1 / 2, y,-z+1$; (ii) $-x, y-1 / 2,-z+1 / 2$; (iii) $-x,-y+1,-z$.

