

Received 2 August 2021 Accepted 10 August 2021

Edited by M. Zeller, Purdue University, USA

Keywords: ionic co-crystal; co-crystal salt; zinc(II) chloride; benzamide; toluamide.

CCDC references: 2102513; 2102512; 2102511; 2102510; 2102509

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures and hydrogen-bonding analysis of a series of benzamide complexes of zinc(II) chloride

Elizabeth Tinapple, Sam Farrar and Dean H. Johnston*

Department of Chemistry, Otterbein University, Westerville, OH 43081, USA. *Correspondence e-mail: djohnston@otterbein.edu

Ionic co-crystals are co-crystals between organic molecules and inorganic salt coformers. Co-crystals of pharmaceuticals are of interest to help control polymorph formation and potentially improve stability and other physical properties. We describe the preparation, crystal structures, and hydrogen bonding of five different 2:1 benzamide or toluamide/zinc(II) chloride co-crystal salts, namely, bis(benzamide- κO)dichloridozinc(II), [ZnCl₂(C₇H₇NO)₂], dichloridobis(2-methylbenzamide- κO)zinc(II), [ZnCl₂(C₈H₉NO)₂], dichloridobis(3-methylbenzamide- κO)zinc(II), [ZnCl₂(C₈H₉NO)₂], dichloridobis(4-methylbenzamide- κO)zinc(II), [ZnCl₂(C₈H₉NO)₂], and dichloridobis(4-hydroxybenzamide- κO)zinc(II), [ZnCl₂(C₇H₇NO₂)₂]. All of the complexes contain hydrogen bonds between the amide N—H group and the amide carbonyl oxygen atoms or the chlorine atoms, forming extended networks.

1. Chemical context

Ionic co-crystals, formed from the combination of inorganic salts and organic molecules, are of interest for their ability to promote or stabilize crystal forms of organic or pharmaceutical molecules (Braga et al., 2011, 2018). The chloride salts of magnesium, calcium, and strontium have been shown to form an extensive range of structure types when co-crystallized with drug molecules such as piracetam (Braga et al., 2011; Song et al., 2018), etiracetam and levitiracetam (Song et al., 2019, 2020), and nicotinamide and isonicotinamide (Braga et al., 2011; Song et al., 2020). Sodium bromide and sodium iodide form ionic co-crystals with carbamazepine (Buist & Kennedy, 2014). More recently, it has been shown that co-crystallization with ionic salts can produce chirally resolved forms when combining lithium halides with L- and DL-histidine (Braga et al., 2016), magnesium chloride with RS-oxiracetam (Shemchuk et al., 2020), and zinc chloride with RS-etiracetam (Shemchuk et al., 2018). Co-crystallization of nefiracetam with zinc chloride produced products with improved solubility and dissolution rates (Buol et al., 2020).

Jerry P. Jasinski tribute

Table 1		
Hydrogen-bond	geometry (Å,	°) for (1).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$N1A - H1AA \cdots O2A$	0.84(2)	2.12 (2)	2.888 (2)	152 (3)
$N1A - H1AB \cdots Cl1B^{i}$	0.87(2)	2.56(2)	3.3644 (15)	153 (2)
$N2A - H2AA \cdots Cl1A$	0.87(2)	2.51(2)	3.3281 (15)	155 (2)
$N2A - H2AB \cdot \cdot \cdot Cl2A^{ii}$	0.85(2)	2.51(2)	3.3404 (15)	164 (2)
$N1B - H1BA \cdots O2B$	0.84(2)	2.17(2)	2.911 (2)	147 (2)
$N1B - H1BB \cdots Cl1A$	0.88(2)	2.51(2)	3.3682 (16)	167 (2)
$N2B - H2BA \cdots Cl1B$	0.85(2)	2.57 (2)	3.3085 (15)	146 (2)
$N2B - H2BB \cdot \cdot \cdot Cl2B^{iii}$	0.85(2)	2.48 (2)	3.3107 (15)	165 (2)

Symmetry codes: (1) $x - \frac{1}{2}, -y + \frac{2}{2}, z - \frac{1}{2};$ (1) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2};$ (11) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2};$

The current study was undertaken to explore the preparation of ionic co-crystals (alternatively termed co-crystal salts; Grothe, *et al.*, 2016) using zinc chloride combined with various organic amides (specifically benzamide, 4-hydroxybenzamide, and toluamide) that can serve as models of pharmaceutical molecules.

2. Structural commentary

Five new zinc complexes, (1) through (5), have been prepared and structurally characterized. All five complexes are 2:1 Obonded aryl amide: $ZnCl_2$ complexes with approximately

Figure 1

Displacement ellipsoid (50%) diagram and atom-numbering scheme of the two independent molecules in (1). $N-H\cdots O$ contacts are shown in red and $N-H\cdots Cl$ contacts are shown in green.

Table 2Hydrogen-bond geometry (Å, $^{\circ}$) for (2).

	2 ()	/ (/		
$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1A\cdots Cl2^{i}$ $N1-H1B\cdots Cl1$ $N2-H2A\cdots Cl1$ $N2-H2B\cdots Cl1^{ii}$	0.82 (2) 0.86 (2) 0.85 (2) 0.84 (2)	2.57 (2) 2.54 (2) 2.52 (2) 2.14 (2)	3.2916 (17) 3.3077 (17) 3.2667 (16) 2.949 (2)	147 (2) 150 (2) 148 (2) 163 (2)

Symmetry codes: (i) x, y - 1, z; (ii) x - 1, y, z.

tetrahedral zinc(II) centers. The complexes crystallize in five different space groups and form hydrogen-bonding interactions between the amide N-H groups and either an amide oxygen or a zinc-bound chlorido ligand.

Compound (1), bis(benzamide- κO)dichloridozinc(II), [ZnCl₂(C₇H₇NO)₂], crystallizes in the $P2_1/n$ space group with two independent molecules in the asymmetric unit and displays one N-H···O and one N-H···Cl intramolecular hydrogen bond in each molecule (see Fig. 1 and Table 1). A search for non-crystallographic symmetry using *PLATON* (Spek, 2020) shows the two independent zinc complexes are related by a rotation of -173.2° and translation by 7.232 Å

Figure 2

Displacement ellipsoid (50%) diagram and atom-numbering scheme for (2). $N-H\cdots$ Cl contacts are shown in green.

Figure 3

Displacement ellipsoid (50%) diagram and atom-numbering scheme for (3). The minor component of the disordered methyl group is not shown for clarity.

Table 3Hydrogen-bond geometry (Å, $^{\circ}$) for (3).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N1 - H1A \cdots Cl1^{i} \\ N1 - H1B \cdots Cl1^{ii} \end{array}$	0.85 (2)	2.56 (2)	3.2854 (13)	145 (2)
	0.85 (2)	2.52 (2)	3.2979 (13)	153 (2)

Symmetry codes: (i) $x, -y + 1, z - \frac{1}{2}$; (ii) x, y, z - 1.

Table 4Hydrogen-bond geometry (Å, $^{\circ}$) for (4).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$N1-H1A\cdots O2$	0.87 (2)	2.07 (2)	2.8753 (19)	154 (2)
$N1 - H1B \cdot \cdot \cdot Cl2^{i}$	0.86(2)	2.49 (2)	3.2265 (14)	145 (2)
$N2-H2A\cdots Cl1^{ii}$	0.86(2)	2.50 (2)	3.2956 (16)	155 (2)
$N2-H2B\cdots Cl2$	0.87 (2)	3.05 (2)	3.6341 (17)	126 (2)

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) x - 1, y, z.

along the vector [1.000 0.101 0.992]. Alignment of the two residues gave a weighted r.m.s. fit of 0.330 Å.

As shown in Fig. 2, compound (2), dichloridobis(2-methylbenzamide- κO /zinc(II), [ZnCl₂(C₈H₉NO)₂], displays two intramolecular N-H···Cl hydrogen bonds to one chlorine atom (see Table 2) and crystallizes in the $P2_1$ space group. Compound (3), dichloridobis(3-methylbenzamide- κO)zinc(II), $[ZnCl_2(C_8H_9NO)_2]$, crystallizes in the C2/c space group with the zinc atom lying on the twofold axis (see Fig. 3) and, unlike the other compounds in this study, compound (3) does not form any intramolecular hydrogen bonds. Compound (4), dichloridobis(4-methylbenzamide- κO)zinc(II), [ZnCl₂(C₈H₉NO)₂], crystallizes in the P2₁/c space group and compound (5), dichloridobis(4-hydroxybenzamide- κO)zinc(II), [ZnCl₂(C₇H₇NO₂)₂], crystallizes in the Cc space group and both compounds form two intramolecular hydrogen bonds, one N-H···O and one N-H···Cl, similar to the interactions found in compound (1) (see Figs. 4 and 5 and Tables 4 and 5).

A comparison of selected bond lengths and bond angles for all five complexes is given in Table 6. The average zinc– chlorine distance of 2.224 (13) Å compares well with the average of 2.22 (2) Å observed for 27 similar four-coordinate

Table 5Hydrogen-bond geometry (Å, $^{\circ}$) for (5).

-				
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H3\cdots Cl1^i$	0.84 (3)	2.64 (4)	3.322 (3)	140 (5)
$O3-H3\cdots Cl2^{ii}$	0.84 (3)	2.75 (4)	3.349 (3)	130 (4)
$O4-H4\cdots Cl2^{iii}$	0.80 (3)	2.33 (3)	3.131 (3)	175 (6)
$N1-H1A\cdots Cl1$	0.86 (3)	2.93 (4)	3.648 (4)	142 (4)
$N1 - H1B \cdots Cl1^{iv}$	0.87 (3)	2.61 (3)	3.479 (4)	173 (4)
$N2-H2A\cdots O1$	0.84 (3)	2.15 (3)	2.924 (5)	154 (5)
$N2-H2B\cdots Cl2^{v}$	0.84 (3)	2.77 (4)	3.405 (4)	135 (5)

Symmetry codes: (i) x, y, z + 1; (ii) x + 1, y, z + 1; (iii) $x + \frac{1}{2}, y - \frac{1}{2}, z$; (iv) $x, -y + 2, z + \frac{1}{2}$; (v) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$.

ZnCl₂ L_2 complexes (with L = carbonyl oxygen donating ligand) found in a search of the CSD (Version 5.42, May 2021; Groom *et al.*, 2016). A similar agreement is found for the zincoxygen distance with both averages at 1.98 (2) Å. The bond angles in the complexes in this study display an average Cl-Zn-Cl angle of 117 (5)° and an average O-Zn-O angle of 101 (3)°, again quite close to the average angles of 119 (4) and 100 (7)° for the set of comparable molecules.

3. Supramolecular features

Each compound displays a unique hydrogen-bonding network, consisting primarily of $N-H\cdots O$ and $N-H\cdots Cl$ interactions, summarized in Table 1 through 5. In addition to four intramolecular hydrogen bonds, compound (1) forms four $N-H\cdots Cl$ intermolecular hydrogen bonds (two from each independent molecule), forming an extended network as shown in Fig. 6 and summarized in Table 1. Compound (2) also utilizes N-H bonds in hydrogen-bonding interactions, two intramolecular and two intermolecular, to form layers within the structure (see Fig. 7 and Table 2). Only intermolecular N- $H\cdots Cl$ hydrogen bonds are found in compound (3) (shown in Fig. 8, two interactions per asymmetric unit, four per molecule, see Table 3) and they combine to form chains that run parallel to the *c* axis. Compound (4) forms two $N-H\cdots Cl$ intermolecular contacts in addition to the two intramolecular

Figure 4

Displacement ellipsoid (50%) diagram and atom-numbering scheme for (4). The N-H···O contact is shown in red and the N-H···Cl contact is shown in green.

Figure 5

Displacement ellipsoid (50%) diagram and atom numbering scheme for (5). The N-H···O contact is shown in red and the N-H···Cl contact is shown in green.

Jerry P. Jasinski tribute

Compound	R / position	Zn-Cl1	Zn-Cl2	Zn-O1	Zn-O2	Cl-Zn-Cl	O-Zn-O
$(1)^{a}$	Н	2.2294 (4)	2.2118 (4)	1.9653 (12)	2.0040 (13)	113.726 (18)	99.75 (5)
$(1)^b$	Н	2.2361 (4)	2.2107 (4)	1.9632 (12)	2.0089 (13)	114.034 (18)	101.44 (5)
(2)	CH ₃ / ortho	2.2340 (4)	2.1947 (5)	2.0169 (13)	1.9781 (11)	125.120 (19)	103.92 (5)
$(3)^c$	$CH_3 / meta$	2.2341 (4)	2.2341 (4)	1.9652 (10)	1.9652 (10)	121.25 (2)	96.12 (6)
(4)	$CH_3 / para$	2.2166 (5)	2.2170 (5)	1.9592 (12)	2.0191 (11)	115.836 (17)	101.98 (5)
(5)	OH / para	2.2347 (11)	2.2305 (11)	1.980 (3)	1.954 (3)	112.84 (4)	101.21 (12)

Table 6 Selected bond lengths and angles (Å, $^{\circ}$) for compounds (1) through (5).

Notes: (a) molecule 1; (b) molecule 2; (c) O1/O2 and Cl1/Cl2 related by symmetry.

hydrogen bonds, resulting in a complex set of layers that run perpendicular to the b axis (see Fig. 9 and Table 4). The

Figure 6

Packing diagram of (1) (viewed along b) showing $N-H\cdots O$ contacts (red) and $N-H\cdots Cl$ contacts (green).

Figure 7

Packing diagram of (2) (viewed along b) showing $N-H\cdots O$ contacts (red) and $N-H\cdots Cl$ contacts (green).

Table 7

Summary of π - π interactions (Å, °) in compounds (1), (3), and (5).

 α is the dihedral angle between planes. Cg is the centroid of the benzene ring of the benzamide or toluamide molecule.

Compound	Ring i	Ring j	$Cg \cdots Cg$ distance	α
(1)	1	4^i	3.9522 (11)	8.76 (9)
(1)	1	4 ⁱⁱ	3.8781 (11)	8.76 (9)
(1)	3	2 ⁱⁱⁱ	3.8195 (10)	6.27 (8)
(3)	1	1^{iv}	3.7770 (10)	6.86 (7)
(5)	1	2^{v}	3.760 (3)	8.0 (2)

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, 2 - y, 1 - z; (iii) $\frac{3}{2} - x, -\frac{1}{2} + y, \frac{1}{2} - z$; (iv) $1 - x, y, \frac{1}{2} - z$; (v) $-\frac{1}{2} + x, \frac{3}{2} - y, \frac{1}{2} + z$.

Figure 8

Packing diagram of (3) (viewed along [101]) showing $N-H \cdots Cl$ contacts (green). The minor component of the disordered methyl group is not shown for clarity.

Packing diagram of (4) (viewed along *a*) showing $N-H\cdots O$ contacts (red) and $N-H\cdots Cl$ contacts (green).

Figure 10 Packing diagram of (5) (viewed along *a*) showing $N-H\cdots O$ contacts (red) and $N-H\cdots Cl$ contacts (green).

addition of the 4-hydroxy group in compound (5) results in the greatest number of hydrogen bonds among this set of complexes, as shown in Fig. 10 and summarized in Table 5, with two $N-H\cdots Cl$ and three $O-H\cdots Cl$ intermolecular interactions per molecule.

Compounds (1), (3), and (5) form π - π interactions between the benzene rings of the benzamide or toluamide groups as summarized in Table 7. No significant π - π interactions were found for compounds (2) or (4).

4. Database survey

A search of the CSD (Version 5.42, May 2021; Groom et al., 2016) produced a relatively small number of amide-coordinated zinc(II)chloride complexes. One of the earliest is a dichloridobis(dma)zinc(II) complex (CSD refcode: DMAMZN10; Herceg & Fischer, 1974; dma = N,N-dimethylacetamide). The similar dichloridobis(dmf)zinc(II) (KOBWIH; Suzuki et al., 1991; dmf = N,N-dimethylformamide) has also been reported. Edwards et al. (1999, 1998) investigated the structures of a series of ZnX_2L_2 complexes that included L = dmf and X = Br and I (FIQBEM, FEXWIO, respectively), the latter of which undergoes a reversible phase transition at 228 K (Edwards et al., 1998). A similar study (Turnbull et al., 2000) compared the structures of $ZnX_2(dma)_2$ where X = Cl, Br, I (DMAMZN11, CAHWEO, CAHWAK, respectively). As part of a larger study, Smirnov et al. (2014) prepared and crystallographically characterized dimethylurea complexes of zinc(II)chloride and zinc(II)bromide (ZZZSAG01, COQXIR) along with bis(piperidine-1-carboxamide) zinc(II)halide complexes (COQWOW, COQVIP), all of which display intramolecular N-H···O hydrogen bonding similar to that observed in this study.

A number of zinc(II) iodide complexes, ZnI_2L_2 , have been prepared with simple amide ligands, including urea (ACAQAW; Furmanova *et al.*, 2001), acetamide (VIDBOA; Savinkina *et al.*, 2007), and formamide (DIYGUO; Savinkina *et al.*, 2008). Savinkina *et al.* (2009) have also prepared a series of ZnI_2L_2 complexes with L = dimethylurea (VUCTUJ), thioacetamide (VUCTOD), and benzamide (VUCVAR).

Three structural studies have prepared zinc(II)chloride complexes with pharmaceutically relevant molecules. Sultana et al. (2016) prepared bis(4'-methoxyacetanilide)dichloridozinc(II) (EOIGOC). Dichloridobis(nicotinamide)zinc(II) has also been studied (WUKZAD; İde et al., 2002) but differs from the structures in this report in that the two nicotinamide ligands are N-bonded through the ring nitrogen instead of the amide oxygen. Buol et al. (2020) describe the preparation and crystal structures of co-crystals obtained from the co-crystallization of nefiracetam with zinc(II)chloride, producing two different structures. In one form (CCDC 2010272), the fourcoordinate zinc atom binds to one nefiracetam molecule (via the γ -lactam carbonyl), one water molecule, and two chlorido ligands. In the second form (CCDC 2010264), the zinc bonds to one nefiracetam molecule through the γ -lactam and to a second via the amide carbonyl, forming a cyclic zinc dimer.

5. Synthesis and crystallization

All reagents were used as received from the manufacturer. Compounds (1) through (5) were prepared by dissolution of the respective components in various solvents [50:50 *v:v* ratio of water and ethanol (benzamide, 4-hydroxybenzamide), ethanol (o,m,p-toluamide)] followed by slow evaporation. In a typical preparation, a 1:1 stoichiometric ratio of benzamide (0.1352 g) and zinc(II) chloride (0.1336 g) was dissolved in approximately 5 mL of a 50:50 *v:v* ratio of water and ethanol. Slow evaporation of the resulting solution produced single crystals of compound (1).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 8. All hydrogen atoms were located in difference maps.

All carbon-bonded H atoms were placed in idealized positions using a riding model with aromatic C-H = 0.95 Å, methyl C-H = 0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ (aromatic) or $U_{iso}(H) = 1.5U_{eq}(C)$ (methyl). All amide H-atom positions were refined with N-H distances restrained to 0.88 (2) Å and $U_{iso}(H) = 1.5U_{eq}(N)$. The hydroxyl H-atom positions in compound (5) were refined with O-H distances restrained to 0.84 (2) Å and $U_{iso}(H) = 1.5U_{eq}(N)$.

Compound (1) was refined as a pseudo-merohedral twin (monoclinic mimicking orthorhombic, since β is close to 90°) with a twin law of (0 0 -1 0 -1 0 -1 0 0), corresponding to a twofold rotation about the [101] axis. The twin ratio refined to 0.4825 (5).

The methyl group in compound (3) was modeled as a disordered methyl group with each set of hydrogen atoms

Jerry P. Jasinski tribute

 Table 8

 Experimental details.

	(1)	(2)	(3)	(4)	(5)
Crystal data					
Chemical formula	[ZnCl ₂ (C ₇ H ₇ NO) ₂] 378.54	$[\text{ZnCl}_2(\text{C}_8\text{H}_9\text{NO})_2]$ 406.59	$[\text{ZnCl}_2(\text{C}_8\text{H}_9\text{NO})_2]$ 406.59	$[\text{ZnCl}_2(\text{C}_8\text{H}_9\text{NO})_2]$ 406.59	$[\text{ZnCl}_2(\text{C}_7\text{H}_7\text{NO}_2)_2]$ 410.54
Crystal system, space group	Monoclinic, $P2_1/n$	Monoclinic, $P2_1$	Monoclinic, C2/c	Monoclinic, $P2_1/c$	Monoclinic, Cc
Temperature (K)	100	100	100	100	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	20.6241 (11), 7.3309 (4), 20.6485 (11)	7.3802 (3), 8.2491 (3), 14.5953 (5)	13.9452 (11), 18.9742 (16), 7.0651 (6)	6.8376 (4), 17.2694 (9), 14.9856 (7)	7.0532 (6), 21.3776 (17), 11.1181 (9)
β (°)	90.532 (1)	97.852 (1)	108.021 (2)	96.893 (2)	106.477 (2)
$V(\text{\AA}^3)$	3121.8 (3)	880.23 (6)	1777.7 (3)	1756.73 (16)	1607.5 (2)
Ζ	8	2	4	4	4
Radiation type	Μο Κα				
$\mu \text{ (mm}^{-1})$	1.92	1.71	1.69	1.71	1.88
Crystal size (mm)	$0.6 \times 0.60 \times 0.35$	$0.5\times0.16\times0.11$	$0.42 \times 0.14 \times 0.14$	$0.56 \times 0.18 \times 0.09$	$0.15 \times 0.09 \times 0.07$
Data collection					
Diffractometer	Bruker APEXII CCD				
Absorption correction	Multi-scan (SADABS;				
T T	Krause <i>et al.</i> , 2015)	Krause <i>et al.</i> , 2015)			
<i>I</i> _{min} , <i>I</i> _{max} No. of measured, inde-	0.558, 0.746 48491, 9668, 9501	0.478, 0.680 20749, 5348, 5135	0.620, 0.746 12177, 2295, 2023	33806, 5376, 4283	0.673, 0.746 17255, 4168, 3809
observed $[I > 2\sigma(I)]$ reflections					
R _{int}	0.023	0.025	0.027	0.051	0.042
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.718	0.714	0.676	0.715	0.676
Refinement					
$R[F^2 > 2\sigma(F^2)],$ wR(F ²), S	0.022, 0.053, 1.07	0.018, 0.039, 1.00	0.022, 0.059, 1.05	0.031, 0.069, 1.01	0.030, 0.065, 1.05
No. of reflections	9668	5348	2295	5376	4168
No. of parameters	404	223	113	222	227
No. of restraints	8	5	17	4	8
H-atom treatment	H atoms treated by a mixture of indepen- dent and constrained refinement	H atoms treated by a mixture of indepen- dent and constrained refinement	H atoms treated by a mixture of indepen- dent and constrained refinement	H atoms treated by a mixture of indepen- dent and constrained refinement	H atoms treated by a mixture of indepen- dent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.43, -0.35	0.31, -0.24	0.39, -0.26	0.46, -0.32	0.46, -0.29
Absolute structure	_	Refined as an inversion twin.	-	-	Refined as an inversion twin
Absolute structure parameter	-	0.016 (6)	-	-	0.024 (13)

Computer programs: BIS (Bruker, 2020), SAINT (Bruker, 2020), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), CrystalMaker (Palmer, 2020), OLEX2 (Dolomanov et al., 2009), and publCIF (Westrip, 2010).

rotated by 60° (AFIX 127). The disorder was identified from multiple peaks near C8 in the difference map. The refined occupancies of the two hydrogen atom sets were 0.54 (2):0.46 (2).

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Education and Human Resources (grant No. 0942850 to DHJ).

References

- Braga, D., Degli Esposti, L., Rubini, K., Shemchuk, O. & Grepioni, F. (2016). Cryst. Growth Des. 16, 7263–7270.
- Braga, D., Grepioni, F., Lampronti, G. I., Maini, L. & Turrina, A. (2011). *Cryst. Growth Des.* **11**, 5621–5627.
- Braga, D., Grepioni, F. & Shemchuk, O. (2018). *CrystEngComm*, **20**, 2212–2220.

- Bruker (2020). BIS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Buist, A. R. & Kennedy, A. R. (2014). Cryst. Growth Des. 14, 6508–6513.
- Buol, X., Robeyns, K., Caro Garrido, C., Tumanov, N., Collard, L., Wouters, J. & Leyssens, T. (2020). *Pharmaceutics*, **12**, 653.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Edwards, R. A., Easteal, A. J., Gladkikh, O. P., Robinson, W. T., Turnbull, M. M. & Wilkins, C. J. (1998). Acta Cryst. B54, 663–670.
- Edwards, R. A., Gladkikh, O. P., Nieuwenhuyzen, M. & Wilkins, C. J. (1999). Z. Kristallogr. 214, 111–118.
- Furmanova, N. G., Resnyanskii, V. F., Sulaimankulov, K. S., Zhorobekova, Sh. Zh. & Sulaimankulova, D. K. (2001). *Crystallogr. Rep.* 46, 51–55.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Grothe, E., Meekes, H., Vlieg, E., ter Horst, J. H. & de Gelder, R. (2016). Cryst. Growth Des. 16, 3237–3243.

Herceg, M. & Fischer, J. (1974). Acta Cryst. B30, 1289-1293.

İde, S., Ataç, A. & Yurdakul, Ş. (2002). J. Mol. Struct. 605, 103-107.

- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Palmer, D. C. (2020). *CrystalMaker*. CrystalMaker Software Ltd, Begbroke, England.
- Savinkina, E. V., Buravlev, E. A., Zamilatskov, I. A. & Albov, D. V. (2007). Acta Cryst. E63, m1094–m1095.
- Savinkina, E. V., Buravlev, E. A., Zamilatskov, I. A., Albov, D. V., Kravchenko, V. V., Zaitseva, M. G. & Mavrin, B. N. (2009). Z. Anorg. Allg. Chem. 635, 1458–1462.
- Savinkina, E. V., Zamilatskov, I. A., Buravlev, E. A., Albov, D. V. & Tsivadze, A. Yu. (2008). *Mendeleev Commun.* 18, 92–93.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shemchuk, O., Song, L., Robeyns, K., Braga, D., Grepioni, F. & Leyssens, T. (2018). Chem. Commun. 54, 10890–10892.
- Shemchuk, O., Song, L., Tumanov, N., Wouters, J., Braga, D., Grepioni, F. & Leyssens, T. (2020). *Cryst. Growth Des.* 20, 2602– 2607.

- Smirnov, A. S., Butukhanova, E. S., Bokach, N. A., Starova, G. L., Gurzhiy, V. V., Kuznetsov, M. L. & Kukushkin, V. Yu. (2014). *Dalton Trans.* 43, 15798–15811.
- Song, L., Robeyns, K. & Leyssens, T. (2018). Cryst. Growth Des. 18, 3215–3221.
- Song, L., Robeyns, K., Tumanov, N., Wouters, J. & Leyssens, T. (2020). Chem. Commun. 56, 13229–13232.
- Song, L., Shemchuk, O., Robeyns, K., Braga, D., Grepioni, F. & Leyssens, T. (2019). Cryst. Growth Des. 19, 2446–2454.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Sultana, K., Zaib, S., Hassan Khan, N., Khan, I., Shahid, K., Simpson, J. & Iqbal, J. (2016). *New J. Chem.* **40**, 7084–7094.
- Suzuki, H., Fukushima, N., Ishiguro, S., Masuda, H. & Ohtaki, H. (1991). Acta Cryst. C47, 1838–1842.
- Turnbull, M. M., Wikaira, J. L. & Wilkins, C. J. (2000). Z. Kristallogr. 215, 702–706.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2021). E77, 880-886 [https://doi.org/10.1107/S2056989021008264]

Crystal structures and hydrogen-bonding analysis of a series of benzamide complexes of zinc(II) chloride

Elizabeth Tinapple, Sam Farrar and Dean H. Johnston

Computing details

For all structures, data collection: *BIS* (Bruker, 2020); cell refinement: *SAINT* (Bruker, 2020); data reduction: *SAINT* (Bruker, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *CrystalMaker* (Palmer, 2020); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009) and *publCIF* (Westrip, 2010).

Bis(benzamide-κO)dichloridozinc(II) (1)

Crystal data	
$[ZnCl_2(C_7H_7NO)_2]$ $M_r = 378.54$ Monoclinic, $P2_1/n$ a = 20.6241 (11) Å b = 7.3309 (4) Å c = 20.6485 (11) Å $\beta = 90.532$ (1)° V = 3121.8 (3) Å ³ Z = 8	F(000) = 1536 $D_x = 1.611 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9702 reflections $\theta = 6.8-30.5^{\circ}$ $\mu = 1.92 \text{ mm}^{-1}$ T = 100 K Block, clear light colourless $0.6 \times 0.60 \times 0.35 \text{ mm}$
Data collection Bruker APEXII CCD diffractometer Radiation source: sealed tube Graphite monochromator Detector resolution: 8 pixels mm ⁻¹ ω and φ scans Absorption correction: multi-scan (SADABS; Krause <i>et al.</i> , 2015) $T_{min} = 0.558$, $T_{max} = 0.746$ Refinement	48491 measured reflections 9668 independent reflections 9501 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 30.7^{\circ}, \ \theta_{min} = 1.0^{\circ}$ $h = -29 \rightarrow 27$ $k = -10 \rightarrow 10$ $l = -29 \rightarrow 29$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.053$ S = 1.07 9668 reflections 404 parameters 8 restraints Primary atom site location: dual	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0256P)^2 + 1.2394P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.43$ e Å ⁻³ $\Delta\rho_{min} = -0.34$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1A	0.62741 (2)	0.74478 (4)	0.34018 (2)	0.01179 (4)	
Cl1A	0.69397 (2)	0.97842 (5)	0.36146 (2)	0.01636 (7)	
Cl2A	0.66272 (2)	0.47923 (6)	0.37699 (2)	0.02204 (9)	
O1A	0.53865 (6)	0.78998 (17)	0.36973 (6)	0.0163 (2)	
O2A	0.61465 (6)	0.73870 (17)	0.24363 (6)	0.0163 (2)	
N1A	0.48113 (7)	0.8093 (2)	0.27621 (8)	0.0217 (3)	
H1AA	0.5138 (10)	0.785 (4)	0.2536 (12)	0.033*	
H1AB	0.4458 (10)	0.824 (3)	0.2534 (11)	0.033*	
N2A	0.71341 (7)	0.8269 (2)	0.21095 (7)	0.0189 (3)	
H2AA	0.7218 (12)	0.869 (3)	0.2497 (9)	0.028*	
H2AB	0.7417 (10)	0.851 (3)	0.1825 (10)	0.028*	
C1A	0.42560 (7)	0.8246 (2)	0.37895 (8)	0.0138 (3)	
C2A	0.36411 (9)	0.7932 (2)	0.35252 (10)	0.0188 (3)	
H2A	0.359316	0.761280	0.308143	0.023*	
C3A	0.30976 (9)	0.8092 (3)	0.39175 (11)	0.0251 (4)	
H3A	0.267689	0.788739	0.374069	0.030*	
C4A	0.31709 (9)	0.8548 (3)	0.45663 (10)	0.0257 (4)	
H4A	0.279853	0.865296	0.483113	0.031*	
C5A	0.37808 (9)	0.8854 (3)	0.48331 (9)	0.0245 (4)	
H5A	0.382768	0.916605	0.527769	0.029*	
C6A	0.43205 (8)	0.8700 (2)	0.44430 (8)	0.0188 (3)	
H6A	0.473993	0.890556	0.462261	0.023*	
C7A	0.48516 (7)	0.8061 (2)	0.34012 (8)	0.0137 (3)	
C8A	0.63351 (8)	0.7328 (2)	0.13053 (8)	0.0129 (3)	
C9A	0.67309 (8)	0.7703 (2)	0.07743 (8)	0.0156 (3)	
H9A	0.715796	0.815424	0.084231	0.019*	
C10A	0.64995 (9)	0.7416 (2)	0.01464 (9)	0.0190 (3)	
H10A	0.676912	0.767083	-0.021295	0.023*	
C11A	0.58777 (9)	0.6760 (2)	0.00452 (8)	0.0201 (3)	
H11A	0.572142	0.656193	-0.038327	0.024*	
C12A	0.54825 (8)	0.6391 (2)	0.05687 (8)	0.0201 (3)	
H12A	0.505440	0.595321	0.049643	0.024*	
C13A	0.57073 (8)	0.6657 (2)	0.11984 (8)	0.0163 (3)	
H13A	0.543606	0.638474	0.155497	0.020*	
C14A	0.65448 (8)	0.7671 (2)	0.19832 (8)	0.0129 (3)	
Zn1B	0.83932 (2)	0.71554 (2)	0.62742 (2)	0.01256 (4)	
Cl1B	0.86157 (2)	0.48139 (6)	0.69283 (2)	0.01790 (8)	
Cl2B	0.87722 (2)	0.97969 (6)	0.66307 (2)	0.02414 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

O1B	0.86683 (6)	0.67828 (17)	0.53751 (6)	0.0176 (2)
O2B	0.74288 (6)	0.71225 (17)	0.61469 (6)	0.0171 (2)
N1B	0.77974 (8)	0.7747 (2)	0.48074 (8)	0.0190 (3)
H1BA	0.7583 (12)	0.791 (3)	0.5147 (10)	0.028*
H1BB	0.7610 (11)	0.815 (3)	0.4453 (9)	0.028*
N2B	0.71169 (7)	0.6279 (2)	0.71506 (7)	0.0201 (3)
H2BA	0.7511 (8)	0.612 (3)	0.7260 (11)	0.030*
H2BB	0.6836 (10)	0.585 (3)	0.7407 (10)	0.030*
C1B	0.87943 (7)	0.7032 (2)	0.42412 (8)	0.0134 (3)
C2B	0.85410 (10)	0.7395 (2)	0.36242 (9)	0.0191 (3)
H2B	0.810046	0.775075	0.357395	0.023*
C3B	0.89345 (10)	0.7234 (3)	0.30844 (9)	0.0231 (4)
H3B	0.876266	0.747726	0.266478	0.028*
C4B	0.95793 (9)	0.6716 (3)	0.31582 (9)	0.0229 (3)
H4B	0.984945	0.661451	0.278984	0.028*
C5B	0.98268 (8)	0.6349 (2)	0.37696 (9)	0.0221 (3)
H5B	1.026722	0.599079	0.381792	0.027*
C6B	0.94395 (7)	0.6499 (2)	0.43130 (8)	0.0165 (3)
H6B	0.961289	0.623994	0.473079	0.020*
C7B	0.84054 (8)	0.7192 (2)	0.48449 (8)	0.0133 (3)
C8B	0.63040 (7)	0.6729 (2)	0.63094 (8)	0.0135 (3)
C9B	0.57871 (8)	0.6850 (2)	0.67379 (8)	0.0176 (3)
H9B	0.586500	0.697499	0.718986	0.021*
C10B	0.51568 (8)	0.6786 (3)	0.64956 (8)	0.0189 (3)
H10B	0.480096	0.687201	0.678286	0.023*
C11B	0.50456 (8)	0.6597 (2)	0.58355 (8)	0.0196 (3)
H11B	0.461330	0.655944	0.567321	0.024*
C12B	0.55602 (8)	0.6463 (3)	0.54103 (8)	0.0197 (3)
H12B	0.548141	0.632735	0.495882	0.024*
C13B	0.61889 (8)	0.6528 (2)	0.56485 (8)	0.0164 (3)
H13B	0.654323	0.643623	0.535959	0.020*
C14B	0.69873 (8)	0.6727 (2)	0.65418 (8)	0.0151 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1A	0.00847 (10)	0.01580 (8)	0.01112 (10)	0.00076 (6)	0.00080 (5)	0.00048 (6)
Cl1A	0.01556 (17)	0.01763 (16)	0.01590 (17)	-0.00279 (13)	0.00038 (13)	-0.00214 (13)
Cl2A	0.01553 (18)	0.02015 (18)	0.0306 (2)	0.00577 (13)	0.00699 (15)	0.00859 (15)
O1A	0.0097 (5)	0.0253 (6)	0.0139 (5)	0.0034 (4)	-0.0001 (4)	-0.0007 (4)
O2A	0.0124 (6)	0.0253 (6)	0.0112 (6)	-0.0021 (4)	0.0016 (4)	-0.0004 (4)
N1A	0.0101 (6)	0.0408 (9)	0.0143 (7)	0.0017 (6)	0.0003 (5)	0.0039 (6)
N2A	0.0108 (6)	0.0342 (8)	0.0118 (6)	-0.0019 (5)	0.0012 (4)	-0.0034 (5)
C1A	0.0101 (6)	0.0145 (7)	0.0169 (7)	0.0014 (5)	0.0035 (5)	0.0027 (5)
C2A	0.0098 (8)	0.0244 (8)	0.0221 (9)	-0.0006 (6)	0.0017 (6)	0.0051 (7)
C3A	0.0095 (7)	0.0296 (9)	0.0362 (11)	0.0009 (6)	0.0040 (7)	0.0075 (8)
C4A	0.0174 (8)	0.0252 (9)	0.0348 (10)	0.0037 (7)	0.0140 (7)	0.0029 (7)
C5A	0.0230 (8)	0.0269 (9)	0.0238 (8)	0.0021 (7)	0.0106 (6)	-0.0049 (7)

C6A	0.0143 (7)	0.0217 (8)	0.0206 (8)	0.0018 (6)	0.0041 (6)	-0.0027 (6)
C7A	0.0095 (6)	0.0150 (7)	0.0166 (7)	0.0007 (5)	0.0020 (5)	0.0014 (5)
C8A	0.0122 (7)	0.0160 (7)	0.0104 (6)	0.0026 (5)	-0.0005 (5)	-0.0011 (5)
C9A	0.0127 (7)	0.0215 (8)	0.0125 (7)	0.0033 (5)	0.0017 (5)	-0.0002 (5)
C10A	0.0198 (8)	0.0233 (8)	0.0140 (7)	0.0062 (6)	0.0012 (6)	0.0000 (6)
C11A	0.0231 (8)	0.0223 (8)	0.0149 (7)	0.0043 (6)	-0.0027 (6)	-0.0039 (6)
C12A	0.0189 (7)	0.0218 (8)	0.0194 (8)	-0.0022 (6)	-0.0035 (6)	-0.0047 (6)
C13A	0.0165 (7)	0.0178 (7)	0.0146 (7)	-0.0012 (6)	0.0006 (5)	-0.0022 (5)
C14A	0.0108 (7)	0.0166 (7)	0.0114 (7)	0.0024 (5)	-0.0002 (5)	0.0000 (5)
Zn1B	0.01035 (10)	0.01706 (8)	0.01029 (10)	0.00033 (6)	0.00080 (6)	-0.00034 (6)
Cl1B	0.01485 (17)	0.01905 (17)	0.01981 (19)	0.00226 (12)	-0.00040 (14)	0.00404 (13)
Cl2B	0.0299 (2)	0.02135 (17)	0.0213 (2)	-0.00772 (15)	0.00810 (15)	-0.00662 (14)
O1B	0.0148 (5)	0.0277 (6)	0.0103 (5)	0.0031 (5)	0.0004 (4)	-0.0016 (4)
O2B	0.0104 (6)	0.0269 (6)	0.0140 (6)	0.0009 (4)	0.0028 (4)	0.0032 (4)
N1B	0.0126 (7)	0.0326 (8)	0.0117 (7)	0.0026 (5)	0.0015 (5)	0.0016 (5)
N2B	0.0114 (6)	0.0358 (8)	0.0130 (6)	0.0005 (6)	0.0010 (5)	0.0033 (6)
C1B	0.0126 (7)	0.0150 (7)	0.0126 (7)	-0.0014 (5)	0.0023 (5)	-0.0019 (5)
C2B	0.0194 (9)	0.0240 (8)	0.0139 (8)	0.0010 (6)	0.0000 (6)	0.0001 (6)
C3B	0.0279 (10)	0.0283 (9)	0.0133 (8)	0.0025 (7)	0.0047 (7)	0.0015 (6)
C4B	0.0282 (9)	0.0234 (8)	0.0173 (8)	0.0013 (7)	0.0108 (6)	-0.0004 (6)
C5B	0.0186 (8)	0.0254 (8)	0.0225 (8)	0.0015 (6)	0.0077 (6)	-0.0033 (6)
C6B	0.0133 (7)	0.0197 (7)	0.0164 (7)	0.0011 (6)	0.0030 (5)	-0.0017 (6)
C7B	0.0120 (7)	0.0158 (7)	0.0120 (7)	-0.0023 (5)	0.0016 (5)	-0.0029 (5)
C8B	0.0108 (6)	0.0152 (7)	0.0146 (7)	-0.0008 (5)	0.0002 (5)	-0.0013 (5)
C9B	0.0140 (7)	0.0224 (8)	0.0163 (8)	0.0008 (6)	0.0013 (6)	-0.0035 (6)
C10B	0.0108 (7)	0.0268 (8)	0.0191 (8)	-0.0014 (6)	0.0032 (5)	-0.0036 (6)
C11B	0.0120 (7)	0.0252 (8)	0.0216 (8)	-0.0039 (6)	-0.0030 (6)	-0.0002 (6)
C12B	0.0166 (7)	0.0282 (9)	0.0142 (7)	-0.0051 (6)	-0.0021 (5)	0.0003 (6)
C13B	0.0143 (7)	0.0198 (7)	0.0151 (7)	-0.0029 (6)	0.0011 (5)	0.0008 (6)
C14B	0.0129 (7)	0.0176 (7)	0.0147 (7)	0.0009 (6)	0.0023 (5)	-0.0015 (6)

Geometric parameters (Å, °)

Zn1A—Cl1A	2.2361 (4)	Zn1B—Cl1B	2.2294 (4)
Zn1A—Cl2A	2.2107 (4)	Zn1B—Cl2B	2.2118 (4)
Zn1A—O1A	1.9632 (12)	Zn1B—O1B	1.9653 (12)
Zn1A—O2A	2.0089 (13)	Zn1B—O2B	2.0040 (13)
O1A—C7A	1.2618 (19)	O1B—C7B	1.254 (2)
O2A—C14A	1.268 (2)	O2B—C14B	1.2617 (19)
N1A—H1AA	0.842 (16)	N1B—H1BA	0.842 (16)
N1A—H1AB	0.871 (16)	N1B—H1BB	0.876 (16)
N1A—C7A	1.322 (2)	N1B—C7B	1.320 (2)
N2A—H2AA	0.874 (16)	N2B—H2BA	0.850 (16)
N2A—H2AB	0.851 (16)	N2B—H2BB	0.848 (16)
N2A—C14A	1.316 (2)	N2B—C14B	1.324 (2)
C1A—C2A	1.395 (2)	C1B—C2B	1.398 (2)
C1A—C6A	1.395 (2)	C1B—C6B	1.393 (2)
C1A—C7A	1.479 (2)	C1B—C7B	1.493 (2)

C2A—H2A	0.9500	C2B—H2B	0.9500
C2A—C3A	1.394 (3)	C2B—C3B	1.390 (3)
СЗА—НЗА	0.9500	СЗВ—НЗВ	0.9500
C3A—C4A	1.388 (3)	C3B—C4B	1.390 (3)
C4A—H4A	0.9500	C4B—H4B	0.9500
C4A—C5A	1.387 (3)	C4B—C5B	1.384 (3)
С5А—Н5А	0.9500	C5B—H5B	0.9500
C5A—C6A	1.385 (2)	C5B—C6B	1.388 (2)
С6А—Н6А	0.9500	C6B—H6B	0.9500
C8A—C9A	1.400 (2)	C8B—C9B	1.394 (2)
C8A—C13A	1.401 (2)	C8B—C13B	1.391 (2)
C8A—C14A	1.483 (2)	C8B—C14B	1.485 (2)
С9А—Н9А	0.9500	С9В—Н9В	0.9500
C9A—C10A	1.394 (2)	C9B—C10B	1.389 (2)
C10A—H10A	0.9500	C10B—H10B	0.9500
C10A—C11A	1.384 (3)	C10B—C11B	1.387 (2)
C11A—H11A	0.9500	C11B—H11B	0.9500
C11A—C12A	1.386 (2)	C11B—C12B	1.387 (2)
C12A—H12A	0.9500	C12B—H12B	0.9500
C12A—C13A	1.390 (2)	C12B—C13B	1.383 (2)
C13A—H13A	0.9500	C13B—H13B	0.9500
Cl2A—Zn1A—Cl1A	114.035 (18)	Cl2B—Zn1B—Cl1B	113.726 (18)
O1A—Zn1A—Cl1A	112.47 (4)	O1B—Zn1B—Cl1B	113.93 (4)
O1A—Zn1A—Cl2A	110.29 (4)	O1B—Zn1B—Cl2B	109.38 (4)
O1A—Zn1A—O2A	101.44 (5)	O1B—Zn1B—O2B	99.75 (5)
O2A—Zn1A—Cl1A	106.65 (4)	O2B—Zn1B—Cl1B	105.59 (4)
O2A—Zn1A—Cl2A	111.18 (4)	O2B—Zn1B—Cl2B	113.67 (4)
C7A—O1A—Zn1A	132.74 (11)	C7B—O1B—Zn1B	131.70 (11)
C14A—O2A—Zn1A	130.46 (11)	C14B—O2B—Zn1B	129.74 (12)
H1AA—N1A—H1AB	113 (3)	H1BA—N1B—H1BB	115 (3)
C7A—N1A—H1AA	120 (2)	C7B—N1B—H1BA	120.1 (18)
C7A—N1A—H1AB	125.9 (18)	C7B—N1B—H1BB	124.4 (17)
H2AA—N2A—H2AB	115 (2)	H2BA—N2B—H2BB	116 (2)
C14A—N2A—H2AA	118.3 (16)	C14B—N2B—H2BA	118.1 (17)
C14A—N2A—H2AB	124.9 (16)	C14B—N2B—H2BB	123.5 (16)
C2A—C1A—C7A	121.96 (15)	C2B—C1B—C7B	123.15 (15)
C6A—C1A—C2A	119.73 (15)	C6B—C1B—C2B	119.91 (15)
C6A—C1A—C7A	118.29 (14)	C6B—C1B—C7B	116.94 (14)
C1A—C2A—H2A	120.3	C1B—C2B—H2B	120.0
C3A—C2A—C1A	119.46 (19)	C3B—C2B—C1B	119.91 (18)
C3A—C2A—H2A	120.3	C3B—C2B—H2B	120.0
С2А—С3А—НЗА	120.0	C2B—C3B—H3B	120.0
C4A—C3A—C2A	120.01 (18)	C2B—C3B—C4B	120.03 (18)
С4А—С3А—Н3А	120.0	C4B—C3B—H3B	120.0
C3A—C4A—H4A	119.6	C3B—C4B—H4B	120.1
C5A—C4A—C3A	120.86 (16)	C5B—C4B—C3B	119.84 (16)
C5A—C4A—H4A	119.6	C5B—C4B—H4B	120.1

С4А—С5А—Н5А	120.4	C4B—C5B—H5B	119.6
C6A—C5A—C4A	119.12 (18)	C4B—C5B—C6B	120.80 (16)
С6А—С5А—Н5А	120.4	C6B—C5B—H5B	119.6
С1А—С6А—Н6А	119.6	C1B—C6B—H6B	120.3
C5A—C6A—C1A	120.81 (16)	C5B—C6B—C1B	119.50 (16)
С5А—С6А—Н6А	119.6	C5B—C6B—H6B	120.3
O1A—C7A—N1A	122.15 (15)	O1B—C7B—N1B	121.88 (15)
O1A—C7A—C1A	118.20 (15)	O1B—C7B—C1B	118.61 (14)
N1A—C7A—C1A	119.64 (14)	N1B—C7B—C1B	119.51 (15)
C9A—C8A—C13A	119.37 (15)	C9B—C8B—C14B	121.61 (14)
C9A—C8A—C14A	122.60 (15)	C13B—C8B—C9B	120.32 (15)
C13A—C8A—C14A	117.99 (14)	C13B—C8B—C14B	118.02 (14)
С8А—С9А—Н9А	119.9	C8B—C9B—H9B	120.4
C10A—C9A—C8A	120.11 (16)	C10B—C9B—C8B	119.19 (16)
С10А—С9А—Н9А	119.9	C10B—C9B—H9B	120.4
C9A—C10A—H10A	119.9	C9B—C10B—H10B	119.9
C11A—C10A—C9A	120.13 (17)	C11B—C10B—C9B	120.19 (16)
C11A—C10A—H10A	119.9	C11B—C10B—H10B	119.9
C10A—C11A—H11A	120.0	C10B—C11B—H11B	119.7
C10A—C11A—C12A	120.05 (16)	C10B—C11B—C12B	120.57 (15)
C12A—C11A—H11A	120.0	C12B—C11B—H11B	119.7
C11A—C12A—H12A	119.7	C11B—C12B—H12B	120.2
C11A—C12A—C13A	120.57 (16)	C13B—C12B—C11B	119.51 (16)
C13A—C12A—H12A	119.7	C13B—C12B—H12B	120.2
C8A—C13A—H13A	120.1	C8B—C13B—H13B	119.9
C12A— $C13A$ — $C8A$	119.76 (15)	C12B—C13B—C8B	120.22 (15)
C12A—C13A—H13A	120.1	C12B—C13B—H13B	119.9
O2A—C14A—N2A	120.79 (15)	O2B—C14B—N2B	122.02 (15)
O2A—C14A—C8A	118.92 (15)	O2B—C14B—C8B	118.66 (15)
N2A—C14A—C8A	120.29 (14)	N2B—C14B—C8B	119.31 (14)
			()
Zn1A—O1A—C7A—N1A	-6.1 (2)	Zn1B—O1B—C7B—N1B	-11.6(2)
Zn1A—O1A—C7A—C1A	174.83 (11)	Zn1B—O1B—C7B—C1B	168.80 (11)
Zn1A—O2A—C14A—N2A	-7.2 (2)	Zn1B—O2B—C14B—N2B	1.6 (3)
Zn1A—O2A—C14A—C8A	173.10 (10)	Zn1B—O2B—C14B—C8B	-177.09 (11)
C1A—C2A—C3A—C4A	-0.4 (3)	C1B—C2B—C3B—C4B	-0.1 (3)
C2A—C1A—C6A—C5A	-0.4 (3)	C2B—C1B—C6B—C5B	0.6 (2)
C2A—C1A—C7A—O1A	-162.09 (15)	C2B—C1B—C7B—O1B	177.76 (15)
C2A—C1A—C7A—N1A	18.8 (2)	C2B—C1B—C7B—N1B	-1.9 (2)
C2A—C3A—C4A—C5A	0.1 (3)	C2B—C3B—C4B—C5B	0.5 (3)
C3A—C4A—C5A—C6A	0.0 (3)	C3B—C4B—C5B—C6B	-0.3(3)
C4A—C5A—C6A—C1A	0.1 (3)	C4B—C5B—C6B—C1B	-0.3 (3)
C6A—C1A—C2A—C3A	0.5 (3)	C6B—C1B—C2B—C3B	-0.4 (3)
C6A—C1A—C7A—O1A	16.1 (2)	C6B—C1B—C7B—O1B	-2.4(2)
C6A—C1A—C7A—N1A	-162.95 (16)	C6B—C1B—C7B—N1B	177.91 (15)
C7A—C1A—C2A—C3A	178.72 (16)	C7B—C1B—C2B—C3B	179.38 (16)
C7A—C1A—C6A—C5A	-178.66 (16)	C7B—C1B—C6B—C5B	-179.20 (15)
C8A—C9A—C10A—C11A	0.0 (2)	C8B—C9B—C10B—C11B	0.2 (3)

C9A—C8A—C13A—C12A	-0.7 (2)	C9B—C8B—C13B—C12B	$\begin{array}{c} 0.5 (3) \\ -160.50 (16) \\ 20.8 (3) \\ 0.2 (3) \\ -0.3 (3) \\ 0.0 (3) \\ -0.6 (3) \\ 22.1 (2) \\ -156.62 (16) \\ -177 92 (16) \end{array}$
C9A—C8A—C14A—O2A	176.29 (15)	C9B—C8B—C14B—O2B	
C9A—C8A—C14A—N2A	-3.4 (2)	C9B—C8B—C14B—N2B	
C9A—C10A—C11A—C12A	0.2 (3)	C9B—C10B—C11B—C12B	
C10A—C11A—C12A—C13A	-0.7 (3)	C10B—C11B—C12B—C13B	
C11A—C12A—C13A—C8A	0.9 (3)	C11B—C12B—C13B—C8B	
C13A—C8A—C9A—C10A	0.2 (2)	C13B—C8B—C9B—C10B	
C13A—C8A—C14A—O2A	-1.6 (2)	C13B—C8B—C14B—O2B	
C13A—C8A—C14A—N2A	178.73 (15)	C13B—C8B—C14B—N2B	
C14A—C8A—C9A—C10A	-177.62 (15)	C14B—C8B—C9B—C10B	
C13A—C8A—C14A—N2A	178.73 (15)	C13B—C8B—C14B—N2B	-156.62 (16)
C14A—C8A—C9A—C10A	-177.62 (15)	C14B—C8B—C9B—C10B	-177.92 (16)
C14A—C8A—C13A—C12A	177.25 (15)	C14B—C8B—C13B—C12B	177.94 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D···A	D—H···A
N1 <i>A</i> —H1 <i>AA</i> ···O2 <i>A</i>	0.84 (2)	2.12 (2)	2.888 (2)	152 (3)
$N1A$ — $H1AB$ ···C $11B^{i}$	0.87 (2)	2.56 (2)	3.3644 (15)	153 (2)
N2A—H2AA···Cl1A	0.87 (2)	2.51 (2)	3.3281 (15)	155 (2)
N2A—H2AB····Cl2A ⁱⁱ	0.85 (2)	2.51 (2)	3.3404 (15)	164 (2)
N1 <i>B</i> —H1 <i>BA</i> ···O2 <i>B</i>	0.84 (2)	2.17 (2)	2.911 (2)	147 (2)
N1 <i>B</i> —H1 <i>BB</i> ···Cl1 <i>A</i>	0.88 (2)	2.51 (2)	3.3682 (16)	167 (2)
N2 <i>B</i> —H2 <i>BA</i> ···Cl1 <i>B</i>	0.85 (2)	2.57 (2)	3.3085 (15)	146 (2)
$N2B$ — $H2BB$ ···Cl $2B^{iii}$	0.85 (2)	2.48 (2)	3.3107 (15)	165 (2)

Symmetry codes: (i) *x*-1/2, -*y*+3/2, *z*-1/2; (ii) -*x*+3/2, *y*+1/2, -*z*+1/2; (iii) -*x*+3/2, *y*-1/2, -*z*+3/2.

Dichloridobis(2-methylbenzamide-*kO*)zinc(II) (2)

Crystal data

 $[ZnCl_2(C_8H_9NO)_2]$ $M_r = 406.59$ Monoclinic, $P2_1$ a = 7.3802 (3) Å b = 8.2491 (3) Å *c* = 14.5953 (5) Å $\beta = 97.852 (1)^{\circ}$ V = 880.23 (6) Å³ Z = 2

Data collection

Bruker APEXII CCD	20749 measured reflections
diffractometer	5348 independent reflections
Radiation source: sealed tube	5135 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.025$
Detector resolution: 8 pixels mm ⁻¹	$\theta_{\rm max} = 30.5^\circ, \theta_{\rm min} = 2.8^\circ$
ω and φ scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan	$k = -11 \rightarrow 11$
(SADABS; Krause et al., 2015)	$l = -20 \longrightarrow 20$
$T_{\min} = 0.478, \ T_{\max} = 0.680$	

F(000) = 416 $D_{\rm x} = 1.534 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 9884 reflections $\theta = 2.8 - 30.5^{\circ}$ $\mu = 1.71 \text{ mm}^{-1}$ T = 100 KNeedle, clear light colourless $0.5 \times 0.16 \times 0.11$ mm

Refinement

H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0078P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.31 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$
Absolute structure: Refined as an inversion
twin.
Absolute structure parameter: 0.016 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. **Refinement**. Refined as a 2-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.65448 (2)	0.68146 (2)	0.17755 (2)	0.01057 (5)	
Cl1	0.47230 (6)	0.60339 (6)	0.05028 (3)	0.01680 (9)	
Cl2	0.81306 (6)	0.90729 (5)	0.19165 (3)	0.01797 (10)	
01	0.85119 (17)	0.51161 (15)	0.20425 (9)	0.0127 (2)	
O2	0.51677 (14)	0.66731 (18)	0.28443 (8)	0.0146 (2)	
N1	0.7092 (2)	0.28760 (19)	0.14025 (13)	0.0191 (4)	
H1A	0.719(3)	0.190 (3)	0.1287 (15)	0.029*	
H1B	0.616 (3)	0.340 (3)	0.1134 (17)	0.029*	
N2	0.2228 (2)	0.64887 (18)	0.21691 (10)	0.0143 (3)	
H2A	0.253 (3)	0.665 (3)	0.1637 (13)	0.021*	
H2B	0.114 (3)	0.627 (3)	0.2209 (15)	0.021*	
C1	1.0259 (2)	0.2690 (2)	0.20486 (12)	0.0104 (3)	
C2	1.1130 (2)	0.1966 (2)	0.13538 (11)	0.0133 (3)	
C3	1.2723 (2)	0.1092 (2)	0.16300 (13)	0.0169 (4)	
Н3	1.334536	0.060513	0.117218	0.020*	
C4	1.3429 (2)	0.0912 (2)	0.25546 (13)	0.0177 (4)	
H4	1.451212	0.029817	0.272382	0.021*	
C5	1.2548 (2)	0.1629 (3)	0.32327 (12)	0.0163 (4)	
Н5	1.301711	0.149691	0.386746	0.020*	
C6	1.0978 (2)	0.2542 (2)	0.29786 (12)	0.0128 (3)	
H6	1.039430	0.306526	0.343897	0.015*	
C7	0.8535 (2)	0.3634 (2)	0.18179 (12)	0.0109 (3)	
C8	1.0403 (3)	0.2111 (3)	0.03369 (13)	0.0230 (5)	
H8A	1.139556	0.190759	-0.003126	0.034*	
H8B	0.991635	0.320424	0.020737	0.034*	
H8C	0.942754	0.131322	0.017568	0.034*	
C9	0.2906 (2)	0.6074 (2)	0.38067 (11)	0.0112 (3)	
C10	0.3975 (2)	0.5094 (2)	0.44575 (12)	0.0136 (3)	

C11	0.3296 (3)	0.4755 (2)	0.52821 (13)	0.0176 (4)
H11	0.397722	0.406299	0.572177	0.021*
C12	0.1661 (3)	0.5397 (2)	0.54805 (13)	0.0181 (4)
H12	0.124588	0.515956	0.605376	0.022*
C13	0.0628 (2)	0.6389 (2)	0.48400 (13)	0.0165 (4)
H13	-0.049035	0.684050	0.497503	0.020*
C14	0.1242 (2)	0.6717 (3)	0.40001 (11)	0.0135 (3)
H14	0.053015	0.737965	0.355540	0.016*
C15	0.3493 (2)	0.64320 (19)	0.28939 (12)	0.0113 (3)
C16	0.5780 (3)	0.4348 (2)	0.42876 (14)	0.0190 (4)
H16A	0.563507	0.383911	0.367518	0.029*
H16B	0.615433	0.352757	0.476157	0.029*
H16C	0.671673	0.519549	0.431646	0.029*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.00830 (8)	0.01066 (9)	0.01290 (9)	0.00019 (8)	0.00197 (6)	0.00037 (9)
Cl1	0.01314 (19)	0.0252 (2)	0.01136 (19)	0.00219 (17)	-0.00077 (14)	0.00050 (17)
Cl2	0.0186 (2)	0.01049 (19)	0.0251 (2)	-0.00277 (17)	0.00381 (18)	0.00124 (18)
O1	0.0107 (6)	0.0098 (6)	0.0171 (6)	0.0007 (5)	-0.0001 (5)	-0.0020 (5)
O2	0.0082 (5)	0.0214 (6)	0.0143 (5)	-0.0029 (6)	0.0020 (4)	-0.0005 (6)
N1	0.0123 (7)	0.0113 (7)	0.0318 (10)	0.0008 (6)	-0.0042 (7)	-0.0047 (7)
N2	0.0094 (6)	0.0219 (9)	0.0117 (7)	-0.0016 (6)	0.0021 (5)	0.0013 (6)
C1	0.0093 (7)	0.0084 (7)	0.0136 (8)	-0.0015 (6)	0.0022 (6)	-0.0001 (6)
C2	0.0132 (7)	0.0134 (8)	0.0138 (7)	-0.0011 (7)	0.0036 (6)	0.0006 (8)
C3	0.0145 (8)	0.0171 (8)	0.0207 (9)	0.0013 (7)	0.0077 (7)	-0.0026 (8)
C4	0.0127 (8)	0.0165 (8)	0.0237 (10)	0.0034 (7)	0.0012 (7)	0.0018 (8)
C5	0.0157 (8)	0.0168 (9)	0.0153 (8)	0.0016 (8)	-0.0015 (6)	0.0019 (8)
C6	0.0128 (8)	0.0123 (7)	0.0137 (8)	-0.0016 (6)	0.0030 (6)	-0.0023 (6)
C7	0.0114 (8)	0.0107 (8)	0.0108 (8)	-0.0005 (6)	0.0018 (6)	0.0016 (6)
C8	0.0220 (9)	0.0320 (13)	0.0154 (9)	0.0030 (8)	0.0043 (7)	0.0001 (8)
C9	0.0099 (7)	0.0122 (7)	0.0117 (8)	-0.0036 (6)	0.0017 (6)	-0.0022 (7)
C10	0.0126 (8)	0.0126 (7)	0.0147 (8)	-0.0019 (6)	-0.0011 (6)	-0.0009 (7)
C11	0.0220 (10)	0.0150 (8)	0.0149 (9)	-0.0045 (7)	-0.0008 (7)	0.0014 (7)
C12	0.0224 (10)	0.0193 (9)	0.0137 (9)	-0.0072 (7)	0.0064 (7)	-0.0015 (7)
C13	0.0140 (8)	0.0200 (9)	0.0164 (8)	-0.0036 (6)	0.0056 (6)	-0.0041 (7)
C14	0.0119 (7)	0.0138 (7)	0.0148 (7)	-0.0013 (8)	0.0015 (5)	-0.0016 (8)
C15	0.0113 (7)	0.0098 (8)	0.0128 (8)	0.0000 (5)	0.0017 (6)	-0.0008 (6)
C16	0.0146 (8)	0.0209 (9)	0.0212 (10)	0.0048 (7)	0.0008 (7)	0.0036 (8)

Geometric parameters (Å, °)

Zn1—Cl1	2.2340 (4)	С5—Н5	0.9500	
Zn1—Cl2	2.1947 (5)	C5—C6	1.389 (2)	
Zn1—O1	2.0169 (13)	С6—Н6	0.9500	
Zn1—O2	1.9781 (11)	C8—H8A	0.9800	
O1—C7	1.266 (2)	C8—H8B	0.9800	

O2—C15	1.2637 (19)	C8—H8C	0.9800
N1—H1A	0.82 (2)	C9—C10	1.405 (2)
N1—H1B	0.858 (19)	C9—C14	1.402 (2)
N1—C7	1.310 (2)	C9—C15	1.486 (2)
N2—H2A	0.847 (18)	C10—C11	1.393 (3)
N2—H2B	0.836 (18)	C10—C16	1.519 (3)
N2-C15	1 313 (2)	C11—H11	0.9500
C1-C2	1 406 (2)	C11-C12	1384(3)
C1 - C6	1 394 (2)	C12—H12	0.9500
C1 - C7	1 490 (2)	C12 - C13	1 389 (3)
$C_2 - C_3$	1 391 (2)	C12H13	0.9500
$C_2 = C_3$	1.591(2) 1.512(2)	C13 - C14	1.390(2)
C3 H3	0.9500	C14 H14	0.9500
$C_3 = C_4$	1 386 (3)	C16 H16A	0.9500
$C_3 = C_4$	0.0500	C16 U16P	0.9800
C4 - C5	1 280 (2)		0.9800
C4—C3	1.389 (3)	C10—H10C	0.9800
$C_{12} - 7n_{1} - C_{11}$	125 120 (19)	N1	118 01 (16)
$\Omega_1 - Z_{n1} - C_{n1}$	125.120(1)) 107.22(4)	$C_2 = C_8 = H_8 \Delta$	109.5
$O_1 = Z_{n1} = C_{12}$	107.22(4) 102.18(4)	$C_2 = C_3 = H_{SP}$	109.5
$O_1 = C_1 = C_1 = C_1$	102.18(4) 108.84(3)	$C_2 = C_8 = H_8C$	109.5
$O_2 = Z_{n1} = C_{12}$	107.52(4)		109.5
$O_2 = Z_{\text{III}} = C_{\text{IZ}}$	107.32(4) 102.01(5)		109.5
02 - 211 - 01	103.91(3) 120.05(12)	$H_{0} = C_{0} = H_{0} C_{0}$	109.5
C/=OI=ZnI	130.95 (12)	$H\delta B = C\delta = H\delta C$	109.5
C15 - 02 - 2n1	131.79 (10)	C10 - C9 - C13	121.02 (15)
HIA—NI—HIB	119 (2)	C14 - C9 - C10	120.54 (16)
C/—NI—HIA	118.0 (15)	C14 - C9 - C15	118.44 (15)
C/—NI—HIB	121.5 (16)	C9—C10—C16	123.15 (16)
H2A—N2—H2B	118 (2)	C11—C10—C9	117.69 (17)
C15—N2—H2A	119.8 (14)	C11—C10—C16	119.12 (16)
C15—N2—H2B	121.5 (15)	C10—C11—H11	119.0
C2—C1—C7	121.28 (15)	C12—C11—C10	122.04 (17)
C6—C1—C2	120.96 (16)	C12—C11—H11	119.0
C6—C1—C7	117.75 (16)	C11—C12—H12	120.0
C1—C2—C8	122.60 (16)	C11—C12—C13	119.91 (18)
C3—C2—C1	117.57 (15)	C13—C12—H12	120.0
C3—C2—C8	119.84 (16)	C12—C13—H13	120.2
С2—С3—Н3	119.1	C12—C13—C14	119.52 (18)
C4—C3—C2	121.86 (17)	C14—C13—H13	120.2
С4—С3—Н3	119.1	C9—C14—H14	119.9
C3—C4—H4	120.1	C13—C14—C9	120.27 (16)
C3—C4—C5	119.86 (17)	C13—C14—H14	119.9
С5—С4—Н4	120.1	O2—C15—N2	122.81 (16)
С4—С5—Н5	120.2	O2—C15—C9	119.34 (14)
C4—C5—C6	119.70 (16)	N2—C15—C9	117.86 (15)
С6—С5—Н5	120.2	C10—C16—H16A	109.5
С1—С6—Н6	120.0	C10-C16-H16B	109.5
C5—C6—C1	120.02 (16)	C10—C16—H16C	109.5

C5—C6—H6 O1—C7—N1 O1—C7—C1	120.0 122.80 (17) 119.18 (15)	H16A—C16—H16B H16A—C16—H16C H16B—C16—H16C	109.5 109.5 109.5
Zn1-01-C7-N1 $Zn1-01-C7-C1$ $Zn1-02-C15-N2$ $Zn1-02-C15-C9$ $C1-C2-C3-C4$ $C2-C1-C6-C5$ $C2-C1-C7-01$ $C2-C1-C7-N1$ $C2-C3-C4-C5$ $C3-C4-C5-C6$ $C4-C5-C6-C1$ $C6-C1-C2-C3$ $C6-C1-C2-C8$ $C6-C1-C7-N1$ $C7-C1-C2-C3$ $C7-C1-C2-C3$	$\begin{array}{c} -6.3 (3) \\ 174.92 (12) \\ -11.9 (3) \\ 168.30 (12) \\ 0.9 (3) \\ -1.9 (3) \\ -119.46 (19) \\ 61.7 (2) \\ -0.7 (3) \\ -0.8 (3) \\ 2.1 (3) \\ 0.5 (3) \\ -179.44 (18) \\ 60.7 (2) \\ -118.08 (19) \\ -179.36 (16) \\ 0.7 (3) \end{array}$	$\begin{array}{c} C7-C1-C6-C5\\ C8-C2-C3-C4\\ C9-C10-C11-C12\\ C10-C9-C14-C13\\ C10-C9-C15-O2\\ C10-C9-C15-N2\\ C10-C11-C12-C13\\ C11-C12-C13-C14\\ C12-C13-C14-C9\\ C14-C9-C10-C11\\ C14-C9-C10-C16\\ C14-C9-C15-O2\\ C14-C9-C15-N2\\ C15-C9-C10-C11\\ C15-C9-C10-C16\\ C15-C9-C10-C16\\ C15-C9-C14-C13\\ C16-C10-C11-C12\\ \end{array}$	$\begin{array}{c} 177.87 (16) \\ -179.24 (17) \\ -2.2 (3) \\ -0.1 (3) \\ -38.3 (2) \\ 141.92 (17) \\ 1.1 (3) \\ 0.6 (3) \\ -1.1 (3) \\ 1.7 (3) \\ 179.43 (17) \\ 142.68 (18) \\ -37.1 (2) \\ -177.30 (16) \\ 0.4 (3) \\ 178.94 (16) \\ 179.92 (17) \end{array}$
-		-	

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1A····Cl2 ⁱ	0.82 (2)	2.57 (2)	3.2916 (17)	147 (2)
N1—H1 <i>B</i> …Cl1	0.86 (2)	2.54 (2)	3.3077 (17)	150 (2)
N2—H2A…C11	0.85 (2)	2.52 (2)	3.2667 (16)	148 (2)
N2—H2 <i>B</i> …O1 ⁱⁱ	0.84 (2)	2.14 (2)	2.949 (2)	163 (2)

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) *x*–1, *y*, *z*.

Dichloridobis(3-methylbenzamide-кО)zinc(II) (3)

Crystal data [ZnCl₂(C₈H₉NO)₂] $M_r = 406.59$ Monoclinic, C2/c a = 13.9452 (11) Å b = 18.9742 (16) Å c = 7.0651 (6) Å $\beta = 108.021$ (2)° V = 1777.7 (3) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: sealed tube Graphite monochromator Detector resolution: 8 pixels mm⁻¹ F(000) = 832 $D_x = 1.519 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6211 reflections $\theta = 3.1-28.7^{\circ}$ $\mu = 1.69 \text{ mm}^{-1}$ T = 100 KNeedle, clear light colourless $0.42 \times 0.14 \times 0.14 \text{ mm}$

 ω and φ scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.620, T_{\max} = 0.746$ 12177 measured reflections

2295 independent reflections	$h = -18 \rightarrow 18$
2023 reflections with $I > 2\sigma(I)$	$k = -25 \rightarrow 25$
$R_{\rm int} = 0.027$	$l = -9 \rightarrow 9$
$\theta_{\rm max} = 28.7^{\circ}, \theta_{\rm min} = 1.9^{\circ}$	
Refinement	
Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.022$	and constrained refinement
$wR(F^2) = 0.059$	$w = 1/[\sigma^2(F_o^2) + (0.0284P)^2 + 1.5576P]$
S = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
2295 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
113 parameters	$\Delta \rho_{\rm max} = 0.39 \text{ e } \text{\AA}^{-3}$
17 restraints	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$
Primary atom site location: dual	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Zn1	0.500000	0.38624 (2)	0.750000	0.01707 (8)	
Cl1	0.62434 (3)	0.44400 (2)	0.97242 (5)	0.02080 (9)	
01	0.56261 (8)	0.31701 (5)	0.61793 (15)	0.0204 (2)	
N1	0.61233 (10)	0.38460 (7)	0.40319 (19)	0.0202 (3)	
H1A	0.5980 (15)	0.4225 (9)	0.452 (3)	0.030*	
H1B	0.6324 (15)	0.3898 (10)	0.302 (3)	0.030*	
C1	0.62069 (10)	0.25740 (7)	0.3812 (2)	0.0158 (3)	
C2	0.61038 (10)	0.19345 (8)	0.4691 (2)	0.0180 (3)	
H2	0.588635	0.193263	0.583965	0.022*	
C3	0.63116 (12)	0.12987 (8)	0.3927 (2)	0.0221 (3)	
C4	0.66207 (12)	0.13155 (8)	0.2221 (2)	0.0247 (3)	
H4	0.676788	0.088681	0.167359	0.030*	
C5	0.67144 (12)	0.19491 (8)	0.1323 (2)	0.0234 (3)	
Н5	0.691823	0.195033	0.015859	0.028*	
C6	0.65141 (11)	0.25802 (8)	0.2104 (2)	0.0187 (3)	
H6	0.658428	0.301380	0.148814	0.022*	
C7	0.59708 (10)	0.32279 (7)	0.4738 (2)	0.0158 (3)	
C8	0.62193 (14)	0.06111 (9)	0.4921 (3)	0.0332 (4)	
H8A	0.630921	0.069427	0.633494	0.050*	0.54 (2)
H8B	0.673809	0.028337	0.478992	0.050*	0.54 (2)
H8C	0.555047	0.040823	0.428655	0.050*	0.54 (2)
H8D	0.608931	0.022964	0.393933	0.050*	0.46 (2)
H8E	0.566042	0.064055	0.548436	0.050*	0.46 (2)
H8F	0.684804	0.051568	0.598773	0.050*	0.46 (2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.02315 (13)	0.01516 (12)	0.01467 (12)	0.000	0.00842 (9)	0.000
Cl1	0.02732 (19)	0.01659 (17)	0.01841 (16)	-0.00333 (13)	0.00694 (14)	-0.00035 (12)
01	0.0265 (6)	0.0175 (5)	0.0197 (5)	0.0021 (4)	0.0110 (4)	-0.0008 (4)
N1	0.0259 (7)	0.0152 (6)	0.0214 (6)	0.0015 (5)	0.0099 (5)	-0.0002 (5)
C1	0.0121 (6)	0.0173 (6)	0.0165 (6)	0.0004 (5)	0.0023 (5)	-0.0016 (5)
C2	0.0148 (7)	0.0199 (7)	0.0184 (6)	0.0015 (5)	0.0038 (5)	0.0002 (5)
C3	0.0189 (7)	0.0171 (7)	0.0283 (8)	0.0006 (5)	0.0046 (6)	0.0001 (6)
C4	0.0234 (8)	0.0204 (7)	0.0306 (8)	0.0008 (6)	0.0089 (6)	-0.0079 (6)
C5	0.0216 (7)	0.0277 (8)	0.0233 (7)	-0.0005 (6)	0.0103 (6)	-0.0057 (6)
C6	0.0170 (7)	0.0196 (7)	0.0196 (6)	-0.0007 (5)	0.0058 (5)	-0.0006(5)
C7	0.0130 (6)	0.0168 (6)	0.0157 (6)	0.0004 (5)	0.0015 (5)	-0.0008 (5)
C8	0.0398 (10)	0.0178 (8)	0.0439 (10)	0.0011 (7)	0.0156 (8)	0.0039(7)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Zn1—Cl1	2.2341 (4)	C3—C4	1.400 (2)
Zn1—Cl1 ⁱ	2.2341 (4)	C3—C8	1.506 (2)
Zn1—O1 ⁱ	1.9652 (10)	C4—H4	0.9500
Zn1—O1	1.9652 (10)	C4—C5	1.384 (2)
O1—C7	1.2581 (16)	С5—Н5	0.9500
N1—H1A	0.847 (15)	C5—C6	1.383 (2)
N1—H1B	0.848 (15)	С6—Н6	0.9500
N1—C7	1.3173 (18)	C8—H8A	0.9800
C1—C2	1.3906 (19)	C8—H8B	0.9800
C1—C6	1.3998 (19)	C8—H8C	0.9800
C1—C7	1.4863 (19)	C8—H8D	0.9800
С2—Н2	0.9500	C8—H8E	0.9800
C2—C3	1.388 (2)	C8—H8F	0.9800
Cl1—Zn1—Cl1 ⁱ	121.25 (2)	C5—C6—C1	119.36 (14)
O1 ⁱ —Zn1—Cl1	110.86 (3)	С5—С6—Н6	120.3
O1—Zn1—Cl1 ⁱ	110.86 (3)	O1—C7—N1	122.08 (13)
O1—Zn1—Cl1	107.44 (3)	O1—C7—C1	118.40 (12)
$O1^{i}$ —Zn1—Cl1 ⁱ	107.44 (3)	N1—C7—C1	119.53 (12)
O1 ⁱ —Zn1—O1	96.12 (6)	С3—С8—Н8А	109.5
C7—O1—Zn1	131.54 (9)	C3—C8—H8B	109.5
H1A—N1—H1B	114.8 (18)	C3—C8—H8C	109.5
C7—N1—H1A	121.2 (13)	C3—C8—H8D	109.5
C7—N1—H1B	123.8 (13)	С3—С8—Н8Е	109.5
C2—C1—C6	119.59 (13)	C3—C8—H8F	109.5
C2—C1—C7	117.67 (12)	H8A—C8—H8B	109.5
C6—C1—C7	122.74 (13)	H8A—C8—H8C	109.5
C1—C2—H2	119.3	H8A—C8—H8D	141.1
C3—C2—C1	121.45 (13)	H8A—C8—H8E	56.3
С3—С2—Н2	119.3	H8A—C8—H8F	56.3

C2—C3—C4	118.15 (14)	H8B—C8—H8C	109.5
C2—C3—C8	120.88 (15)	H8B—C8—H8D	56.3
C4—C3—C8	120.97 (14)	H8B—C8—H8E	141.1
C3—C4—H4	119.6	H8B—C8—H8F	56.3
C5—C4—C3	120.80 (14)	H8C—C8—H8D	56.3
С5—С4—Н4	119.6	H8C—C8—H8E	56.3
С4—С5—Н5	119.7	H8C—C8—H8F	141.1
C6—C5—C4	120.65 (14)	H8D—C8—H8E	109.5
С6—С5—Н5	119.7	H8D—C8—H8F	109.5
С1—С6—Н6	120.3	H8E—C8—H8F	109.5
Zn1—O1—C7—N1	12.2 (2)	C3—C4—C5—C6	0.7 (2)
Zn1—O1—C7—C1	-167.56 (9)	C4—C5—C6—C1	-0.5 (2)
C1—C2—C3—C4	-0.7 (2)	C6—C1—C2—C3	0.8 (2)
C1—C2—C3—C8	178.60 (15)	C6-C1-C7-O1	174.61 (13)
C2-C1-C6-C5	-0.3 (2)	C6-C1-C7-N1	-5.2 (2)
C2—C1—C7—O1	-4.73 (19)	C7—C1—C2—C3	-179.79 (13)
C2-C1-C7-N1	175.49 (13)	C7—C1—C6—C5	-179.60 (13)
C2—C3—C4—C5	-0.1 (2)	C8—C3—C4—C5	-179.35 (15)

Symmetry code: (i) -x+1, y, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N1—H1A···Cl1 ⁱⁱ	0.85 (2)	2.56 (2)	3.2854 (13)	145 (2)
N1—H1 <i>B</i> ···Cl1 ⁱⁱⁱ	0.85 (2)	2.52 (2)	3.2979 (13)	153 (2)

Symmetry codes: (ii) *x*, –*y*+1, *z*–1/2; (iii) *x*, *y*, *z*–1.

Dichloridobis(4-methylbenzamide-κO)zinc(II) (4)

Crystal	data
---------	------

$[ZnCl_2(C_8H_9NO)_2]$	F(000) = 832
$M_r = 406.59$	$D_{\rm x} = 1.537 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 6.8376 (4) Å	Cell parameters from 8511 reflections
b = 17.2694 (9) Å	$\theta = 2.4 - 30.1^{\circ}$
c = 14.9856 (7) Å	$\mu = 1.71 \text{ mm}^{-1}$
$\beta = 96.893 \ (2)^{\circ}$	T = 100 K
V = 1756.73 (16) Å ³	Needle, clear light colourless
Z = 4	$0.56 \times 0.18 \times 0.09 \text{ mm}$
Data collection	
Bruker APEXII CCD	33806 measured reflections
diffractometer	5376 independent reflections
Radiation source: sealed tube	4283 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.051$
Detector resolution: 8 pixels mm ⁻¹	$\theta_{\rm max} = 30.5^{\circ}, \theta_{\rm min} = 1.8^{\circ}$
ω and φ scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan	$k = -24 \rightarrow 24$
(SADABS; Krause et al., 2015)	$l = -21 \rightarrow 21$
$T_{\min} = 0.629, \ T_{\max} = 0.746$	

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.031$	and constrained refinement
$wR(F^2) = 0.069$	$w = 1/[\sigma^2(F_o^2) + (0.028P)^2 + 0.9244P]$
<i>S</i> = 1.01	where $P = (F_o^2 + 2F_c^2)/3$
5376 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
222 parameters	$\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$
4 restraints	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$
Primary atom site location: dual	
Special details	

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.62040 (3)	0.33576(2)	0.90851 (2)	0.01257 (6)	
C11	0.77285 (6)	0.44248 (3)	0.96142 (3)	0.01698 (9)	
C12	0.47211 (6)	0.26784 (3)	1.00645 (3)	0.01897 (9)	
O1	0.80611 (18)	0.27132 (8)	0.85157 (8)	0.0185 (3)	
O2	0.42159 (16)	0.36421 (7)	0.80292 (7)	0.0138 (2)	
N1	0.6780 (2)	0.27321 (10)	0.70593 (9)	0.0173 (3)	
H1A	0.581 (3)	0.3025 (12)	0.7182 (14)	0.026*	
H1B	0.679 (3)	0.2600 (13)	0.6506 (11)	0.026*	
N2	0.1956 (2)	0.41980 (11)	0.87969 (10)	0.0227 (4)	
H2A	0.076 (3)	0.4331 (14)	0.8844 (16)	0.034*	
H2B	0.275 (3)	0.4161 (14)	0.9295 (12)	0.034*	
C1	0.9836 (2)	0.20466 (10)	0.75021 (10)	0.0121 (3)	
C2	1.1478 (2)	0.20012 (10)	0.81520 (10)	0.0135 (3)	
H2	1.145841	0.225037	0.871603	0.016*	
C3	1.3132 (2)	0.15949 (10)	0.79764 (11)	0.0147 (3)	
Н3	1.424273	0.157277	0.842184	0.018*	
C4	1.3201 (2)	0.12177 (10)	0.71601 (11)	0.0140 (3)	
C5	1.1545 (2)	0.12644 (10)	0.65131 (11)	0.0149 (3)	
Н5	1.156387	0.101115	0.595143	0.018*	
C6	0.9882 (2)	0.16732 (10)	0.66776 (10)	0.0138 (3)	
H6	0.877513	0.169957	0.623050	0.017*	
C7	0.8142 (2)	0.25188 (10)	0.77107 (10)	0.0130 (3)	
C8	1.4980 (3)	0.07558 (11)	0.69831 (12)	0.0200 (4)	
H8A	1.469032	0.020189	0.702178	0.030*	
H8B	1.609350	0.088824	0.743154	0.030*	
H8C	1.531608	0.087642	0.638088	0.030*	
C9	0.1206 (2)	0.40383 (10)	0.71921 (10)	0.0135 (3)	
C10	0.1505 (2)	0.35807 (11)	0.64562 (11)	0.0153 (3)	
H10	0.255602	0.321747	0.650256	0.018*	
C11	0.0270 (3)	0.36541 (11)	0.56531 (11)	0.0189 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H11	0.047805	0.333358	0.515810	0.023*	
C12	-0.1263 (3)	0.41870 (11)	0.55606 (12)	0.0197 (4)	
C13	-0.1537 (3)	0.46467 (12)	0.62984 (13)	0.0250 (4)	
H13	-0.257293	0.501643	0.624800	0.030*	
C14	-0.0324 (3)	0.45754 (11)	0.71067 (12)	0.0217 (4)	
H14	-0.053924	0.489388	0.760262	0.026*	
C15	0.2540 (2)	0.39488 (10)	0.80440 (10)	0.0131 (3)	
C16	-0.2596 (3)	0.42661 (13)	0.46859 (13)	0.0276 (4)	
H16A	-0.220031	0.389179	0.424975	0.041*	
H16B	-0.249033	0.479199	0.445066	0.041*	
H16C	-0.396095	0.416577	0.478950	0.041*	

Atomic displacement parameters (\mathring{A}^2)

	U ¹¹	U ²²	U ³³	<i>U</i> ¹²	<i>U</i> ¹³	U ²³
Zn1	0.01264 (9)	0.01536 (11)	0.00929 (8)	0.00095 (8)	-0.00036 (6)	-0.00125 (7)
Cl1	0.01717 (18)	0.0165 (2)	0.01668 (18)	-0.00171 (16)	-0.00044 (14)	-0.00253 (15)
Cl2	0.01998 (19)	0.0250 (2)	0.01107 (16)	-0.00528 (17)	-0.00144 (14)	0.00284 (16)
01	0.0177 (6)	0.0255 (7)	0.0120 (5)	0.0070 (5)	0.0000 (4)	-0.0039 (5)
02	0.0119 (5)	0.0180 (6)	0.0111 (5)	0.0022 (5)	-0.0002 (4)	-0.0012 (4)
N1	0.0164 (7)	0.0238 (9)	0.0112 (6)	0.0065 (6)	-0.0008 (5)	-0.0040 (6)
N2	0.0158 (7)	0.0376 (10)	0.0141 (7)	0.0066 (7)	-0.0002 (6)	-0.0059 (7)
C1	0.0123 (7)	0.0114 (8)	0.0123 (7)	-0.0012 (6)	0.0009 (6)	0.0002 (6)
C2	0.0147 (7)	0.0146 (9)	0.0107 (7)	-0.0008 (6)	-0.0006 (6)	-0.0007 (6)
C3	0.0133 (7)	0.0152 (9)	0.0146 (7)	-0.0004 (6)	-0.0024 (6)	0.0012 (6)
C4	0.0129 (7)	0.0117 (8)	0.0177 (7)	-0.0005 (6)	0.0029 (6)	0.0010 (6)
C5	0.0173 (8)	0.0140 (9)	0.0133 (7)	-0.0001 (7)	0.0018 (6)	-0.0023 (6)
C6	0.0141 (7)	0.0144 (8)	0.0125 (6)	-0.0001 (6)	-0.0003 (6)	-0.0011 (6)
C7	0.0128 (7)	0.0134 (8)	0.0126 (7)	-0.0022 (6)	0.0006 (6)	-0.0007 (6)
C8	0.0151 (8)	0.0196 (10)	0.0250 (8)	0.0023 (7)	0.0012 (7)	-0.0032 (7)
С9	0.0127 (7)	0.0132 (8)	0.0139 (7)	-0.0006 (6)	-0.0015 (6)	-0.0014 (6)
C10	0.0147 (7)	0.0167 (9)	0.0140 (7)	0.0023 (6)	0.0001 (6)	-0.0011 (6)
C11	0.0214 (8)	0.0213 (10)	0.0134 (7)	-0.0010 (7)	-0.0010 (6)	-0.0039 (7)
C12	0.0194 (8)	0.0182 (10)	0.0193 (8)	-0.0021 (7)	-0.0065 (7)	0.0020 (7)
C13	0.0219 (9)	0.0201 (10)	0.0301 (10)	0.0084 (8)	-0.0088 (8)	-0.0032 (8)
C14	0.0221 (9)	0.0195 (10)	0.0218 (8)	0.0060 (7)	-0.0040 (7)	-0.0064 (7)
C15	0.0132 (7)	0.0130 (8)	0.0128 (7)	-0.0016 (6)	0.0001 (6)	-0.0014 (6)
C16	0.0282 (10)	0.0273 (11)	0.0237 (9)	-0.0014 (8)	-0.0121 (8)	0.0023 (8)

Geometric parameters (Å, °)

Zn1—Cl1	2.2166 (5)	С5—Н5	0.9500	
Zn1—Cl2	2.2170 (5)	C5—C6	1.385 (2)	
Zn1—01	1.9592 (12)	С6—Н6	0.9500	
Zn1—O2	2.0191 (11)	C8—H8A	0.9800	
O1—C7	1.2599 (19)	C8—H8B	0.9800	
O2—C15	1.265 (2)	C8—H8C	0.9800	
N1—H1A	0.869 (16)	C9—C10	1.392 (2)	

N1—H1B	0.861 (15)	C9—C14	1.393 (2)
N1—C7	1.318 (2)	C9—C15	1.485 (2)
N2—H2A	0.858 (16)	C10—H10	0.9500
N2—H2B	0.871 (16)	C10—C11	1.391 (2)
N2—C15	1.313 (2)	C11—H11	0.9500
C1-C2	1 398 (2)	C11—C12	1 389 (3)
C1 - C6	1 397 (2)	C12-C13	1 392 (3)
C1 - C7	1.397(2) 1 480(2)	C12 - C16	1.592(3)
C2H2	0.9500	C12H13	0.9500
$C_2 C_3$	1 382 (2)	C_{13} C_{14}	1.389(2)
$C_2 = C_3$	0.0500	C14 $H14$	0.0500
$C_2 = C_4$	0.9500		0.9300
C3-C4	1.392 (2)		0.9800
C4—C5	1.402 (2)		0.9800
C4—C8	1.505 (2)	C16—H16C	0.9800
Cl1—Zn1—Cl2	115.836 (17)	N1—C7—C1	119.92 (14)
O1—Zn1—Cl1	109.06 (4)	C4—C8—H8A	109.5
$\Omega_1 = Zn_1 = Cl_2$	111 08 (4)	C4—C8—H8B	109.5
01 - 7n1 - 02	101.98 (5)	C4 - C8 - H8C	109.5
$O_2 = Zn_1 = O_2$	101.98(3) 108.75(4)	$H_{8A} \subset S = H_{8B}$	109.5
$O_2 = Z_{n1} = C_{11}$	108.73(4) 109.22(4)		109.5
$C_2 = C_1 = C_1 C_2$	109.22(4) 122.25(11)		109.5
C/=OI=ZnI	132.33 (11)	$H\delta B = C\delta = H\delta C$	109.5
C15 - 02 - 2n1	127.89 (10)	C10 - C9 - C14	119.06 (15)
HIA—NI—HIB	117 (2)	C10—C9—C15	119.24 (15)
C7—N1—H1A	119.6 (15)	C14—C9—C15	121.69 (15)
C7—N1—H1B	123.4 (15)	C9—C10—H10	119.9
H2A—N2—H2B	117 (2)	C11—C10—C9	120.14 (16)
C15—N2—H2A	123.2 (16)	C11—C10—H10	119.9
C15—N2—H2B	119.3 (16)	C10-C11-H11	119.4
C2—C1—C7	117.86 (14)	C12—C11—C10	121.30 (16)
C6—C1—C2	119.24 (15)	C12—C11—H11	119.4
C6—C1—C7	122.85 (14)	C11—C12—C13	118.05 (15)
C1—C2—H2	119.9	C11—C12—C16	121.06 (17)
C3—C2—C1	120.19 (15)	C13—C12—C16	120.89 (17)
C3—C2—H2	119.9	С12—С13—Н13	119.4
C2—C3—H3	1193	C14-C13-C12	121 28 (17)
$C_2 - C_3 - C_4$	121 31 (14)	C14-C13-H13	119.4
$C_2 = C_3 = C_4$	110.3	$C_{14} = C_{14} = H_{14}$	119.4
C_{4} C_{5} C_{4} C_{5}	119.5	C_{13} C_{14} C_{9}	119.9 120.16(17)
$C_3 = C_4 = C_3$	110.12(13) 121.10(14)	$C_{13} = C_{14} = C_{3}$	120.10 (17)
C_{5}	121.10(14) 120.77(15)	C13 - C14 - H14	119.9
C_{3}	120.77 (15)	02	121.42 (14)
C4—C5—H5	119.4	02-015-09	119.51 (14)
C6-C5-C4	121.21 (15)	N2-C15-C9	119.07 (15)
С6—С5—Н5	119.4	C12—C16—H16A	109.5
C1—C6—H6	120.0	C12—C16—H16B	109.5
C5—C6—C1	119.92 (14)	C12—C16—H16C	109.5
С5—С6—Н6	120.0	H16A—C16—H16B	109.5
01—C7—N1	121.75 (16)	H16A—C16—H16C	109.5

01—C7—C1	118.33 (14)	H16B—C16—H16C	109.5
Zn1—O1—C7—N1	-2.3 (3)	C7—C1—C6—C5	177.51 (16)
Zn1—O1—C7—C1	176.97 (12)	C8—C4—C5—C6	178.48 (17)
Zn1—O2—C15—N2	7.0 (3)	C9—C10—C11—C12	0.8 (3)
Zn1—O2—C15—C9	-173.68 (11)	C10—C9—C14—C13	0.4 (3)
C1—C2—C3—C4	-0.6 (3)	C10—C9—C15—O2	20.4 (2)
C2-C1-C6-C5	0.0 (3)	C10—C9—C15—N2	-160.32 (18)
C2-C1-C7-O1	-15.5 (2)	C10-C11-C12-C13	-0.2 (3)
C2-C1-C7-N1	163.79 (17)	C10-C11-C12-C16	179.77 (18)
C2—C3—C4—C5	0.4 (3)	C11—C12—C13—C14	-0.3 (3)
C2—C3—C4—C8	-178.10 (16)	C12—C13—C14—C9	0.2 (3)
C3—C4—C5—C6	0.0 (3)	C14—C9—C10—C11	-0.9 (3)
C4—C5—C6—C1	-0.2 (3)	C14—C9—C15—O2	-158.86 (17)
C6—C1—C2—C3	0.4 (3)	C14—C9—C15—N2	20.5 (3)
C6-C1-C7-O1	166.97 (16)	C15—C9—C10—C11	179.83 (16)
C6—C1—C7—N1	-13.8 (3)	C15—C9—C14—C13	179.64 (18)
C7—C1—C2—C3	-177.27 (16)	C16-C12-C13-C14	179.70 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
N1—H1A····O2	0.87 (2)	2.07 (2)	2.8753 (19)	154 (2)
N1—H1B····Cl2 ⁱ	0.86 (2)	2.49 (2)	3.2265 (14)	145 (2)
N2—H2A····Cl1 ⁱⁱ	0.86 (2)	2.50 (2)	3.2956 (16)	155 (2)
N2—H2 <i>B</i> ···Cl2	0.87 (2)	3.05 (2)	3.6341 (17)	126 (2)

Symmetry codes: (i) *x*, –*y*+1/2, *z*–1/2; (ii) *x*–1, *y*, *z*.

Dichloridobis(4-hydroxybenzamide-κO)zinc(II) (5)

Crystal data

$[ZnCl_2(C_7H_7NO_2)_2]$	F(000) = 832
$M_r = 410.54$	$D_{\rm x} = 1.696 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, Cc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.0532 (6) Å	Cell parameters from 5843 reflections
b = 21.3776 (17) Å	$\theta = 2.7 - 27.6^{\circ}$
c = 11.1181 (9) Å	$\mu = 1.88 \text{ mm}^{-1}$
$\beta = 106.477 (2)^{\circ}$	T = 100 K
V = 1607.5 (2) Å ³	Block, clear light colourless
<i>Z</i> = 4	$0.15 \times 0.09 \times 0.07 \text{ mm}$
Data collection	
Bruker APEXII CCD	17255 measured reflections
diffractometer	4168 independent reflections
Radiation source: sealed tube	3809 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.042$
Detector resolution: 8 pixels mm ⁻¹	$\theta_{\rm max} = 28.7^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
ω and φ scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan	$k = -28 \rightarrow 28$
(SADABS; Krause et al., 2015)	$l = -15 \rightarrow 15$
$T_{\min} = 0.673, \ T_{\max} = 0.746$	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.065$ S = 1.05 4168 reflections 227 parameters 8 restraints	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.023P)^2 + 0.9687P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.46$ e Å ⁻³ $\Delta\rho_{min} = -0.29$ e Å ⁻³ Absolute structure: Refined as an inversion twin
Primary atom site location: dual Hydrogen site location: mixed	Absolute structure parameter: 0.024 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. **Refinement**. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.53881 (5)	0.85209 (2)	0.23775 (4)	0.01454 (12)	
Cl1	0.73319 (15)	0.92222 (5)	0.18199 (9)	0.0198 (2)	
Cl2	0.21825 (15)	0.86831 (5)	0.14477 (10)	0.0210 (2)	
01	0.5952 (4)	0.84920 (13)	0.4225 (3)	0.0171 (6)	
O2	0.6040 (5)	0.76660 (13)	0.2016 (3)	0.0202 (6)	
O3	0.7811 (5)	0.80301 (14)	1.0011 (3)	0.0203 (7)	
H3	0.833 (7)	0.828 (2)	1.059 (4)	0.030*	
O4	0.6608 (5)	0.49561 (14)	-0.0004(3)	0.0260 (7)	
H4	0.681 (8)	0.4641 (19)	0.041 (5)	0.039*	
N1	0.6218 (6)	0.95087 (17)	0.4782 (3)	0.0188 (8)	
H1A	0.606 (7)	0.960 (2)	0.401 (3)	0.028*	
H1B	0.644 (7)	0.9847 (17)	0.524 (4)	0.028*	
N2	0.7170 (6)	0.72093 (18)	0.3908 (3)	0.0203 (8)	
H2A	0.711 (8)	0.7563 (16)	0.422 (5)	0.030*	
H2B	0.757 (8)	0.6873 (17)	0.428 (4)	0.030*	
C1	0.6588 (6)	0.87096 (18)	0.6380 (4)	0.0129 (8)	
C2	0.7355 (6)	0.91117 (19)	0.7389 (4)	0.0154 (8)	
H2	0.759638	0.953737	0.723612	0.018*	
C3	0.7767 (6)	0.88968 (19)	0.8609 (4)	0.0153 (8)	
H3A	0.829009	0.917405	0.929006	0.018*	
C4	0.7414 (6)	0.8275 (2)	0.8836 (4)	0.0153 (8)	
C5	0.6645 (6)	0.78625 (19)	0.7834 (4)	0.0157 (8)	
H5	0.641179	0.743710	0.799426	0.019*	
C6	0.6234 (6)	0.80752 (19)	0.6626 (4)	0.0156 (8)	
H6	0.570865	0.779649	0.594761	0.019*	
C7	0.6229 (6)	0.89057 (18)	0.5072 (4)	0.0135 (8)	
C8	0.6692 (6)	0.65874 (18)	0.2021 (4)	0.0129 (8)	
C9	0.7129 (6)	0.60210 (19)	0.2654 (4)	0.0153 (8)	

H9	0.745040	0.601421	0.354333	0.018*	
C10	0.7104 (6)	0.54637 (19)	0.2002 (4)	0.0169 (8)	
H10	0.738364	0.507780	0.244024	0.020*	
C11	0.6661 (6)	0.5479 (2)	0.0692 (4)	0.0165 (8)	
C12	0.6224 (6)	0.6047 (2)	0.0046 (4)	0.0178 (9)	
H12	0.592215	0.605752	-0.084269	0.021*	
C13	0.6238 (6)	0.65941 (19)	0.0717 (4)	0.0154 (8)	
H13	0.593257	0.697989	0.028103	0.018*	
C14	0.6644 (6)	0.71888 (18)	0.2678 (4)	0.0137 (8)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0211 (2)	0.0112 (2)	0.01033 (19)	0.0013 (2)	0.00287 (15)	-0.0002 (2)
Cl1	0.0282 (5)	0.0143 (5)	0.0176 (5)	-0.0022 (4)	0.0078 (4)	0.0003 (4)
C12	0.0213 (5)	0.0154 (5)	0.0225 (5)	0.0004 (4)	0.0003 (4)	0.0000 (4)
01	0.0246 (15)	0.0157 (15)	0.0100 (14)	0.0000 (12)	0.0035 (11)	-0.0003 (11)
O2	0.0332 (17)	0.0102 (15)	0.0194 (15)	0.0024 (12)	0.0109 (13)	0.0015 (11)
O3	0.0308 (17)	0.0190 (16)	0.0090 (14)	-0.0028 (13)	0.0022 (12)	0.0018 (11)
O4	0.0412 (19)	0.0116 (16)	0.0236 (17)	0.0012 (14)	0.0068 (15)	-0.0021 (12)
N1	0.031 (2)	0.0137 (19)	0.0106 (17)	0.0004 (16)	0.0046 (15)	0.0008 (13)
N2	0.032 (2)	0.0143 (19)	0.0137 (18)	0.0036 (17)	0.0043 (16)	-0.0014 (14)
C1	0.014 (2)	0.0111 (18)	0.0125 (18)	0.0009 (15)	0.0028 (15)	-0.0019 (15)
C2	0.018 (2)	0.012 (2)	0.017 (2)	0.0015 (15)	0.0071 (16)	-0.0013 (15)
C3	0.020 (2)	0.014 (2)	0.0111 (19)	0.0004 (16)	0.0025 (15)	-0.0033 (14)
C4	0.014 (2)	0.022 (2)	0.0099 (18)	0.0026 (16)	0.0039 (15)	0.0029 (15)
C5	0.018 (2)	0.013 (2)	0.016 (2)	-0.0004 (16)	0.0062 (15)	0.0012 (15)
C6	0.0155 (19)	0.015 (2)	0.016 (2)	-0.0007 (16)	0.0039 (16)	-0.0026 (16)
C7	0.0138 (19)	0.014 (2)	0.0132 (19)	-0.0013 (15)	0.0052 (15)	-0.0012 (15)
C8	0.0136 (18)	0.0098 (19)	0.0148 (19)	-0.0006 (14)	0.0035 (15)	0.0002 (14)
C9	0.018 (2)	0.012 (2)	0.0148 (19)	-0.0005 (16)	0.0037 (16)	0.0013 (15)
C10	0.021 (2)	0.0115 (19)	0.018 (2)	0.0009 (16)	0.0044 (16)	0.0023 (15)
C11	0.019 (2)	0.014 (2)	0.017 (2)	-0.0016 (16)	0.0038 (16)	-0.0024 (15)
C12	0.020 (2)	0.021 (2)	0.0118 (19)	-0.0001 (17)	0.0022 (16)	-0.0021 (16)
C13	0.0163 (19)	0.013 (2)	0.016 (2)	-0.0018 (15)	0.0033 (15)	0.0020 (15)
C14	0.0148 (18)	0.0110 (19)	0.016 (2)	-0.0023 (15)	0.0061 (15)	0.0014 (15)

Geometric parameters (Å, °)

Zn1—Cl1	2.2347 (11)	C2—H2	0.9500
Zn1—Cl2	2.2305 (11)	C2—C3	1.383 (6)
Zn1—O1	1.980 (3)	С3—НЗА	0.9500
Zn1—O2	1.954 (3)	C3—C4	1.388 (6)
O1—C7	1.266 (5)	C4—C5	1.404 (5)
O2-C14	1.259 (5)	С5—Н5	0.9500
O3—H3	0.84 (3)	C5—C6	1.369 (6)
O3—C4	1.361 (5)	С6—Н6	0.9500
O4—H4	0.80 (3)	С8—С9	1.390 (5)

O4—C11	1.353 (5)	C8—C13	1.394 (6)
N1—H1A	0.86 (3)	C8—C14	1.483 (5)
N1—H1B	0.87 (3)	С9—Н9	0.9500
N1—C7	1.328 (5)	C9—C10	1.392 (6)
N2—H2A	0.84 (3)	C10—H10	0.9500
N2—H2B	0.84 (3)	C10—C11	1.400 (6)
N2—C14	1.313 (5)	C11—C12	1.401 (6)
C1-C2	1.395 (5)	C12—H12	0.9500
C1 - C6	1.419 (5)	C12—C13	1.386 (6)
C1-C7	1 465 (5)	C13—H13	0.9500
	1.105 (5)		0.9500
Cl2—Zn1—Cl1	112.84 (4)	C6—C5—C4	119.8 (4)
O1—Zn1—Cl1	110.51 (9)	С6—С5—Н5	120.1
O1—Zn1—Cl2	111.39 (9)	C1—C6—H6	119.8
O2—Zn1—Cl1	111.83 (10)	C5—C6—C1	120.4 (4)
O2—Zn1—Cl2	108.48 (10)	С5—С6—Н6	119.8
O2— $Zn1$ — $O1$	101.21 (12)	01—C7—N1	120.6 (4)
C7 - O1 - Zn1	133.9 (3)	01	119.0 (4)
C14-O2-Zn1	134.3 (3)	N1	120.4 (4)
C4-03-H3	115 (4)	C9-C8-C13	119.2 (4)
C11-04-H4	113 (4)	C9 - C8 - C14	122.6 (4)
H1A - N1 - H1B	113(1)	C_{13} C_{8} C_{14}	1122.0(1) 118 2 (4)
C7—N1—H1A	117(3)	C8 - C9 - H9	119.5
C7—N1—H1B	132(3)	C8 - C9 - C10	120.9 (4)
$H_2 \Delta N_2 H_2 B$	132(5) 128(5)	C_{10} C_{9} H_{9}	110.5 (4)
C14 N2 H2A	126(5) 116(4)	C9-C10-H10	119.5
C14 N2 H2R	116(4)	C_{0} C_{10} C_{11}	120.4
$C_{14} = N_{2} = M_{2} = M_{2}$	110(4) 1180(4)	$C_{11} = C_{10} = H_{10}$	119.2 (4)
$C_2 = C_1 = C_0$	110.9(4) 122.7(4)	O_{1} C_{11} C_{10}	120.4 122.5(4)
$C_{2} = C_{1} = C_{7}$	122.7(4) 118.3(3)	04 - C11 - C10	122.3(4) 117.2(4)
$C_1 = C_1 = C_1^2$	110.7	$C_{10} = C_{11} = C_{12}$	117.2(4) 120.3(4)
$C_1 - C_2 - H_2$	119.7	C10 - C12 - C12	120.3 (4)
$C_3 = C_2 = C_1$	120.0 (4)	C11 - C12 - H12	120.4
$C_2 = C_2 = H_2$	119.7	C13 - C12 - C11	119.5 (4)
$C_2 = C_3 = C_4$	120.1	C13 - C12 - H12	120.4
$C_2 = C_3 = C_4$	119.9 (4)	$C_{0} = C_{1} = C_{1}$	119.5
C4 = C3 = H3A	120.1	C_{12} C_{13} C_{13} C_{12} C_{13}	121.1 (4)
03 - C4 - C5	125.0(4)	C12 - C13 - H13	119.5
03-04-05	110.0 (4)	$O_2 = C_1 4 = N_2$	122.0 (4)
$C_3 - C_4 - C_3$	120.4 (4)	02 - C14 - C8	117.8 (3)
С4—С5—Н5	120.1	N2	120.2 (4)
7n1—01—07—N1	-1.8(6)	C6-C1-C7-N1	168 7 (4)
2n1 - 01 - 07 - 01	179.0(3)	C7-C1-C2-C3	-176.6(4)
$Z_{n1} = 0^{2} = 0^{14} = 0^{2}$	-70(6)	C7-C1-C6-C5	176.6 (4)
7n1-02-014-08	171 2 (3)	C_{8} C_{9} C_{10} C_{11}	10(6)
03-C4-C5-C6	-1792(4)	C9-C8-C13-C12	-0.2(6)
04-C11-C12-C13	179 3 (4)	$C_{2} = C_{12} = C_$	-1730(4)
C1 - C2 - C3 - C4	-0.1(6)	$C_{2} = C_{1} = C_{2}$	5 2 (6)
01 02 03 - 07	0.1 (0)	0 0 0 0 - 1 2	5.4 (0)

C2-C1-C6-C5	-0.2 (6)	C9—C10—C11—O4	-180.0 (4)
C2—C1—C7—O1	164.6 (4)	C9—C10—C11—C12	-0.8 (6)
C2-C1-C7-N1	-14.6 (6)	C10-C11-C12-C13	0.1 (6)
C2—C3—C4—O3	179.0 (4)	C11—C12—C13—C8	0.5 (6)
C2—C3—C4—C5	0.2 (6)	C13—C8—C9—C10	-0.5 (6)
C3—C4—C5—C6	-0.3 (6)	C13—C8—C14—O2	5.6 (6)
C4—C5—C6—C1	0.3 (6)	C13—C8—C14—N2	-176.1 (4)
C6—C1—C2—C3	0.1 (6)	C14—C8—C9—C10	178.1 (4)
C6—C1—C7—O1	-12.0 (6)	C14—C8—C13—C12	-179.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	D—H…A
03—H3…Cl1 ⁱ	0.84 (3)	2.64 (4)	3.322 (3)	140 (5)
O3—H3···Cl2 ⁱⁱ	0.84 (3)	2.75 (4)	3.349 (3)	130 (4)
O4—H4····Cl2 ⁱⁱⁱ	0.80 (3)	2.33 (3)	3.131 (3)	175 (6)
N1—H1A···Cl1	0.86 (3)	2.93 (4)	3.648 (4)	142 (4)
N1—H1B····Cl1 ^{iv}	0.87 (3)	2.61 (3)	3.479 (4)	173 (4)
N2—H2A…O1	0.84 (3)	2.15 (3)	2.924 (5)	154 (5)
N2—H2 B ····Cl2 ^v	0.84 (3)	2.77 (4)	3.405 (4)	135 (5)

Symmetry codes: (i) *x*, *y*, *z*+1; (ii) *x*+1, *y*, *z*+1; (iii) *x*+1/2, *y*-1/2, *z*; (iv) *x*, -*y*+2, *z*+1/2; (v) *x*+1/2, -*y*+3/2, *z*+1/2.