(\mathbf{c})

Crystal structure of N'-[2-(benzo[d]thiazol-2yl)acetyl]benzohydrazide, an achiral compound crystallizing in space group P1 with Z = 1

Rasha A. Azzam,^a Galal H. Elgemeie,^a Mona M. Seif^a and Peter G. Jones^{b*}

^aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and ^bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany. *Correspondence e-mail: p.jones@tu-bs.de

In the molecule of the title compound, $C_{16}H_{13}N_3O_2S$, one hydrazinic nitrogen atom is essentially planar, but the other is slightly pyramidalized. The torsion angle about the hydrazinic bond is 66.44 (15)°. Both hydrazinic hydrogen atoms lie antiperiplanar to the oxygen of the adjacent carbonyl group. The molecular packing is a layer structure determined by two classical hydrogen bonds, N– $H \cdots O = C$ and N $-H \cdots N_{\text{thiazole}}$. The space group is *P*1 with *Z* = 1, which is unusual for an achiral organic compound.

1. Chemical context

Heterocycles represent a link between organic synthesis and pharmaceutical chemistry, thereby encouraging researchers to discover new hetereocyclic drug candidates. One of the most prominent heterocycles is benzothiazole, a privileged scaffold in the field of synthetic and medicinal chemistry (Elgemeie et al., 2000a,b). Its derivatives and metal complexes possess a wide range of pharmacological properties and a high degree of structural diversity that have proved vital for the investigation for novel therapeutics (Elgemeie et al., 2020; Gill et al., 2015). The carbon atom C2 (standard numbering; the carbon atom between nitrogen and sulfur) is the most attractive site both from a synthetic and medicinal point of view (Azzam et al., 2020a,b). As structure-activity relationships have shown, changes in the substituent at C2 can induce marked changes in the biological activity (Azzam et al., 2017a,b). Numerous biologically potent molecules containing 2-substituted benzothiazole scaffolds have extensive biological applications (Keri et al., 2015), such as anti-microbial (König et al., 2011), anti-malarial (Bowyer et al., 2007) and anti-inflammatory (Wang et al., 2009). Among the 2-substituted benzothiazoles, 2-aryl benzothiazoles are versatile scaffolds that have major biological and industrial applications (Kamal et al., 2011). Part of our research has therefore concentrated on the synthetic pathways of 2-arylbenzothiazoles (Azzam et al., 2019; Elgemeie & Elghandour, 1990). Recently, we contributed to current progress in the manufacturing and biological estimation of 2-aryl, 2-pyridyl and 2-pyrimidylbenzothiazoles and other antimetabolites as potent chemotherapeutic agents (Azzam et al., 2020c; Metwally et al., 2021). Here we deal with synthetic approaches to the new compound N'-(2-(benzo-[d]thiazol-2-yl)acetyl)benzohydrazide (3). Compound 3 was prepared by the reaction of 2-(benzo[d]thiazol-2-yl)acetohydrazide (2) with benzoyl chloride in the presence of pyridine

OPEN O ACCESSACCESSpathways of 2-arylbenzoth
meie & Elghandour, 199
current progress in the mation of 2-aryl, 2-pyridyl a
other antimetabolites as
(Azzam et al., 2020c; Metw
synthetic approaches to the
Id]thiazol-2-yl)acetyl)benz
prepared by the reaction
drazide (2) with benzoyl c

Received 19 July 2021

ISSN 2056-9890

Accepted 27 July 2021

Edited by A. V. Yatsenko, Moscow State University, Russia

Keywords: thiazole; hydrazide; hydrogen bond; space group *P*1; crystal structure.

CRYSTALLOGRAPHIC

COMMUNICATIONS

CCDC reference: 2099652

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

at room temperature. The structure of **3** was initially determined on the basis of spectroscopic data and elemental analysis. In order to establish the structure of the product unambiguously, its crystal structure was determined and is presented here.

2. Structural commentary

The structure determination confirms the formation of compound **3** (Fig. 1). Bond lengths and angles may be regarded as normal (Allen *et al.*, 1987); a selection is presented

Figure 1

The molecule of compound 3 in the crystal. Ellipsoids represent 50% probability levels.

Table 1	
Selected geometric parameters (Å	, °).

\$1-C7A	1.7310 (13)	N1-N2	1.3901 (14)
S1-C2	1.7422 (12)	N3-C3A	1.3939 (16)
C2-N3	1.2993 (16)		
C7A-S1-C2	89.49 (6)	C10-N2-N1	117.28 (10)
N3-C2-S1	115.83 (9)	C2-N3-C3A	110.61 (10)
C9-N1-N2	119.00 (10)		. ,
C9-N1-N2-C10	66.44 (15)	N2-C10-C11-C12	-18.46 (17)
S1-C2-C8-C9	80.26 (12)	O1-C9-N1-H01	175 (2)
N2-N1-C9-C8	-173.21(10)	O2-C10-N2-H02	166 (2)
C2-C8-C9-N1	-152.41 (11)	H01-N1-N2-H02	101 (3)
N1-N2-C10-C11	-167.79 (10)		

in Table 1. The geometry at the hydrazinic nitrogen atom N1 is essentially planar, but N2 is slightly pyramidalized [angle sum 355 (2)°; the nitrogen atom lies 0.15 (1) Å out of the plane of its substituents]. The general shape of the molecule is defined by the torsion angles along the atom chain S1-C2-C8-C9-N1-N2-C10-C11-C12, which are also given in Table 1; in particular, the torsion angle about the hydrazine N1-N2 bond is 66.44 (15)° [*cf*. H01-N1-N2-H02 101 (3)°]. Each hydrazinic hydrogen atom lies antiperiplanar to a carbonyl oxygen atom across the respective N-C bond. The interplanar angle between the benzothiazol group and the phenyl ring is 75.65 (3)°.

3. Supramolecular features

Two classical hydrogen bonds, from the hydrazinic hydrogen atoms to the carbonyl oxygen O1 and the heterocyclic nitrogen N3 (Table 2), link the molecules to form layers parallel to the ab plane (Fig. 2).

Packing diagram of compound 3 viewed perpendicular to the *ab* plane. Dashed lines represent classical hydrogen bonds. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Selected atoms of the asymmetric unit are labelled.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} N1 {-} H01 {\cdots} O1^{i} \\ N2 {-} H02 {\cdots} N3^{ii} \end{array}$	0.88 (3)	2.02 (3)	2.8438 (14)	157 (3)
	0.85 (3)	2.15 (3)	2.9736 (15)	162 (3)

Symmetry codes: (i) x + 1, y, z; (ii) x, y - 1, z.

4. Database survey

A database search (CSD Version 5.41) for other structures containing the same benzothiazol-acetylhydrazide moiety gave only one hit, refcode JEBQOZ, with a *p*-tosylate group replacing the benzoyl group of 3; this was our previous publication (Azzam et al., 2017b). There are major conformational differences between the two structures, e.g. the C-C-C(=O)-N torsion angle of JEBQOZ is $-109.79 (19)^{\circ}$ in contrast to $-152.41 (11)^{\circ}$ in the title structure. The average database bond lengths C2-S and C2-N for the benzo[d]thiazole ring system were calculated; for 444 hits (600 different molecules) the values were 1.750 (16) and 1.300 (29) Å, respectively, virtually unchanged from the values we obtained previously (Azzam et al., 2017b); however, we regret having mistyped the latter value as 1.200.

Anecdotal evidence, combined with previous experience, would suggest that it is unusual for an achiral compound to crystallize in space group P1, which may be considered as a moderately rare space group; of the over 1.1 million structures in the Cambridge database, only 9843 are in P1 (8832 with coordinates available, 6730 of these without disorder).

We therefore wished to see how many of the P1 structures in the CSD, particularly those with Z = 1, were achiral. Unfortunately, there is at present no means of identifying, labelling and searching for chirality or chiral ('asymmetric') atoms using the standard ConQuest search routines, and it is clearly unfeasible to check all the P1 structures by hand. We therefore began by simply considering the small and possibly non-representative subset of 20 P1 structures (13 with Z > 1) that were determined by PGJ. Of these, 14 were pure enantiomers; for 12 of these, the absolute configuration was determined. Of the remaining six, five were not organic compounds [two metal complexes with Z = 1 (Jones *et al.*, 1996; Filimon et al., 2014), two organotellurium compounds (Jones *et al.*, 2015, Z = 1; du Mont *et al.*, 2010, Z = 4), and one phosphane sulfide (Taouss & Jones, 2013, Z = 2)], and the remaining structure (Focken et al., 2001, Z = 4) displayed planar chirality, but contained no 'asymmetric' atom. On this limited basis, we would therefore postulate that is very rare for achiral organic compounds to crystallize in P1, especially with Z = 1. An extension of this survey to all P1 structures in the CCDC is being planned.

5. Synthesis and crystallization

A mixture of 2-(benzo[d]thiazol-2-yl)acetohydrazide 2(0.08 mol) and pyridine (10 mL) was stirred for 15 min at room temperature. Benzoyl chloride (0.16 mol) was then

Table 3	
Experimental details.	
Crystal data	
Chemical formula	$C_{16}H_{13}N_3O_2S$
Mr	311.35
Crystal system, space group	Triclinic, P1
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	4.71248 (9), 6.96463 (14), 11.5455 (3)
$lpha,eta,\gamma$ (°)	105.6168 (18), 95.7876 (16), 95.9993 (16)
$V(Å^3)$	359.64 (1)
Z	1
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.24
Crystal size (mm)	$0.20\times0.16\times0.05$
Data collection	
Diffractometer	XtaLAB Synergy, HyPix
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2020)
T_{\min}, T_{\max}	0.844, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	60895, 6522, 6312
Rint	0.034
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.843
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.030, 0.078, 1.06
No. of reflections	6522
No. of parameters	207

K[T > 20(T)], WK(T), S	0.050, 0.078, 1.00
No. of reflections	6522
No. of parameters	207
No. of restraints	3
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.41, -0.27
Absolute structure	Flack x determined using 2959 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$
Absolute structure parameter	(Parsons <i>et al.</i> , 2013) -0.016 (12)

Computer programs: CrysAlis PRO (Rigaku OD, 2020), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and XP (Siemens, 1994).

added gradually to the reaction mixture, which was stirred for 15 min at 273 K. The reaction mixture was left to stand at room temperature for another 3 h, then poured onto ice water and neutralized with HCl. The precipitate thus formed was filtered off and dried to produce a white solid product 3. This was washed with ethyl acetate and recrystallized from ethanol; vield 85%, m.p. 487 K.

IR (KBr, cm⁻¹): v 3429–3284 (NH), 2974 (CH aromatic), 1696, 1662 (2CO); ¹H NMR (400 MHz, DMSO-*d*₆): δ 4.23 (*s*, 2H, CH₂), 7.43 (t, J = 7.2 Hz, 1H, benzothiazole H), 7.49–7.53 $(m, 3H, C_6H_5), 7.58 (t, J = 7.2 Hz, 1H, benzothiazole H), 7.91$ $(d, J = 7.2 \text{ Hz}, 2\text{H}, C_6\text{H}_5), 7.99 (d, J = 9.6 \text{ Hz}, 1\text{H}, \text{benzothiazole})$ H), 8.09 (d, J = 9.2 Hz, 1H, benzothiazole H), 10.48 (s, 1H, NH), 10.55 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO-d₆): δ 39.4 (CH₂), 122.5, 122.8, 125.5, 126.5, 127.9, 128.9, 132.4, 132.8, 136.9, 152.7, 165.0 (Ar-C), 166.0, 167.1 (2CO). Analysis: calculated for C₁₆H₁₃N₃O₂S (311.36): C 61.72; H 4.21; N 13.50%; found: C 61.70; H 4.22; N 13.55%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The hydrogen atoms of the NH groups were refined freely. Other hydrogens were included using a riding model starting from calculated positions (C– $H_{aromatic} = 0.95$, C– $H_{methylene} = 0.99$ Å). The U(H) values were fixed at 1.2 times the equivalent U_{iso} value of the parent carbon atoms.

The compound contains no chiral centres and crystallizes only by chance in a chiral (Sohncke) space group.

Acknowledgements

We are grateful to various colleagues at the CCDC for helpful advice and assistance. We acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020a). ACS Omega, 5, 30023–30036.
- Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017a). Acta Cryst. E73, 1820–1822.
- Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1041–1043.
- Azzam, R. A., Elgemeie, G. H., Osman, R. R. & Jones, P. G. (2019). Acta Cryst. E75, 367–371.
- Azzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182–26194.
- Azzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020c). ACS Omega, 5, 1640–1655.
- Bowyer, P. W., Gunaratne, R. S., Grainger, M., Withers-Martinez, C., Wickramsinghe, S. R., Tate, E. W., Leatherbarrow, R. J., Brown, K. A., Holder, A. A. & Smith, D. F. (2007). *Biochem. J.* 408, 173– 180.
- du Mont, W., Jeske, J. & Jones, P. G. (2010). Phosphorus Sulfur Silicon, 185, 1243–1249.
- Elgemeie, G. H., Azzam, R. A. & Osman, R. R. (2020). *Inorg. Chim. Acta*, **502**, 119302.

- Elgemeie, G. H. & Elghandour, A. H. (1990). Phosphorus Sulfur Silicon, 48, 281–284.
- Elgemeie, G. H., Shams, H. Z., Elkholy, Y. M. & Abbas, N. S. (2000a). *Phosphorus Sulfur Silicon*, **165**, 265–272.
- Elgemeie, G. H., Shams, Z., Elkholy, M. & Abbas, N. S. (2000b). *Heterocycl. Commun.* 6, 363–268.
- Filimon, S.-A., Petrovic, D., Volbeda, J., Bannenberg, T., Jones, P. G., Freiherr von Richthofen, C.-G., Glaser, T. & Tamm, M. (2014). Eur. J. Inorg. Chem. 2014, 5997–6012.
- Focken, T., Hopf, H., Snieckus, V., Dix, I. & Jones, P. G. (2001). *Eur. J.* Org. Chem. **2001**, 2221–2228.
- Gill, R. K., Rawal, R. K. & Bariwal, J. (2015). Arch. Pharm. Chem. Life Sci. 348, 155–178.
- Jones, P. G., Hrib, C. & du Mont, W.-W. (2015). Private Communication (CCDC-1051873). CCDC, Cambridge, England. https:// doi.org/10.5517/cc149kdd
- Jones, P. G., Yang, L. & Steinborn, D. (1996). Acta Cryst. C52, 2399– 2402.
- Kamal, A., Srikanth, Y. V., Naseer Ahmed Khan, M., Ashraf, M., Kashi Reddy, M., Sultana, F., Kaur, T., Chashoo, G., Suri, N., Sehar, I., Wani, Z. A., Saxena, A., Sharma, P. R., Bhushan, S., Mondhe, D. M. & Saxena, A. K. (2011). *Bioorg. Med. Chem.* 19, 7136–7150.
- Keri, R. S., Patil, M. R., Patil, S. A. & Budagumpi, S. (2015). Eur. J. Med. Chem. 89, 207–251.
- König, J., Wyllie, S., Wells, G., Stevens, M. F., Wyatt, P. G. & Fairlamb, A. H. (2011). J. Biol. Chem. 286, 8523–8533.
- Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2021). Acta Cryst. E77, 615–617.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249– 259.
- Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.
- Taouss, C. & Jones, P. G. (2013). Z. Naturforsch. Teil B, 68, 860-870.
- Wang, X., Sarris, K., Kage, K., Zhang, D., Brown, S. P., Kolasa, T., Surowy, C., El Kouhen, O. F., Muchmore, S. W., Brioni, J. D. & Stewart, A. O. (2009). J. Med. Chem. 52, 170–180.

supporting information

Acta Cryst. (2021). E77, 891-894 [https://doi.org/10.1107/S2056989021007672]

Crystal structure of N'-[2-(benzo[d]thiazol-2-yl)acetyl]benzohydrazide, an achiral compound crystallizing in space group P1 with Z = 1

Rasha A. Azzam, Galal H. Elgemeie, Mona M. Seif and Peter G. Jones

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2020); cell refinement: *CrysAlis PRO* (Rigaku OD, 2020); data reduction: *CrysAlis PRO* (Rigaku OD, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *XP* (Siemens, 1994); software used to prepare material for publication: *SHELXL2018/3* (Sheldrick, 2015b).

N'-[2-(Benzo[d]thiazol-2-yl)acetyl]benzohydrazide

Crystal data

C₁₆H₁₃N₃O₂S $M_r = 311.35$ Triclinic, P1 a = 4.71248 (9) Å b = 6.96463 (14) Å c = 11.5455 (3) Å a = 105.6168 (18)° $\beta = 95.7876$ (16)° $\gamma = 95.9993$ (16)° V = 359.64 (1) Å³

Data collection

XtaLAB Synergy, HyPix diffractometer Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source Mirror monochromator Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.078$ S = 1.066522 reflections 207 parameters 3 restraints Z = 1 F(000) = 162 $D_x = 1.438 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 40070 reflections $\theta = 3.0-37.0^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$ T = 100 K Plate, colourless $0.20 \times 0.16 \times 0.05 \text{ mm}$

 $T_{\min} = 0.844, T_{\max} = 1.000$ 60895 measured reflections 6522 independent reflections 6312 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.034$ $\theta_{\text{max}} = 36.8^{\circ}, \theta_{\text{min}} = 3.1^{\circ}$ $h = -7 \rightarrow 7$ $k = -11 \rightarrow 11$ $l = -18 \rightarrow 19$

Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0486P)^2 + 0.0499P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack *x* determined using 2959 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: -0.016 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 3.5462 (0.0009) x + 3.6978 (0.0019) y - 0.2128 (0.0045) z = 6.1650 (0.0025)* -0.0069 (0.0007) S1 * 0.0023 (0.0009) C2 * 0.0044 (0.0009) N3 * -0.0011 (0.0011) C4 * -0.0046 (0.0012) C5 *

0.0007 (0.0012) C6 * 0.0082 (0.0011) C7 * -0.0004 (0.0011) C3A * -0.0026 (0.0011) C7A -0.0318 (0.0015) C8Rms deviation of fitted atoms = 0.0043 - 3.3343 (0.0019) x + 1.8849 (0.0037) y + 7.6563 (0.0052) z = 0.2749 (0.0019)

Angle to previous plane (with approximate esd) = 75.652(0.033)

* 0.0041 (0.0009) C11 * 0.0008 (0.0009) C12 * -0.0051 (0.0009) C13 * 0.0044 (0.0010) C14 * 0.0006 (0.0010) C15 * -0.0049 (0.0009) C16 -0.0026 (0.0020) C10

Rms deviation of fitted atoms = 0.0038

- 0.0418 (0.0830) x - 3.0734 (0.0043) y + 11.3227 (0.0146) z = 3.7743 (0.0598) * 0.0000 (0.0000) N2 * 0.0000 (0.0001) C9 * 0.0000 (0.0000) H01 0.0634 (0.0123) N1 Rms deviation of fitted atoms = 0.0000 4.0751 (0.0123) x - 3.1432 (0.0992) y - 3.6530 (0.1475) z = 1.0965 (0.0176) * 0.0000 (0.0001) N1 * 0.0000 (0.0001) C10 * 0.0000 (0.0000) H02 0.1480 (0.0122) N2 Rms deviation of fitted atoms = 0.0000

Further torsion angles: 97.53 (0.11) O2 - C10 ··· C9 - O1 175.44 (2.18) H01 - N1 - C9 - O1 165.89 (2.18) H02 - N2 - C10 - O2 101.08 (2.76) H01 - N1 - N2 - H02

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.88408 (5)	0.86164 (4)	0.76703 (3)	0.01738 (7)	
C2	0.8642 (3)	0.87459 (17)	0.61788 (11)	0.01314 (18)	
N1	0.9484 (2)	0.36700 (15)	0.44206 (10)	0.01379 (17)	
H01	1.135 (6)	0.377 (4)	0.440 (3)	0.031 (6)*	
N2	0.7891 (2)	0.17967 (15)	0.38503 (10)	0.01379 (17)	
H02	0.743 (6)	0.111 (4)	0.433 (2)	0.025 (6)*	
N3	0.7208 (2)	1.01131 (16)	0.59308 (10)	0.01420 (17)	
C3A	0.6136 (3)	1.11873 (18)	0.69578 (11)	0.01407 (18)	
C4	0.4492 (3)	1.2765 (2)	0.70032 (13)	0.0202 (2)	
H4	0.401227	1.318921	0.630063	0.024*	
C5	0.3581 (3)	1.3691 (2)	0.80960 (15)	0.0232 (3)	
Н5	0.245566	1.475698	0.813913	0.028*	
C6	0.4294 (3)	1.3082 (2)	0.91385 (13)	0.0214 (2)	
H6	0.364372	1.374379	0.987636	0.026*	
C7	0.5928 (3)	1.1534 (2)	0.91122 (12)	0.0191 (2)	
H7	0.642508	1.113038	0.982118	0.023*	
C7A	0.6821 (3)	1.05845 (18)	0.80085 (11)	0.01465 (19)	

C8	1.0007 (3)	0.72931 (17)	0.52744 (11)	0.01505 (19)
H8A	1.188694	0.709803	0.566030	0.018*
H8B	1.035889	0.785089	0.459045	0.018*
C9	0.8084 (3)	0.52723 (17)	0.47944 (11)	0.01345 (18)
O1	0.5458 (2)	0.51401 (15)	0.47552 (10)	0.01766 (17)
C10	0.6341 (3)	0.15543 (17)	0.27343 (11)	0.01340 (18)
O2	0.6698 (2)	0.27818 (15)	0.21612 (10)	0.01878 (17)
C11	0.4201 (3)	-0.03063 (17)	0.22693 (11)	0.01309 (18)
C12	0.4296 (3)	-0.19751 (18)	0.27175 (12)	0.01574 (19)
H12	0.576152	-0.195084	0.335201	0.019*
C13	0.2252 (3)	-0.36724 (18)	0.22370 (12)	0.0172 (2)
H13	0.233253	-0.481009	0.253846	0.021*
C14	0.0089 (3)	-0.37052 (19)	0.13160 (12)	0.0180 (2)
H14	-0.132276	-0.485758	0.099661	0.022*
C15	-0.0006 (3)	-0.2051 (2)	0.08620 (13)	0.0191 (2)
H15	-0.147919	-0.208041	0.022925	0.023*
C16	0.2046 (3)	-0.03535 (19)	0.13308 (12)	0.0164 (2)
H16	0.198429	0.076976	0.101456	0.020*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01905 (14)	0.01772 (12)	0.01655 (12)	0.00614 (9)	0.00163 (9)	0.00577 (9)
C2	0.0104 (5)	0.0131 (4)	0.0151 (4)	0.0011 (3)	0.0022 (3)	0.0026 (3)
N1	0.0089 (4)	0.0117 (4)	0.0194 (4)	0.0008 (3)	0.0019 (3)	0.0024 (3)
N2	0.0133 (4)	0.0114 (4)	0.0158 (4)	-0.0007 (3)	0.0011 (3)	0.0038 (3)
N3	0.0136 (4)	0.0139 (4)	0.0150 (4)	0.0025 (3)	0.0025 (3)	0.0034 (3)
C3A	0.0126 (5)	0.0129 (4)	0.0161 (4)	0.0021 (3)	0.0019 (3)	0.0030 (3)
C4	0.0209 (6)	0.0178 (5)	0.0229 (6)	0.0084 (4)	0.0036 (4)	0.0054 (4)
C5	0.0203 (6)	0.0198 (5)	0.0274 (6)	0.0077 (4)	0.0049 (5)	0.0008 (5)
C6	0.0173 (6)	0.0214 (6)	0.0212 (6)	0.0023 (4)	0.0051 (4)	-0.0023 (4)
C7	0.0182 (6)	0.0214 (5)	0.0156 (5)	0.0017 (4)	0.0032 (4)	0.0015 (4)
C7A	0.0132 (5)	0.0146 (4)	0.0152 (4)	0.0019 (3)	0.0023 (3)	0.0025 (3)
C8	0.0104 (5)	0.0126 (4)	0.0200 (5)	0.0006 (3)	0.0042 (4)	0.0006 (4)
C9	0.0106 (5)	0.0128 (4)	0.0160 (4)	0.0009 (3)	0.0026 (3)	0.0025 (3)
O1	0.0094 (4)	0.0163 (4)	0.0253 (4)	0.0008 (3)	0.0032 (3)	0.0026 (3)
C10	0.0128 (5)	0.0120 (4)	0.0158 (4)	0.0013 (3)	0.0032 (3)	0.0043 (3)
O2	0.0217 (5)	0.0158 (4)	0.0194 (4)	-0.0020(3)	0.0015 (3)	0.0081 (3)
C11	0.0133 (5)	0.0113 (4)	0.0148 (4)	0.0006 (3)	0.0029 (3)	0.0039 (3)
C12	0.0158 (5)	0.0130 (4)	0.0182 (5)	0.0005 (4)	0.0007 (4)	0.0051 (4)
C13	0.0192 (6)	0.0121 (4)	0.0198 (5)	-0.0009 (4)	0.0029 (4)	0.0047 (4)
C14	0.0170 (5)	0.0156 (5)	0.0190 (5)	-0.0022 (4)	0.0028 (4)	0.0025 (4)
C15	0.0167 (6)	0.0193 (5)	0.0198 (5)	-0.0015 (4)	-0.0015 (4)	0.0058 (4)
C16	0.0158 (5)	0.0156 (5)	0.0179 (5)	0.0003 (4)	0.0005 (4)	0.0065 (4)

Geometric parameters (Å, °)

S1—C7A	1.7310 (13)	C11—C16	1.3994 (17)
S1—C2	1.7422 (12)	C12—C13	1.3909 (17)
C2—N3	1.2993 (16)	C13—C14	1.390 (2)
C2—C8	1.4933 (17)	C14—C15	1.3911 (19)
N1—C9	1.3488 (16)	C15—C16	1.3919 (18)
N1—N2	1.3901 (14)	N1—H01	0.88 (3)
N2-C10	1.3747 (16)	N2—H02	0.85 (3)
N3—C3A	1.3939 (16)	C4—H4	0.9500
C3A - C4	1 4018 (18)	С5—Н5	0.9500
C3A - C7A	1 4056 (17)	С6—Н6	0.9500
C4—C5	1 386 (2)	С7—Н7	0.9500
C_{5}	1.300(2) 1 401(2)	C8—H8A	0.9900
C6-C7	1.101(2) 1.385(2)	C8—H8B	0.9900
C7-C7A	1 3967 (19)	C12—H12	0.9500
C8 - C9	1.5237 (16)	C13H13	0.9500
$C_{9}-01$	1.3257 (10)	C14—H14	0.9500
$C_{10} = 0^{2}$	1 2220 (13)	C15—H15	0.9500
C10-C11	1.2222 (11)	C16—H16	0.9500
C11-C12	1 3967 (17)		0.9200
011 012	1.5907 (17)		
C7A—S1—C2	89.49 (6)	C14—C15—C16	120.28 (12)
N3—C2—C8	124.45 (11)	C15—C16—C11	119.80 (11)
N3—C2—S1	115.83 (9)	C9—N1—H01	123.3 (19)
C8—C2—S1	119.70 (9)	N2-N1-H01	116.8 (19)
C9—N1—N2	119.00 (10)	C10—N2—H02	123.3 (18)
C10—N2—N1	117.28 (10)	N1—N2—H02	114.4 (18)
C2—N3—C3A	110.61 (10)	C5—C4—H4	120.7
N3—C3A—C4	125.26 (11)	C3A—C4—H4	120.7
N3—C3A—C7A	114.95 (11)	C4—C5—H5	119.4
C4—C3A—C7A	119.79 (12)	С6—С5—Н5	119.4
C5—C4—C3A	118.52 (13)	С7—С6—Н6	119.4
C4—C5—C6	121.11 (13)	С5—С6—Н6	119.4
C7—C6—C5	121.18 (13)	С6—С7—Н7	121.1
C6—C7—C7A	117.77 (13)	С7А—С7—Н7	121.1
C7—C7A—C3A	121.63 (12)	C2—C8—H8A	109.5
C7—C7A—S1	129.24 (10)	С9—С8—Н8А	109.5
C3A—C7A—S1	109.13 (9)	C2—C8—H8B	109.5
C2—C8—C9	110.93 (10)	C9—C8—H8B	109.5
O1—C9—N1	123.27 (11)	H8A—C8—H8B	108.0
O1—C9—C8	121.67 (11)	C13—C12—H12	119.9
N1—C9—C8	115.06 (10)	C11—C12—H12	119.9
O2-C10-N2	122.11 (11)	C14—C13—H13	120.0
O2—C10—C11	122.31 (11)	C12—C13—H13	120.0
N2-C10-C11	115.59 (10)	C13—C14—H14	120.0
C12—C11—C16	119.69 (11)	C15—C14—H14	120.0
C12—C11—C10	122.96 (11)	C14—C15—H15	119.9

supporting information

C16—C11—C10 C13—C12—C11 C14—C13—C12 C13—C14—C15	117.35 (10) 120.15 (11) 120.05 (11) 120.02 (11)	C16—C15—H15 C15—C16—H16 C11—C16—H16	119.9 120.1 120.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.19 \ (10) \\ -178.46 \ (10) \\ 66.44 \ (15) \\ 178.23 \ (11) \\ 0.05 \ (14) \\ -179.93 \ (12) \\ 0.16 \ (15) \\ -179.93 \ (13) \\ 0.0 \ (2) \\ 0.4 \ (2) \\ -0.1 \ (2) \\ -0.6 \ (2) \\ 0.96 \ (19) \\ -179.59 \ (11) \\ 179.25 \ (12) \\ -0.65 \ (19) \\ -0.30 \ (13) \\ 179.80 \ (10) \\ -179.25 \ (13) \\ 0.26 \ (9) \\ -97.86 \ (14) \end{array}$	$\begin{array}{c} N2 - N1 - C9 - O1 \\ N2 - N1 - C9 - C8 \\ C2 - C8 - C9 - O1 \\ C2 - C8 - C9 - N1 \\ N1 - N2 - C10 - O2 \\ N1 - N2 - C10 - C11 \\ O2 - C10 - C11 - C12 \\ N2 - C10 - C11 - C12 \\ O2 - C10 - C11 - C16 \\ C16 - C11 - C12 - C13 \\ C10 - C11 - C12 - C13 \\ C10 - C11 - C12 - C13 \\ C11 - C12 - C13 - C14 \\ C12 - C13 - C14 - C15 \\ C13 - C14 - C15 - C16 \\ C14 - C15 - C16 - C11 \\ C12 - C11 - C16 - C15 \\ C10 - C11 - C16 - C15 \\ C10 - C11 - C16 - C15 \\ O1 - C9 - N1 - H01 \\ O2 - C10 - N2 - H02 \\ H01 - N1 - N2 - H02 \\ \end{array}$	$\begin{array}{c} 6.66 \ (18) \\ -173.21 \ (10) \\ 27.72 \ (16) \\ -152.41 \ (11) \\ 12.34 \ (18) \\ -167.79 \ (10) \\ 161.41 \ (13) \\ -18.46 \ (17) \\ -17.71 \ (18) \\ 162.42 \ (11) \\ -0.29 \ (19) \\ -179.40 \ (12) \\ -0.6 \ (2) \\ 0.9 \ (2) \\ -0.4 \ (2) \\ -0.5 \ (2) \\ 0.84 \ (19) \\ 179.99 \ (12) \\ 175 \ (2) \\ 166 \ (2) \\ 101 \ (3) \end{array}$
S1—C2—C8—C9	80.26 (12)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H01···O1 ⁱ	0.88 (3)	2.02 (3)	2.8438 (14)	157 (3)
N2—H02…N3 ⁱⁱ	0.85 (3)	2.15 (3)	2.9736 (15)	162 (3)

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*, *y*-1, *z*.