Hexa- μ -acetato-chlorido(μ -N,2-dioxodobenzene-1carboximidato)- μ_3 -oxido-tetrairon(III)-water (1/1) and hexa- μ -acetato-(μ -N,2-dioxodobenzene-1carboximidato)fluorido- μ_3 -oxido-tripyridinetetrairon(III)-pyridine-water (1/1/0.24)

Cassandra L. Ward,^a Matthew J. Allen^b and Jacob C. Lutter^{b*}

^aLumingen Instrument Center, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA, and ^bDepartment of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA. *Correspondence e-mail: jclutter@umich.edu

The title compounds, $[Fe_4(C_2H_3O_2)_6(C_7H_4O_3)FO(C_5H_5N)_3]\cdot C_5H_5N\cdot 0.24H_2O$ (1-F) and $[Fe_4(C_2H_3O_2)_6(C_7H_4O_3)ClO(C_5H_5N)_3]$ ·H₂O (1-Cl) were synthesized using a self-assembly reaction in methanol and pyridine with stoichiometric addition of salicylhydroxamic acid (H₃shi), acetic acid (HOAc), and the appropriate ferric halide salt. The compounds crystallize as solvates, where 1-F has one pyridine molecule that is disordered about a twofold axis and one water molecule with an occupancy of 0.24 (2); and 1-Cl has one water molecule that is disordered over two sites with occupancies of 0.71(1) and 0.29(1). The space groups for each analog differ as 1-F crystallizes in Fdd2 while 1-Cl crystallizes in $P2_1$. The difference in packing is due to changes in the intermolecular interactions involving the different halides. The two molecules are mostly isostructural, differing only by the torsion of the pyrine ligands and slight orientation changes in the acetate ligands. All of the iron(III) ions are in sixcoordinate octahedral ligand field geometries but each one exhibits a unique coordination environment with various numbers of O (four to six) and N (nought to two) atom donors. Bond-valence sums confirm each iron is trivalent. The hydroximate ligand is bound to three iron(III) ions using a fused chelate motif similar to those in metallacrown compounds.

1. Chemical context

Examples of hydroximate binding as fused chelate rings has been dominated by a class of coordination compounds known as metallacrowns. First introduced by Pecoraro and Lah in 1989 (Pecoraro, 1989; Lah & Pecoraro, 1989), these compounds have since been tuned to explore many applications including host-guest binding, molecular magnetism, and luminescence (Mezei et al., 2007; Chow et al., 2015; Lutter et al., 2018). In particular, iron(III) 9-metallacrown-3 compounds have demonstrated interesting magnetocoolent properties (Chow et al., 2016). Here, we describe two tetra-iron(III) compounds that have a fused chelate motif similar to metallacrowns but that are not examples of metallamacrocycles (Figs. 1 and 2). Instead, this fused chelate motif is complemented by six acetate ligands, a μ_3 -oxo ligand, and three pyridine ligands to complete the octahedral ligand fields of the four iron ions. These compounds were a serendipitous discovery from metallacrown synthesis that can be formed with their own rational self-assembly reaction.

Received 4 June 2021 Accepted 5 September 2021

Edited by M. Zeller, Purdue University, USA

Keywords: crystal structure; iron(III); halide; hydroximate; acetate; μ_3 -oxo.

CCDC references: 2085824; 2085825

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

2. Structural commentary

Each of the iron(III) centers in **1-F** and **1-Cl** are in sixcoordinate octahedral ligand field geometries and bondvalence sums confirm that each iron ion is trivalent (Zheng *et al.*, 2017). More details are available in Tables 1 and 2. Fe1 is bound to the μ_2 -oxime oxygen and carbonyl oxygen of shi³⁻ to form a pentagonal chelate ring, an oxygen from an acetate ligand, the nitrogen from two pyridine ligands, and the respective halide for each compound. Fe2 is bound to the imino nitrogen and phenolic oxygen of shi³⁻ to form a hexagonal chelate ring, the μ_3 -oxo, and an oxygen from three acetate ligands. Fe3 is bound to the μ_3 -oxo, an oxygen from four acetate ligands, and the nitrogen of a pyridine ligand. Fe4

Figure 1

ORTEP representations from crystallographic data for **1-F**. Orange = iron, yellow = fluorine, light blue = nitrogen, red = oxygen, gray = carbon. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

ORTEP representation from crystallographic data for **1-Cl**. Orange = iron, green = chlorine, light blue = nitrogen, red = oxygen, gray = carbon. Displacement ellipsoids are drawn at the 50% probability level.

is bound to the μ_3 -oxo, the μ_2 -oxime oxygen of shi³⁻, and an oxygen from four acetate ligands. Depictions of these coordination environments are shown in Fig. 3. Generally, for both compounds, the Fe-O_(oxo) bonds are shorter than the

Depiction of iron(III) ion geometries from crystallographic data for (*a*) **1**-**F** and (*b*) **1**-**CI**. Orange = iron, green = chlorine, yellow = fluorine, light blue = nitrogen, red = oxygen, gray = carbon. Chelate rings from shi³⁻ are shown when appropriate.

Table 1	
Geometric information	(Å) for 1-F .

Metal ID	Coordination number	Shape	Average bond length	Bond-valence sum ^a	$Fe-O_{(oxo)}bond \ length$	Fe-N _(pyridine) bond length
Fe1	6	Octahedral	2.103	2.953	_	2.164, 2.194
Fe2	6	Octahedral	2.011	3.191	1.940	_
Fe3	6	Octahedral	2.026	3.116	1.866	2.207
Fe4	6	Octahedral	2.007	3.158	1.886	-

Note: (a) Zheng et al. (2017).

Table 2

Geometric information (Å) for 1-Cl.

Metal ID	Coordination number	Shape	Average bond length	Bond-valence sum ^a	$Fe-O_{(oxo)}$ bond length	Fe-N _(pyridine) bond length
Fe1	6	Octahedral	2.026	3.032	_	2.133, 2.171
Fe2	6	Octahedral	2.012	3.199	1.925	_
Fe3	6	Octahedral	2.020	3.149	1.871	2.169
Fe4	6	Octahedral	2.012	3.118	1.890	-

Note: (a) Zheng et al. (2017).

average, and the $Fe-N_{(pyridine)}$ bonds are longer than the average (Tables 1 and 2). Geometric parameters, including

bond lengths and angles for the coordination environment for the iron atoms, are given in Tables 3 and 4. An overlay of both

Table 3				Table 4				
Selected geometric	parameters (A,	°) for 1-F.		Selected geometrie	geometric parameters (A, °) for 1-Cl.			
Fe4-O16	1.890 (5)	Fe1-F1	1.843 (4)	Cl1-Fe1	2.2963 (14)	Fe4-015	2.039 (3)	
Fe4-O15	2.016 (5)	Fe1-O2	1.978 (5)	Fe2-O3	1.918 (3)	Fe1-O2	1.957 (3)	
Fe4-O13	2.021 (4)	Fe1-O14	1.987 (4)	Fe2-O16	1.940 (3)	Fe1-O14	1.982 (3)	
Fe4-O10	2.023 (4)	Fe1-O1	2.043 (5)	Fe2-O6	2.015 (4)	Fe1-O1	2.025 (3)	
Fe4-O8	2.034 (4)	Fe1-N3	2.133 (5)	Fe2-O12	2.050 (3)	Fe1-N3	2.165 (5)	
Fe4-O1	2.056 (4)	Fe1-N2	2.171 (5)	Fe2-O4	2.070 (3)	Fe1-N2	2.194 (4)	
Fe3-O16	1.872 (4)	Fe2-O3	1.902 (5)	Fe2-N1	2.075 (4)	Fe3-O16	1.866 (3)	
Fe3-O9	1.997 (5)	Fe2-O16	1.925 (4)	Fe4-O16	1.886 (3)	Fe3-O5	2.012 (3)	
Fe3-O5	2.020 (5)	Fe2-O6	2.021 (5)	Fe4-O13	2.011 (3)	Fe3-O11	2.016 (3)	
Fe3-O11	2.024 (5)	Fe2-O12	2.057 (5)	Fe4-O1	2.033 (3)	Fe3-O9	2.023 (3)	
Fe3-O7	2.037 (5)	Fe2-N1	2.083 (5)	Fe4-O10	2.035 (3)	Fe3-O7	2.030 (3)	
Fe3-N4	2.170 (5)	Fe2-O4	2.084 (5)	Fe4-O8	2.039 (3)	Fe3-N4	2.206 (4)	
O16-Fe4-O15	178.35 (19)	F1-Fe1-O2	93.63 (18)	O3-Fe2-O16	172.17 (14)	O2-Fe1-O14	167.24 (14)	
O16-Fe4-O13	95.35 (18)	F1-Fe1-O14	97.73 (18)	O3-Fe2-O6	90.17 (14)	O2-Fe1-O1	77.46 (12)	
O15-Fe4-O13	84.96 (18)	O2-Fe1-O14	168.62 (18)	O16-Fe2-O6	97.63 (13)	O14-Fe1-O1	90.32 (13)	
O16-Fe4-O10	95.84 (18)	F1-Fe1-O1	170.62 (18)	O3-Fe2-O12	90.00 (14)	O2-Fe1-N3	94.22 (15)	
O15-Fe4-O10	83.89 (18)	O2-Fe1-O1	77.18 (18)	O16-Fe2-O12	91.14 (14)	O14-Fe1-N3	88.66 (16)	
O13-Fe4-O10	168.72 (19)	O14-Fe1-O1	91.44 (17)	O6-Fe2-O12	86.91 (14)	O1-Fe1-N3	86.72 (15)	
O16-Fe4-O8	94.97 (18)	F1-Fe1-N3	89.35 (19)	O3-Fe2-O4	88.54 (14)	O2-Fe1-N2	89.67 (15)	
O15-Fe4-O8	86.66 (18)	O2-Fe1-N3	93.10 (19)	O16-Fe2-O4	90.71 (13)	O14-Fe1-N2	86.85 (16)	
O13-Fe4-O8	87.52 (18)	O14-Fe1-N3	87.6 (2)	O6-Fe2-O4	90.10 (14)	O1-Fe1-N2	90.99 (15)	
O10-Fe4-O8	90.07 (18)	O1-Fe1-N3	93.0 (2)	O12-Fe2-O4	176.67 (15)	N3-Fe1-N2	174.96 (17)	
O16-Fe4-O1	89.18 (18)	F1-Fe1-N2	87.15 (18)	O3-Fe2-N1	85.84 (14)	O2-Fe1-Cl1	93.87 (10)	
O15-Fe4-O1	89.19 (18)	O2-Fe1-N2	88.72 (19)	O16-Fe2-N1	86.39 (14)	O14-Fe1-Cl1	98.56 (11)	
O13-Fe4-O1	91.19 (18)	O14-Fe1-N2	91.2 (2)	O6-Fe2-N1	175.53 (15)	O1-Fe1-Cl1	170.45 (10)	
O10-Fe4-O1	90.42 (18)	O1-Fe1-N2	90.74 (19)	O12-Fe2-N1	91.08 (15)	N3-Fe1-Cl1	89.97 (12)	
O8-Fe4-O1	175.74 (18)	N3-Fe1-N2	176.2 (2)	O4-Fe2-N1	91.80 (15)	N2-Fe1-Cl1	92.98 (12)	
O16-Fe3-O9	94.78 (18)	O3-Fe2-O16	171.98 (19)	O16-Fe4-O13	95.04 (14)	O16-Fe3-O5	93.99 (14)	
O16-Fe3-O5	96.68 (18)	O3-Fe2-O6	92.3 (2)	O16-Fe4-O1	88.71 (13)	O16-Fe3-O11	98.53 (13)	
O9-Fe3-O5	168.52 (18)	O16-Fe2-O6	95.12 (19)	O13-Fe4-O1	91.05 (14)	O5-Fe3-O11	89.69 (14)	
O16-Fe3-O11	95.43 (18)	O3-Fe2-O12	91.36 (19)	O16-Fe4-O10	96.37 (13)	O16-Fe3-O9	93.46 (14)	
O9-Fe3-O11	91.8 (2)	O16-Fe2-O12	92.38 (18)	O13-Fe4-O10	168.28 (14)	O5-Fe3-O9	172.54 (14)	
O5-Fe3-O11	87.8 (2)	O6-Fe2-O12	85.01 (19)	O1-Fe4-O10	91.88 (13)	O11-Fe3-O9	88.91 (14)	
O16-Fe3-O7	96.08 (19)	O3-Fe2-N1	86.4 (2)	O16-Fe4-O8	93.00 (13)	O16-Fe3-O7	97.10 (14)	
O9-Fe3-O7	87.2 (2)	O16-Fe2-N1	86.6 (2)	O13-Fe4-O8	87.50 (14)	O5-Fe3-O7	89.76 (14)	
O5-Fe3-O7	90.9 (2)	O6-Fe2-N1	174.8 (2)	O1-Fe4-O8	177.85 (14)	O11-Fe3-O7	164.36 (14)	
O11-Fe3-O7	168.49 (18)	O12-Fe2-N1	90.0 (2)	O10-Fe4-O8	89.23 (14)	O9-Fe3-O7	89.61 (14)	
O16-Fe3-N4	178.5 (2)	O3-Fe2-O4	85.9 (2)	O16-Fe4-O15	176.24 (14)	O16-Fe3-N4	178.69 (15)	
O9-Fe3-N4	84.23 (19)	O16-Fe2-O4	90.72 (19)	O13-Fe4-O15	86.51 (14)	O5-Fe3-N4	84.80 (15)	
O5-Fe3-N4	84.33 (18)	O6-Fe2-O4	92.3 (2)	O1-Fe4-O15	87.84 (14)	O11-Fe3-N4	81.96 (14)	
O11-Fe3-N4	83.47 (19)	O12-Fe2-O4	176.1 (2)	O10-Fe4-O15	82.26 (13)	O9-Fe3-N4	87.76 (15)	
O7-Fe3-N4	85.02 (19)	N1-Fe2-O4	92.6 (2)	O8-Fe4-O15	90.48 (14)	O7-Fe3-N4	82.43 (15)	

Figure 4

Overlay of 1-F (blue) and 1-Cl (green) shows near isomorphology between the two compounds.

structures shows some variation in pyridine and acetate ligand binding between **1-F** and **1-Cl** (Fig. 4). The acetates are close to uniform with only minor differences in binding orientation. The pyridine differ noticeably in torsion angle. The torsion angles of the two pyridines on Fe1 in **1-F** are 43.4 (5)° for C24–N2–Fe1–F1 and 149.3 (5)° for C25–N3–Fe1–F1, while the torsion angles of the two pyridines on Fe1 in **1-Cl** are 26.7 (5)° for C24–N2–Fe1–Cl1 and 104.5 (6)° for C25– N3–Fe1–Cl1. The torsion angle for the pyridine in **1-F** on Fe3 is 139.8 (5)° for C30–N4–Fe3–O5 while the torsion angle for the pyridine in **1-Cl** on Fe3 is 33.5 (4)° for C30– N4–Fe3–O5. These differences are likely due to the change in crystal packing between the two structures.

3. Supramolecular features

Both compounds crystallize as solvates where 1-F has one pyridine (N5 C35-39) and a 0.24 (2) occupancy water molecule (O17), and 1-Cl has one disordered water molecule (O17 and O17A). The pyridine in 1-F is disordered on a special position (twofold axis). This pyridine interacts with the main moiety via a hydrogen bond from an acetate C11-H11A bond to N5 on the pyridine. The pyridine also forms a hydrogen bond using using C39-H39 to donate to O6 from an acetate. The solvent water in 1-F has two hydrogen bonds, where the O17-H17E bond donates to O13 on an acetate, and the C17-H17A bond on an acetate donates to O17. The solvent water in 1-Cl is disordered over two sites with occupancies of 0.71 (1) and 0.29 (1) for the major and minor contributors. The major water site has three hydrogen bonds including: (i) the O17-H17D bond donating to Cl1, (ii) the O17-H17E bond donating to O3 in an acetate, and (iii) the C26-H26 bond of a pyridine donating to O17. The minor contributor has two hydrogen bonds, one where the C26-H26 bond in a pyridine donates to O17A and where the C6-H6 bond on shi3donates to O17A. Details of all hydrogen bonds, including distances and angles, are summarized in Tables 5 and 6.

Table 5					
Hydrogen-bond	geometry	(Å,	°)	for	1-F.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C11-H11A\cdots N5^{i}$	0.98	2.37	3.23 (3)	146
$C13-H13A\cdots F1^{ii}$	0.98	2.54	3.389 (7)	145
$C15-H15B\cdots F1^{iii}$	0.98	2.49	3.454 (8)	168
$C17 - H17A \cdots O17^{iv}$	0.98	2.60	3.42 (3)	142
$C19-H19B\cdots F1^{iii}$	0.98	2.60	3.520 (9)	156
$C19-H19C\cdots O11^{v}$	0.98	2.47	3.446 (8)	172
C20-H20···O13	0.95	2.64	3.269 (8)	124
C20-H20···O15	0.95	2.49	3.365 (8)	153
$C23-H23\cdots O5^{i}$	0.95	2.55	3.473 (9)	164
C25-H25···O1	0.95	2.60	3.149 (8)	117
$C26-H26\cdots O6^{vi}$	0.95	2.64	3.431 (8)	141
C29-H29···F1	0.95	2.46	2.930 (8)	110
$C31 - H31 \cdots O2^{ii}$	0.95	2.48	3.282 (8)	143
C39−H39···O6 ^{vii}	0.95	2.54	3.27 (2)	134
$O17-H17E\cdots O13^{viii}$	0.84	2.15	2.97 (3)	164

Symmetry codes: (i) $x + \frac{1}{4}, -y + \frac{3}{4}, z + \frac{3}{4}$; (ii) x, y, z - 1; (iii) $-x + 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (iv) $-x + \frac{3}{4}, y + \frac{1}{4}, z + \frac{3}{4}$; (v) $-x + 1, -y + \frac{1}{2}, z + \frac{1}{2}$; (vi) $x - \frac{1}{4}, -y + \frac{3}{4}, z + \frac{1}{4}$; (vii) $x - \frac{1}{4}, -y + \frac{3}{4}, z - \frac{3}{4}$; (viii) $-x + \frac{3}{4}, y - \frac{1}{4}, z - \frac{3}{4}$.

Table 6Hydrogen-bond geometry (Å, °) for 1-Cl.

, , ,				
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C6-H6\cdots O17A^{i}$	0.95	2.64	3.486 (19)	149
$C15-H15C\cdots O15^{ii}$	0.98	2.62	3.581 (7)	166
$C19-H19A\cdots O11^{iii}$	0.98	2.61	3.424 (7)	141
C20-H20···N1	0.95	2.65	3.429 (7)	140
C20−H20···O1	0.95	2.53	3.100 (6)	118
$C21 - H21 \cdots O4^{iv}$	0.95	2.56	3.403 (6)	148
$C23-H23\cdots Cl1^{v}$	0.95	2.97	3.697 (6)	135
$C24 - H24 \cdots Cl1$	0.95	2.75	3.301 (6)	118
C25-H25···O2	0.95	2.55	3.126 (7)	119
$C26-H26\cdots O17^{ii}$	0.95	2.20	3.014 (12)	144
$C26-H26\cdots O17A^{ii}$	0.95	2.60	3.17 (3)	118
C29-H29···O14	0.95	2.48	3.007 (7)	115
$O17 - H17D \cdot \cdot \cdot Cl1^{vi}$	0.85 (3)	2.80(3)	3.647 (9)	174 (15)
$O17 - H17E \cdot \cdot \cdot O3^{vii}$	0.84 (3)	2.03 (5)	2.830 (8)	159 (12)

Symmetry codes: (i) x, y, z + 1; (ii) $-x, y + \frac{1}{2}, -z + 1$; (iii) $-x, y - \frac{1}{2}, -z + 1$; (iv) $-x, y - \frac{1}{2}, -z + 2$; (v) $-x - 1, y - \frac{1}{2}, -z + 1$; (vi) x + 1, y, z; (vii) x, y, z - 1.

The main moieties also have intermolecular hydrogenbonding interactions. In 1-F, the C13-H13A bond on an acetate donates to F1, the C15-H15B bond on an acetate donates to F1, the C19-H19B bond on an acetate donates to F1, the C19-H19C bond of an acetate donates to O11 of an acetate, the C23-H23 bond on a pyridine donates to O5 of an acetate, the C26-H26 bond of a pyridine donates to O6 of an acetate, and the C31-H31 bond of a pyridine donates to O2 on shi³⁻. In 1-Cl, the C15-H15C bond on an acetate donates to O15 from an acetate, the C19-H19A bond on an acetate donates to O11 from an acetate, the C21-H21 bond on a pyridine donates to O4 from an acetate, and the C23-H23 bond from a pyridine donates to Cl1. In addition to hydrogen bonding, 1-F has $\pi - \pi$ stacking between the pyridine containing N2 and C20-C24 and the pyridine containing N4 and C30–C34. There is no π - π stacking observed in **1-Cl**.

Despite the fact that both compounds were synthesized using nearly identical procedures, each compound crystallizes in a unique space group where **1-F** is in Fdd2 and **1-Cl** is in $P2_1$. The reason for the unique packing is likely due to the different

Representation of the crystal packing in **1-F** from crystallographic data. Hydrogen-bond pairs involving the halide are shown as spheres and the Fe-F bond is bolded for emphasis. Pyridines that have π - π stacking are bolded. Orange = iron, yellow = fluorine, light blue = nitrogen, red = oxygen, gray = carbon.

chemistry of fluorine compared to chlorine. Fluorine has a smaller radius and is more electronegative than chlorine, and these properties have an effect on the overall packing of the compounds in their lattice. Essentially, the molecules of **1-F**

Figure 6

Representation of the crystal packing in **1-Cl** from crystallographic data. Hydrogen-bond pairs involving the halide are shown as spheres and the Fe–Cl bond is in bold for emphasis. Orange = iron, green = chlorine, light blue = nitrogen, red = oxygen, gray = carbon.

pack tighter than those of 1-Cl. The main moiety intermolecular hydrogen bonds discussed above demonstrate this difference. For 1-F, there are seven intermolecular hydrogen bonds where three of the hydrogen bonds involve fluorine (Fig. 5). However, in 1-Cl there are four intermolecular hydrogen bonds and only one of these hydrogen bonds involves the chlorine (Fig. 6). In addition, the difference in radius and electronegativity results in different lengths for hydrogen-bonding interactions, where 1-F has proton-tofluorine distances of 2.49, 2.54, and 2.60 Å while 1-Cl has a proton-to-chlorine distance of 2.97 Å for their respective intermolecular hydrogen bonds. Since the molecules of 1-F pack more tightly than those of 1-Cl, their orientation is fixed such that all of the fluorine atoms of adjacent molecules point towards the same direction of the unit cell and is enforced by π - π stacking of pyridine ligands (Fig. 5). In **1-Cl**, adjacent layers of molecules point their chlorine atoms in opposite directions as there is less interaction between the molecules, likely due to pair-opposing molecular dipoles (Fig. 6). This observation also suggests that 1-F may have a crystallographic net dipole since all of the fluorines point in the same general direction.

4. Database survey

Two other compounds in the Cambridge Structural Database (Groom *et al.*, 2016) feature the same hydroximate coordination motif to three iron(III) ions shown in **1-F** and **1-Cl**, where both are iron(III) 9-metallacrown-3 compounds (Chow *et al.*, 2016): HADWOB and HADWUH. HADWOB is a 9-metallacrown-3 with three benzoate ligands that bridge the ring and central iron(III) ions and three methanol molecules that are bound to ring iron(III) ions. HADWUH is a set of two 9-metallacrown-3 compounds with three isophthalate ligands that bridge the ring and central iron(III) ions are structure. These structures are adaptations of another iron(III) 9-metallacrown-3 reported in 1989 (Lah *et al.*, 1989). The other major motif of a μ_3 -oxo combined with μ -acetato ligands on iron is not found in the Cambridge Structural Database.

5. Synthesis and crystallization

Fe₄(shi)O(OAc)₆(pyridine)₃F (**1-F**): To a flask was added salicylhydroxamic acid (0.0766 g, 0.500 mmol, 1 equiv) and iron(III) fluoride trihydrate (0.3338 g, 2.000 mmol, 4 equiv). These solids were dissolved in a mixture of methanol (10 mL) and pyridine (2 mL), resulting in a dark-purple solution. Glacial acetic acid (0.200 mL, 3.50 mmol, 7 equiv) was added immediately, and the resulting solution was stirred for 1 h. The reaction mixture was gravity filtered using Whatman #2 filter paper, and the filtrate was allowed to evaporate slowly. After about one week, purple plates were obtained and diffracted. These plates were collected using vacuum filtration with #2 Whatman filter paper and a water aspirator and allowed to dry for 1 h before stopping the vacuum. Synthetic yield = 27%

research communications

Table 7Experimental details.

	1-F	1-Cl
Crystal data		
Chemical formula	$[Fe_4(C_2H_3O_2)_6(C_7H_4O_3)FO(C_5H_5N)_5]$ C ₅ H ₅ N·0.24H ₂ O	$[Fe_4(C_2H_3O_2)_6(C_7H_4O_3)CIO(C_5H_5N)_3]\cdot H_2O$
$M_{\rm r}$	2087.76	1034.54
Crystal system, space group	Orthorhombic, Fdd2	Monoclinic, $P2_1$
Temperature (K)	100	100
a, b, c (Å)	31.676 (2), 44.806 (3), 12.6056 (8)	11.8460 (6), 15.5041 (7), 12.6425 (6)
α, β, γ (°)	90, 90, 90	90, 115.449 (1), 90
$V(\dot{A}^3)$	17891 (2)	2096.64 (17)
Z	8	2
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	1.35	1.50
Crystal size (mm)	$0.33 \times 0.30 \times 0.14$	$0.28 \times 0.28 \times 0.14$
Data collection		
Diffractometer	Bruker APEXII CCD	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.670, 0.745	0.688, 0.745
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	102006, 8265, 7012	52843, 8621, 7877
R _{int}	0.098	0.048
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.604	0.627
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.090, 1.05	0.033, 0.071, 1.06
No. of reflections	8265	8621
No. of parameters	604	570
No. of restraints	58	7
H-atom treatment	H-atom parameters constrained	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.47, -0.38	0.43, -0.34
Absolute structure	Via refinement	Via refinement
Absolute structure parameter	0.05 (2)	0.014 (16)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2001), SHELXT2018/3 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), and SHELXTL (Sheldrick, 2008).

based on salicylhydroxamic acid. Elemental analysis of $Fe_4C_{34}H_{37}N_4O_{16}F$ (MM = 1000.06 g mol⁻¹) observed (calculated): %C = 40.64 (40.83); %H = 3.83 (3.73); %N = 5.60 (5.95). Melting point = 530 K (decomposed). Selected FTIR peaks (ATR) in cm⁻¹: 1585, 1560, 1535, 1496, 1408, 1329, 1263, 1221, 1149, 1097, 1070, 1041, 1015, 922, 862, 762, 696, 651, 636, 600, 544.

Fe₄(shi)O(OAc)₆(pyridine)₃Cl (**1-Cl**): To a flask was added salicylhydroxamic acid (0.0383 g, 0.250 mmol, 1 equiv) and iron(III) chloride hexahydrate (0.2703 g, 1.000 mmol, 4 equiv). These solids were dissolved in a mixture of methanol (10 mL) and pyridine (2 mL), resulting in a dark-purple solution. Glacial acetic acid (0.100 mL, 1.75 mmol, 7 equiv) was added immediately, and the resulting solution was stirred for 1 h. The reaction mixture was gravity filtered using Whatman #2 filter paper, and the filtrate was allowed to evaporate slowly. After about one week, red-brown plates were observed and diffracted. These plates were collected using vacuum filtration with Whatman #2 filter paper and a water aspirator and allowed to dry for one h before stopping the vacuum. Synthetic yield = 59% based on salicylhydroxamic acid. Elemental analysis of Fe₄C₃₄H₃₇N₄O₁₆Cl (MM = 1016.51 g mol⁻¹) observed (calculated): %C = 40.22 (40.17); %H = 3.74 (3.67); %N = 5.77 (5.51). Melting point = 511 K (decomposed). Selected FTIR peaks (ATR) in cm⁻¹: 1589, 1562, 1533, 1485, 1415, 1329, 1267, 1219, 1148, 1101, 1071, 1042, 1013, 930, 864, 766, 692, 633, 610, 565, 430.

Elemental analysis was performed by Midwest Microlabs.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7. The absolute structure for both compounds were determined by refinement of the Flack parameter. For 1-F, the pyridine containing N5 and C35–C39 is disordered around a special position (twofold axis) that was refined using a PART -1 command. The displacement parameters of these atoms were restrained with an esd of 0.01 using the ISOR command in SHELXL to limit excessive prolate character in displacement ellipsoids due to the disorder on a special position. A partial-occupancy water molecule containing O17 was refined to have an occupancy of 0.24 (2). Hydrogen atoms on O17 were located on the difference map and distances were restrained to 0.84 (2) Å for O-H bonds in water using a DFIX command in SHELXL. In addition, the distance between H-H atoms in the water molecule was restrained to 1.35 (2) Å using a DANG command in SHELXL. These restraints maintain reasonable geometry for a water molecule. Final refinement required an additional geometric constraint using the AFIX 3 command in SHELXL

to stabilize the positions of these 0.24 (2) occupancy hydrogen atoms. For **1-Cl**, one disordered water molecule containing O17 was refined using a PART command and refined occupancies of 0.71 (1) and 0.29 (1). Hydrogen atoms for the water were found on the difference map and O–H bonds were restrained to 0.84 (2) Å using a DFIX command in *SHELXL*. The distance between H–H atoms in the water molecule were restrained to 1.35 (2) Å using a DANG command in *SHELXL*. These restraints maintain reasonable geometry of the water molecules.

Acknowledgements

The authors have no conflict of interest to declare. The authors acknowledge Professor Charles Winter for use of his FTIR instrument.

Funding information

Funding for this research was provided by: National Institutes of Health (grant No. EB027103 to Matthew J. Allen); Wayne State University (award to Jacob C. Lutter).

References

- Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chow, C. Y., Guillot, R., Rivière, E., Kampf, J. W., Mallah, T. & Pecoraro, V. L. (2016). *Inorg. Chem.* 55, 10238–10247.
- Chow, C. Y., Trivedi, E. R., Pecoraro, V. L. & Zaleski, C. M. (2015). Comments Inorg. Chem. 35, 214–253.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Lah, M. S., Kirk, M. L., Hatfield, W. & Pecoraro, V. L. (1989). J. Chem. Soc. Chem. Commun. pp. 1606–1608.
- Lah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258-7259.
- Lutter, J. C., Zaleski, C. M. & Pecoraro, V. L. (2018). Advances in Inorganic Chemistry, Vol. 71, Supramolecular Chemistry, edited by R. Eldik & L. Puchta, pp 177–246. Cambridge: Academic Press.
- Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933–5003.
- Pecoraro, V. L. (1989). Inorg. Chim. Acta, 155, 171-173.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Zheng, H., Langner, K. M., Shields, G. P., Hou, J., Kowiel, M., Allen, F. H., Murshudov, G. & Minor, W. (2017). Acta Cryst. D73, 316–325.

Acta Cryst. (2021). E77, 1003-1009 [https://doi.org/10.1107/S2056989021009208]

Hexa- μ -acetato-chlorido(μ -N,2-dioxodobenzene-1-carboximidato)- μ_3 -oxido-tetrairon(III)-water (1/1) and hexa- μ -acetato-(μ -N,2-dioxodobenzene-1-carboximidato)fluorido- μ_3 -oxido-tripyridinetetrairon(III)-pyridine-water (1/1/0.24)

Cassandra L. Ward, Matthew J. Allen and Jacob C. Lutter

Computing details

For both structures, data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXT2018/3* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Hexa- μ -acetato-(μ -N,2-dioxodobenzene-1-carboximidato)fluorido- μ_3 -oxido-tripyridinetetrairon(III)-pyridine-water (1/1/0.24) (1-F)

Crystal data	
$[Fe_4(C_2H_3O_2)_6(C_7H_4O_3)FO(C_5H_5N)_5] \cdot C_5H_5N \cdot 0.24H_2O$ $M_r = 2087.76$ Orthorhombic, <i>Fdd2</i> a = 31.676 (2) Å b = 44.806 (3) Å c = 12.6056 (8) Å V = 17891 (2) Å ³ Z = 8 F(000) = 8534	$D_x = 1.550 \text{ Mg m}^{-3}$ Melting point: 257 K Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9974 reflections $\theta = 2.2-25.1^{\circ}$ $\mu = 1.35 \text{ mm}^{-1}$ T = 100 K Plate, purple $0.33 \times 0.30 \times 0.14 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: sealed tube φ and ω scans Absorption correction: multi-scan (SADABS; Krause <i>et al.</i> , 2015) $T_{min} = 0.670, T_{max} = 0.745$ 102006 measured reflections	8265 independent reflections 7012 reflections with $I > 2\sigma(I)$ $R_{int} = 0.098$ $\theta_{max} = 25.4^{\circ}, \theta_{min} = 1.6^{\circ}$ $h = -38 \rightarrow 38$ $k = -54 \rightarrow 54$ $l = -15 \rightarrow 15$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.090$ S = 1.05	8265 reflections604 parameters58 restraintsPrimary atom site location: dual

Secondary atom site location: difference Fourier map

Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0392P)^2 + 78.008P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.47$ e Å⁻³

Special details

 $\begin{aligned} \Delta \rho_{\min} &= -0.38 \text{ e } \text{Å}^{-3} \\ \text{Extinction correction: SHELXL-2018/3} \\ & \text{(Sheldrick 2018),} \\ & \text{Fc}^* = \text{kFc}[1 + 0.001 \text{xFc}^2 \lambda^3 / \sin(2\theta)]^{-1/4} \\ \text{Extinction coefficient: } 0.000039 (8) \\ & \text{Absolute structure: Refined as an inversion twin} \\ & \text{Absolute structure parameter: } 0.05 (2) \end{aligned}$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin. A lattice pyridine containing N5 and C35 through C39 lies on a twofold axis and was refined using a PART -1 command. The partial occupancy of lattice water O17 was refined using a free variable, and the H atoms were found on the difference map and refined with DFIX and DANG commands.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Fe4	0.54162 (3)	0.31181 (2)	0.77891 (6)	0.0170 (2)	
Fe3	0.48707 (3)	0.34874 (2)	0.60174 (7)	0.0172 (2)	
Fe1	0.52740 (3)	0.30748 (2)	1.07300(7)	0.0178 (2)	
Fe2	0.53647 (3)	0.38430 (2)	0.79611 (7)	0.0189 (2)	
C1	0.52500 (18)	0.36899 (15)	1.0345 (5)	0.0177 (14)	
C2	0.52547 (19)	0.40090 (15)	1.0584 (5)	0.0178 (14)	
C3	0.5175 (2)	0.40924 (16)	1.1646 (5)	0.0200 (15)	
H3	0.509743	0.394293	1.214328	0.024*	
C4	0.5208 (2)	0.43821 (16)	1.1980 (5)	0.0252 (17)	
H4	0.515227	0.443221	1.269894	0.030*	
C5	0.5322 (2)	0.46024 (18)	1.1260 (6)	0.0302 (18)	
Н5	0.534580	0.480378	1.148789	0.036*	
C6	0.5401 (2)	0.45296 (16)	1.0213 (6)	0.0265 (16)	
H6	0.547500	0.468274	0.972619	0.032*	
C7	0.5372 (2)	0.42337 (16)	0.9856 (5)	0.0203 (15)	
C8	0.4415 (2)	0.39185 (17)	0.7444 (5)	0.0284 (17)	
C9	0.3996 (3)	0.4050 (2)	0.7751 (7)	0.053 (3)	
H9A	0.404201	0.422996	0.817643	0.080*	
H9B	0.383642	0.390370	0.816831	0.080*	
H9C	0.383705	0.410109	0.711027	0.080*	
C10	0.5404 (2)	0.40351 (17)	0.5665 (5)	0.0278 (17)	
C11	0.5638 (3)	0.4222 (2)	0.4871 (7)	0.055 (3)	
H11A	0.554177	0.442903	0.491977	0.083*	
H11B	0.558316	0.414546	0.415493	0.083*	
H11C	0.594135	0.421223	0.501821	0.083*	
C12	0.5479 (2)	0.30150 (15)	0.5414 (5)	0.0197 (14)	
C13	0.5673 (2)	0.28292 (16)	0.4548 (5)	0.0250 (16)	
H13A	0.564363	0.293303	0.386799	0.038*	
H13B	0.552940	0.263589	0.451135	0.038*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H13C	0.597333	0.279782	0.470129	0.038*
C14	0.4545 (2)	0.29360 (15)	0.7173 (5)	0.0193 (14)
C15	0.4195 (2)	0.27110 (16)	0.7260 (6)	0.0252 (16)
H15A	0.405490	0.273258	0.794794	0.038*
H15B	0.431269	0.250936	0.719784	0.038*
H15C	0.399037	0.274430	0.668949	0.038*
C16	0.6196 (2)	0.34999(17)	0 7895 (5)	0.0213(14)
C17	0.6670(2)	0.35092 (17)	0 7983 (6)	0.0286 (16)
H17A	0.678782	0.331942	0.773528	0.043*
H17B	0.675002	0.354151	0.872503	0.043*
H17C	0.677951	0.367257	0.754637	0.043*
C18	0.5408(2)	0.307237 0.25712(16)	0.0180 (5)	0.043
C10	0.5498(2)	0.23712(10) 0.22452(16)	0.9169(5)	0.0208(13)
	0.5504 (5)	0.22433 (10)	0.9003(3)	0.0300 (18)
П19А 1110D	0.574780	0.210/49	0.803130	0.040*
HI9B	0.524375	0.218023	0.8/1126	0.046*
HI9C	0.552416	0.215068	0.9/620/	0.046*
N2	0.59476 (16)	0.31323 (12)	1.0972 (4)	0.0192 (12)
C20	0.6248 (2)	0.30487 (17)	1.0282 (5)	0.0274 (17)
H20	0.616422	0.295587	0.963831	0.033*
C21	0.6667 (2)	0.3090 (2)	1.0460 (6)	0.039 (2)
H21	0.686801	0.302801	0.994668	0.047*
C22	0.6799 (2)	0.32238 (19)	1.1388 (6)	0.036 (2)
H22	0.709048	0.325374	1.152790	0.043*
C23	0.6495 (2)	0.33131 (17)	1.2112 (6)	0.0297 (17)
H23	0.657353	0.340841	1.275592	0.036*
C24	0.6079 (2)	0.32606 (16)	1.1878 (5)	0.0254 (16)
H24	0.587203	0.331804	1.238401	0.030*
C25	0.4366 (2)	0.31587 (16)	0.9917 (5)	0.0246 (16)
H25	0.449451	0.329993	0.945790	0.030*
C26	0.3935 (2)	0.31257 (17)	0.9890 (5)	0.0280 (17)
H26	0.376923	0.324675	0.943172	0.034*
C27	0.3742(2)	0.29151(17)	1 0533 (6)	0.0316 (18)
H27	0.344487	0.288675	1.051419	0.0310 (10)
C28	0.3991 (2)	0.200073 0.27487 (17)	1 1198 (6)	0.0308(18)
H28	0.386806	0.260344	1 165143	0.037*
C20	0.300000	0.200344	1 1204 (5)	0.037
U29	0.4425 (2)	0.27941 (10)	1.1204 (5)	0.0201 (10)
C20	0.459400 0.4627(2)	0.207773	1.100/47	0.031°
C30	0.4037(2)	0.34903(13)	0.3020 (3)	0.0187 (14)
H30	0.493303	0.331881	0.334323	0.022
C31	0.4386 (2)	0.348/7 (15)	0.2726 (5)	0.0209 (14)
H31	0.450918	0.350379	0.204127	0.025*
C32	0.3959 (2)	0.34537 (16)	0.2832 (6)	0.0244 (15)
H32	0.378207	0.344755	0.222390	0.029*
C33	0.3787 (2)	0.34283 (16)	0.3842 (5)	0.0238 (16)
H33	0.349239	0.340097	0.393566	0.029*
C34	0.4053 (2)	0.34433 (15)	0.4702 (5)	0.0219 (15)
H34	0.393338	0.342633	0.539074	0.026*
F1	0.52458 (12)	0.29497 (9)	1.2121 (3)	0.0232 (9)

N1	0.53052 (17)	0.35965 (12)	0.9354 (4)	0.0163 (12)	
N3	0.46126 (16)	0.29968 (12)	1.0577 (4)	0.0206 (12)	
N4	0.44722 (16)	0.34809 (12)	0.4618 (4)	0.0177 (12)	
O1	0.53120 (14)	0.32821 (10)	0.9290 (3)	0.0178 (10)	
O2	0.51946 (13)	0.35002 (10)	1.1099 (3)	0.0197 (10)	
O3	0.54669 (15)	0.41781 (11)	0.8852 (3)	0.0237 (11)	
O4	0.47337 (15)	0.39745 (11)	0.7996 (4)	0.0309 (12)	
05	0.44128 (14)	0.37496 (11)	0.6630 (3)	0.0249 (11)	
O6	0.54797 (16)	0.40823 (11)	0.6633 (4)	0.0283 (12)	
O7	0.51501 (15)	0.38471 (11)	0.5322 (4)	0.0271 (11)	
08	0.55440 (14)	0.29309 (10)	0.6355 (3)	0.0222 (11)	
O9	0.52547 (14)	0.32326 (11)	0.5146 (3)	0.0238 (11)	
O10	0.48483 (13)	0.29115 (10)	0.7812 (3)	0.0220 (10)	
O11	0.45184 (14)	0.31306 (11)	0.6447 (3)	0.0232 (11)	
O12	0.59983 (14)	0.37435 (10)	0.7909 (4)	0.0228 (11)	
O13	0.60280 (13)	0.32449 (10)	0.7846 (3)	0.0210 (10)	
O14	0.53657 (14)	0.26776 (10)	1.0068 (3)	0.0206 (10)	
O15	0.56241 (13)	0.27338 (10)	0.8435 (3)	0.0204 (10)	
O16	0.52158 (13)	0.34820 (10)	0.7222 (3)	0.0181 (10)	
N5	0.2858 (10)	0.2671 (6)	-0.144 (2)	0.155 (12)	0.5
C35	0.2940 (10)	0.2379 (6)	-0.163 (2)	0.127 (11)	0.5
H35	0.311010	0.232929	-0.222080	0.152*	0.5
C36	0.2797 (7)	0.2153 (5)	-0.1015 (17)	0.073 (6)	0.5
H36	0.283212	0.195132	-0.123399	0.088*	0.5
C37	0.2596 (7)	0.2218 (4)	-0.0060 (17)	0.063 (6)	0.5
H37	0.254457	0.206792	0.045608	0.076*	0.5
C38	0.2473 (17)	0.2515 (7)	0.0109 (14)	0.074 (6)	0.5
H38	0.227845	0.256511	0.065403	0.089*	0.5
C39	0.2643 (10)	0.2733 (5)	-0.054 (2)	0.095 (9)	0.5
H39	0.260803	0.293654	-0.034580	0.114*	0.5
O17	0.0851 (9)	0.0248 (6)	0.027 (3)	0.069 (12)	0.236 (17)
H17D	0.071299	0.026512	-0.031577	0.103*	0.236 (17)
H17E	0.105232	0.036950	0.018911	0.103*	0.236 (17)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe4	0.0181 (5)	0.0248 (5)	0.0081 (4)	-0.0004 (4)	-0.0020 (4)	0.0010 (4)
Fe3	0.0163 (5)	0.0266 (5)	0.0087 (4)	-0.0001 (4)	-0.0025 (4)	0.0009 (4)
Fe1	0.0181 (5)	0.0274 (5)	0.0077 (4)	0.0007 (4)	0.0004 (4)	0.0009 (4)
Fe2	0.0219 (5)	0.0256 (5)	0.0093 (5)	-0.0017 (4)	-0.0032 (4)	0.0008 (4)
C1	0.006 (3)	0.032 (4)	0.015 (3)	0.000 (3)	-0.001 (3)	-0.002(3)
C2	0.009 (3)	0.028 (4)	0.017 (4)	0.005 (3)	-0.002(2)	-0.002(3)
C3	0.015 (4)	0.032 (4)	0.013 (3)	0.001 (3)	0.002 (3)	0.002 (3)
C4	0.020 (4)	0.036 (4)	0.020 (4)	0.001 (3)	0.000 (3)	-0.009(3)
C5	0.035 (4)	0.030 (4)	0.025 (4)	0.002 (3)	0.001 (3)	-0.009(3)
C6	0.033 (4)	0.025 (4)	0.021 (4)	-0.001 (3)	0.001 (3)	0.001 (3)
C7	0.016 (3)	0.033 (4)	0.012 (3)	0.002 (3)	-0.003(3)	0.001 (3)

C8	0.031 (4)	0.043 (5)	0.011 (3)	0.006 (3)	-0.001 (3)	0.004 (3)
C9	0.036 (5)	0.098 (8)	0.025 (5)	0.029 (5)	-0.008(4)	-0.013 (5)
C10	0.031 (4)	0.036 (4)	0.017 (4)	-0.009(3)	-0.014(3)	0.008 (3)
C11	0.060 (6)	0.080(7)	0.026 (4)	-0.038(5)	-0.010(4)	0.023 (5)
C12	0.019 (3)	0.030 (4)	0.010 (3)	-0.002(3)	0.003 (3)	-0.004(3)
C13	0.034(4)	0.035 (4)	0.006(3)	0.008(3)	0.006 (3)	0.001 (3)
C14	0.021(1) 0.019(3)	0.022(1) 0.027(4)	0.000(3)	0.000(3)	0.000(3)	-0.005(3)
C15	$0.01^{\circ}(3)$	0.027(1) 0.034(4)	0.012(3)	-0.004(3)	-0.002(3)	0.003(3)
C16	0.023(3)	0.034(1) 0.036(4)	0.020(1)	-0.003(3)	-0.002(3)	-0.001(3)
C17	0.029(3)	0.036(1) 0.046(5)	0.003(3) 0.021(4)	-0.002(3)	-0.001(3)	-0.002(3)
C18	0.019(3)	0.040(3) 0.037(4)	0.021(4)	-0.002(3)	0.001(3)	0.002(3)
C10	0.013(+)	0.037(4)	0.008(3) 0.013(4)	-0.004(3)	0.002(3)	0.000(3)
N2	0.052(5)	0.020(4)	0.013(4)	-0.003(2)	-0.001(3)	0.001(3)
C20	0.019(3)	0.030(3)	0.009(3)	-0.003(2)	-0.001(2)	-0.001(2)
C20	0.023(4)	0.030(3)	0.007(3)	-0.002(3)	-0.003(3)	-0.004(3)
C21	0.025(4)	0.077(0)	0.018(4)	-0.002(4)	0.003(3)	-0.007(4)
C22	0.017(4)	0.062 (6)	0.029 (4)	-0.009(4)	-0.007(3)	0.003 (4)
C23	0.029 (4)	0.039 (5)	0.021 (4)	-0.006(3)	-0.008(3)	0.003(3)
C24	0.028 (4)	0.034 (4)	0.015 (4)	-0.001(3)	-0.003(3)	-0.001(3)
C25	0.024 (4)	0.032 (4)	0.018 (4)	0.002 (3)	-0.001(3)	-0.005(3)
C26	0.025 (4)	0.040 (5)	0.019 (4)	0.013 (3)	-0.004 (3)	-0.008 (3)
C27	0.024 (4)	0.043 (5)	0.028 (4)	-0.003 (3)	-0.001 (3)	-0.016 (4)
C28	0.025 (4)	0.040 (5)	0.027 (4)	-0.005 (3)	0.006 (3)	-0.007(4)
C29	0.031 (4)	0.033 (4)	0.014 (3)	-0.001(3)	0.004 (3)	-0.004(3)
C30	0.014 (3)	0.025 (4)	0.017 (3)	0.000 (3)	-0.002(3)	0.006 (3)
C31	0.023 (3)	0.028 (4)	0.012 (3)	0.001 (3)	-0.001 (3)	-0.002 (3)
C32	0.024 (4)	0.034 (4)	0.015 (3)	0.003 (3)	-0.005 (3)	-0.002 (3)
C33	0.017 (4)	0.042 (5)	0.012 (3)	0.000 (3)	0.000 (3)	0.001 (3)
C34	0.019 (3)	0.036 (4)	0.010 (3)	-0.001 (3)	0.004 (3)	-0.001 (3)
F1	0.024 (2)	0.038 (2)	0.0072 (18)	0.0010 (17)	0.0008 (15)	0.0027 (17)
N1	0.016 (3)	0.021 (3)	0.012 (3)	0.000 (2)	-0.002 (2)	0.000 (2)
N3	0.023 (3)	0.025 (3)	0.014 (3)	-0.001 (2)	0.001 (2)	-0.004 (2)
N4	0.015 (3)	0.028 (3)	0.010 (3)	0.003 (2)	-0.001 (2)	0.004 (2)
01	0.020 (2)	0.021 (3)	0.012 (2)	-0.001 (2)	-0.0031 (17)	-0.004 (2)
O2	0.019 (2)	0.031 (3)	0.009 (2)	-0.001(2)	0.0002 (18)	0.001 (2)
03	0.033 (3)	0.026 (3)	0.012 (2)	-0.004 (2)	-0.001 (2)	0.001 (2)
O4	0.029 (3)	0.039 (3)	0.025 (3)	0.006 (2)	-0.010(2)	-0.008(2)
05	0.024 (3)	0.043 (3)	0.008 (2)	0.010 (2)	-0.0059 (19)	-0.004(2)
O6	0.035 (3)	0.032 (3)	0.018 (3)	-0.009(2)	-0.004 (2)	0.005 (2)
07	0.031 (3)	0.035 (3)	0.015 (2)	-0.008(2)	-0.009(2)	0.004 (2)
08	0.028 (3)	0.029 (3)	0.010 (2)	0.002 (2)	-0.001(2)	0.001 (2)
09	0.022 (2)	0.037(3)	0.012 (2)	0.009 (2)	-0.0026(19)	0.004(2)
010	0.023(2)	0.030 (3)	0.014(2)	-0.004(2)	-0.003(2)	0.004(2)
011	0.027(3)	0.031(3)	0.012(2)	-0.002(2)	-0.006(2)	0.005(2)
012	0.027(3)	0.026(3)	0.012(2) 0.016(2)	-0.001(2)	0.000(2)	0.000(2)
013	0.022(2)	0.028(3)	0.010(2)	-0.003(2)	0.000(2)	0.000(2)
014	0.022(2)	0.028(3)	0.010(2)	0.003(2)	0 0004 (18)	-0.000(2)
015	0.027(2)	0.020(3)	0.010(2)	-0.001(2)		0.0002(19)
015	0.019(2)	0.029(3)	0.012(2)	-0.002(2)	0.0000(19)	-0.001(2)
010	0.015(2)	0.030 (3)	0.009 (2)	0.002 (2)	0.0010 (18)	0.001(2)

N5	0.184 (16)	0.140 (16)	0.141 (16)	-0.005 (12)	0.035 (13)	-0.009 (12)
C35	0.158 (16)	0.101 (15)	0.121 (16)	-0.005 (12)	0.011 (13)	-0.011 (12)
C36	0.089 (12)	0.067 (11)	0.064 (11)	-0.019 (10)	0.023 (10)	-0.008 (9)
C37	0.066 (11)	0.042 (10)	0.080 (12)	-0.014 (9)	0.002 (10)	-0.005 (9)
C38	0.077 (12)	0.067 (10)	0.077 (10)	-0.012 (9)	0.003 (14)	0.005 (14)
C39	0.112 (15)	0.073 (13)	0.099 (14)	-0.026 (11)	0.017 (12)	0.000 (11)
017	0.063 (18)	0.047 (17)	0.09 (2)	-0.016 (13)	0.008 (15)	-0.009 (15)

Geometric parameters (Å, °)

Fe4—O16	1.890 (5)	C15—H15C	0.9800
Fe4—O15	2.016 (5)	C16—O12	1.258 (8)
Fe4—O13	2.021 (4)	C16—O13	1.262 (8)
Fe4—O10	2.023 (4)	C16—C17	1.505 (9)
Fe4—O8	2.034 (4)	C17—H17A	0.9800
Fe4—O1	2.056 (4)	C17—H17B	0.9800
Fe3—O16	1.872 (4)	C17—H17C	0.9800
Fe3—O9	1.997 (5)	C18—O15	1.263 (8)
Fe3—O5	2.020 (5)	C18—O14	1.276 (8)
Fe3—O11	2.024 (5)	C18—C19	1.469 (10)
Fe3—O7	2.037 (5)	C19—H19A	0.9800
Fe3—N4	2.170 (5)	C19—H19B	0.9800
Fe1—F1	1.843 (4)	C19—H19C	0.9800
Fe1—O2	1.978 (5)	N2—C20	1.343 (8)
Fe1—O14	1.987 (4)	N2	1.345 (8)
Fe1—O1	2.043 (5)	C20—C21	1.357 (9)
Fe1—N3	2.133 (5)	С20—Н20	0.9500
Fe1—N2	2.171 (5)	C21—C22	1.379 (10)
Fe2—O3	1.902 (5)	C21—H21	0.9500
Fe2—O16	1.925 (4)	C22—C23	1.384 (10)
Fe2—O6	2.021 (5)	С22—Н22	0.9500
Fe2—O12	2.057 (5)	C23—C24	1.372 (10)
Fe2—N1	2.083 (5)	С23—Н23	0.9500
Fe2—O4	2.084 (5)	C24—H24	0.9500
C1—O2	1.287 (8)	C25—N3	1.352 (9)
C1—N1	1.329 (8)	C25—C26	1.374 (9)
C1—C2	1.461 (9)	С25—Н25	0.9500
C2—C7	1.412 (9)	C26—C27	1.385 (11)
C2—C3	1.412 (9)	С26—Н26	0.9500
C3—C4	1.369 (10)	C27—C28	1.372 (11)
С3—Н3	0.9500	С27—Н27	0.9500
C4—C5	1.389 (10)	C28—C29	1.389 (10)
C4—H4	0.9500	C28—H28	0.9500
C5—C6	1.382 (10)	C29—N3	1.343 (9)
С5—Н5	0.9500	С29—Н29	0.9500
C6—C7	1.403 (10)	C30—N4	1.357 (8)
С6—Н6	0.9500	C30—C31	1.386 (9)
C7—O3	1.325 (8)	С30—Н30	0.9500

C8—O4	1.252 (8)	C31—C32	1.367 (9)
C8—O5	1.274 (9)	C31—H31	0.9500
C8—C9	1.501 (11)	C32—C33	1.388 (9)
С9—Н9А	0.9800	С32—Н32	0.9500
С9—Н9В	0.9800	C33—C34	1.373 (9)
С9—Н9С	0.9800	С33—Н33	0.9500
C10—O7	1.243 (8)	C34—N4	1.344 (8)
C10—O6	1.262 (8)	С34—Н34	0.9500
C10—C11	1.499 (10)	N1—O1	1.411 (6)
C11—H11A	0.9800	N5—C35	1.35 (2)
C11—H11B	0.9800	N5—C39	1.35 (2)
C11—H11C	0.9800	C35—C36	1.35 (2)
C12—O9	1.253 (8)	С35—Н35	0.9500
C12—O8	1.261 (8)	C36—C37	1.39 (2)
C12—C13	1.504 (9)	С36—Н36	0.9500
C13—H13A	0.9800	C37—C38	1.40 (3)
C13—H13B	0.9800	С37—Н37	0.9500
C13—H13C	0.9800	C38—C39	1.39 (3)
C14—O10	1.259 (8)	C38—H38	0.9500
C14—O11	1.267 (8)	С39—Н39	0.9500
C14—C15	1.502 (9)	O17—H17D	0.8564
C15—H15A	0.9800	O17—H17E	0.8446
C15—H15B	0.9800		
O16—Fe4—O15	178.35 (19)	H15A—C15—H15C	109.5
O16—Fe4—O13	95.35 (18)	H15B—C15—H15C	109.5
O15—Fe4—O13	84.96 (18)	O12—C16—O13	125.2 (6)
O16—Fe4—O10	95.84 (18)	O12—C16—C17	118.1 (6)
O15—Fe4—O10	83.89 (18)	O13—C16—C17	116.7 (6)
O13—Fe4—O10	168.72 (19)	C16—C17—H17A	109.5
O16—Fe4—O8	94.97 (18)	C16—C17—H17B	109.5
O15—Fe4—O8	86.66 (18)	H17A—C17—H17B	109.5
O13—Fe4—O8	87.52 (18)	C16—C17—H17C	109.5
O10—Fe4—O8	00.07(10)		
O16—Fe4—O1	90.07(18)	H17A—C17—H17C	109.5
	90.07 (18) 89.18 (18)	H17A—C17—H17C H17B—C17—H17C	109.5 109.5
O15—Fe4—O1	90.07 (18) 89.18 (18) 89.19 (18)	H17A—C17—H17C H17B—C17—H17C O15—C18—O14	109.5 109.5 122.8 (6)
015—Fe4—O1 013—Fe4—O1	90.07 (18) 89.18 (18) 89.19 (18) 91.19 (18)	H17A—C17—H17C H17B—C17—H17C O15—C18—O14 O15—C18—C19	109.5 109.5 122.8 (6) 119.2 (6)
O15—Fe4—O1 O13—Fe4—O1 O10—Fe4—O1	90.07 (18) 89.18 (18) 89.19 (18) 91.19 (18) 90.42 (18)	H17A—C17—H17C H17B—C17—H17C O15—C18—O14 O15—C18—C19 O14—C18—C19	109.5 109.5 122.8 (6) 119.2 (6) 118.0 (6)
015—Fe4—01 013—Fe4—01 010—Fe4—01 08—Fe4—01	90.07 (18) 89.18 (18) 89.19 (18) 91.19 (18) 90.42 (18) 175.74 (18)	H17A—C17—H17C H17B—C17—H17C O15—C18—O14 O15—C18—C19 O14—C18—C19 C18—C19—H19A	109.5 109.5 122.8 (6) 119.2 (6) 118.0 (6) 109.5
015—Fe4—01 013—Fe4—01 010—Fe4—01 08—Fe4—01 016—Fe3—09	90.07 (18) 89.18 (18) 89.19 (18) 91.19 (18) 90.42 (18) 175.74 (18) 94.78 (18)	H17A—C17—H17C H17B—C17—H17C O15—C18—O14 O15—C18—C19 O14—C18—C19 C18—C19—H19A C18—C19—H19B	109.5 109.5 122.8 (6) 119.2 (6) 118.0 (6) 109.5 109.5
015—Fe4—01 013—Fe4—01 010—Fe4—01 08—Fe4—01 016—Fe3—09 016—Fe3—05	90.07 (18) 89.18 (18) 89.19 (18) 91.19 (18) 90.42 (18) 175.74 (18) 94.78 (18) 96.68 (18)	H17A—C17—H17C H17B—C17—H17C O15—C18—O14 O15—C18—C19 O14—C18—C19 C18—C19—H19A C18—C19—H19B H19A—C19—H19B	109.5 109.5 122.8 (6) 119.2 (6) 118.0 (6) 109.5 109.5 109.5
015—Fe4—01 013—Fe4—01 010—Fe4—01 08—Fe4—01 016—Fe3—09 016—Fe3—05 09—Fe3—05	90.07 (18) 89.18 (18) 89.19 (18) 91.19 (18) 90.42 (18) 175.74 (18) 94.78 (18) 96.68 (18) 168.52 (18)	H17A—C17—H17C H17B—C17—H17C O15—C18—O14 O15—C18—C19 O14—C18—C19 C18—C19—H19A C18—C19—H19B H19A—C19—H19B C18—C19—H19B	109.5 109.5 122.8 (6) 119.2 (6) 118.0 (6) 109.5 109.5 109.5
015—Fe4—01 013—Fe4—01 010—Fe4—01 08—Fe4—01 016—Fe3—09 016—Fe3—05 09—Fe3—05 016—Fe3—011	90.07 (18) 89.18 (18) 89.19 (18) 91.19 (18) 90.42 (18) 175.74 (18) 94.78 (18) 96.68 (18) 168.52 (18) 95.43 (18)	H17A—C17—H17C H17B—C17—H17C O15—C18—O14 O15—C18—C19 O14—C18—C19 C18—C19—H19A C18—C19—H19B H19A—C19—H19B C18—C19—H19C H19A—C19—H19C	109.5 109.5 122.8 (6) 119.2 (6) 118.0 (6) 109.5 109.5 109.5 109.5 109.5
015—Fe4—01 013—Fe4—01 010—Fe4—01 08—Fe4—01 016—Fe3—09 016—Fe3—05 09—Fe3—05 016—Fe3—011 09—Fe3—011	90.07 (18) 89.18 (18) 89.19 (18) 91.19 (18) 90.42 (18) 175.74 (18) 94.78 (18) 96.68 (18) 168.52 (18) 95.43 (18) 91.8 (2)	H17A—C17—H17C H17B—C17—H17C O15—C18—O14 O15—C18—C19 O14—C18—C19 C18—C19—H19A C18—C19—H19B H19A—C19—H19B C18—C19—H19C H19A—C19—H19C H19B—C19—H19C	109.5 109.5 122.8 (6) 119.2 (6) 118.0 (6) 109.5 109.5 109.5 109.5 109.5 109.5
015—Fe4—01 013—Fe4—01 010—Fe4—01 08—Fe4—01 016—Fe3—09 016—Fe3—05 09—Fe3—05 016—Fe3—011 09—Fe3—011 05—Fe3—011	90.07 (18) 89.18 (18) 89.19 (18) 91.19 (18) 90.42 (18) 175.74 (18) 94.78 (18) 96.68 (18) 168.52 (18) 95.43 (18) 91.8 (2) 87.8 (2)	H17A—C17—H17C H17B—C17—H17C O15—C18—O14 O15—C18—C19 O14—C18—C19 C18—C19—H19A C18—C19—H19B H19A—C19—H19B C18—C19—H19C H19A—C19—H19C H19B—C19—H19C C20—N2—C24	109.5 109.5 122.8 (6) 119.2 (6) 118.0 (6) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
015—Fe4—01 013—Fe4—01 010—Fe4—01 08—Fe4—01 016—Fe3—09 016—Fe3—05 09—Fe3—05 016—Fe3—011 09—Fe3—011 05—Fe3—011 016—Fe3—07	90.07 (18) 89.18 (18) 89.19 (18) 91.19 (18) 90.42 (18) 175.74 (18) 94.78 (18) 96.68 (18) 168.52 (18) 95.43 (18) 91.8 (2) 87.8 (2) 96.08 (19)	H17A—C17—H17C H17B—C17—H17C O15—C18—O14 O15—C18—C19 O14—C18—C19 C18—C19—H19A C18—C19—H19B H19A—C19—H19B C18—C19—H19C H19B—C19—H19C H19B—C19—H19C C20—N2—C24 C20—N2—Fe1	109.5 109.5 122.8 (6) 119.2 (6) 118.0 (6) 109.5 109.5 109.5 109.5 109.5 109.5 116.7 (6) 125.0 (4)
015—Fe4—01 013—Fe4—01 010—Fe4—01 08—Fe4—01 016—Fe3—09 016—Fe3—05 09—Fe3—05 016—Fe3—011 09—Fe3—011 05—Fe3—011 016—Fe3—07 09—Fe3—07	90.07 (18) 89.18 (18) 89.19 (18) 91.19 (18) 90.42 (18) 175.74 (18) 94.78 (18) 96.68 (18) 168.52 (18) 95.43 (18) 91.8 (2) 87.8 (2) 96.08 (19) 87.2 (2)	H17A—C17—H17C H17B—C17—H17C O15—C18—O14 O15—C18—C19 O14—C18—C19 C18—C19—H19A C18—C19—H19B H19A—C19—H19B C18—C19—H19C H19A—C19—H19C H19B—C19—H19C C20—N2—C24 C20—N2—C24 C24—N2—Fe1	109.5 109.5 122.8 (6) 119.2 (6) 118.0 (6) 109.5 109.5 109.5 109.5 109.5 109.5 116.7 (6) 125.0 (4) 118.3 (5)

O11—Fe3—O7	168.49 (18)	N2—C20—H20	118.4
O16—Fe3—N4	178.5 (2)	C21—C20—H20	118.4
O9—Fe3—N4	84.23 (19)	C20—C21—C22	119.7 (7)
O5—Fe3—N4	84.33 (18)	C20—C21—H21	120.1
011—Fe3—N4	83.47 (19)	C22—C21—H21	120.1
07—Fe3—N4	85.02 (19)	$C_{21} - C_{22} - C_{23}$	118.3 (7)
F1— $Fe1$ — $O2$	93 63 (18)	$C_{21} - C_{22} - H_{22}$	120.9
F1— $Fe1$ — $O14$	97 73 (18)	C^{23} C^{22} H^{22}	120.9
Ω^2 —Fe1— Ω^{14}	168 62 (18)	C_{24} C_{23} C_{22} C_{23} C_{22}	120.9 118 5 (7)
F1— $Fe1$ — $O1$	170.62 (18)	C_{24} C_{23} H_{23}	120.8
Ω^2 _Fe1_ Ω^1	77 18 (18)	$C_{22} = C_{23} = H_{23}$	120.8
014—Fe1—01	91 44 (17)	$N_2 - C_{23} - C_{23}$	120.0 123.6(7)
F1 = Fa1 = N3	80 35 (10)	$N_2 = C_2 + C_2 $	123.0 (7)
Ω^2 Fel N3	03.00(19)	12 - 024 - 1124 C23 C24 H24	118.2
$O_2 - I_C I - N_3$	93.10 (19) 87.6 (2)	$N_{25} = C_{25} = C_{26}$	110.2 122.2(7)
$O1 = F_{e1} = N3$	07.0(2)	N3 C25 H25	122.2(7)
C1 = 1 C1 = N2	93.0 (2)	$N_{3} = C_{23} = H_{23}$	118.9
$\Gamma I - \Gamma C I - N2$	07.13 (10) 99.72 (10)	$C_{20} = C_{23} = H_{23}$	110.9
02—FeI—N2	88.72(19)	$C_{25} = C_{20} = C_{27}$	119.8 (7)
O1 = Fr1 = N2	91.2 (2)	$C_{23} = C_{20} = H_{20}$	120.1
VI - FeI - N2	90.74 (19)	$C_2/-C_{26}-H_{26}$	120.1
N_3 —FeI— N_2	1/6.2(2)	$C_{28} = C_{27} = C_{26}$	118.3 (7)
03 - Fe2 - 016	1/1.98 (19)	$C_{28} = C_{27} = H_{27}$	120.8
03—Fe2—06	92.3 (2)	C26—C2/—H2/	120.8
016—Fe2—06	95.12 (19)	C27—C28—C29	119.5 (7)
O3—Fe2—O12	91.36 (19)	С27—С28—Н28	120.2
O16—Fe2—O12	92.38 (18)	C29—C28—H28	120.2
06—Fe2—012	85.01 (19)	N3—C29—C28	122.3 (7)
O3—Fe2—N1	86.4 (2)	N3—C29—H29	118.9
O16—Fe2—N1	86.6 (2)	С28—С29—Н29	118.9
O6—Fe2—N1	174.8 (2)	N4—C30—C31	122.1 (6)
O12—Fe2—N1	90.0 (2)	N4—C30—H30	118.9
O3—Fe2—O4	85.9 (2)	С31—С30—Н30	118.9
O16—Fe2—O4	90.72 (19)	C32—C31—C30	119.4 (6)
O6—Fe2—O4	92.3 (2)	С32—С31—Н31	120.3
O12—Fe2—O4	176.1 (2)	С30—С31—Н31	120.3
N1—Fe2—O4	92.6 (2)	C31—C32—C33	119.1 (6)
O2—C1—N1	120.3 (6)	С31—С32—Н32	120.5
O2—C1—C2	119.7 (6)	С33—С32—Н32	120.5
N1—C1—C2	120.0 (6)	C34—C33—C32	118.7 (6)
C7—C2—C3	118.3 (6)	С34—С33—Н33	120.6
C7—C2—C1	124.5 (6)	С32—С33—Н33	120.6
C3—C2—C1	116.9 (6)	N4—C34—C33	123.3 (6)
C4—C3—C2	122.0 (6)	N4—C34—H34	118.4
С4—С3—Н3	119.0	C33—C34—H34	118.4
С2—С3—Н3	119.0	C1—N1—O1	111.7 (5)
C3—C4—C5	119.5 (6)	C1—N1—Fe2	129.6 (4)
C3—C4—H4	120.2	O1—N1—Fe2	118.7 (3)
C5—C4—H4	120.2	C29—N3—C25	117.9 (6)

C6—C5—C4	120.2 (7)	C29—N3—Fe1	119.5 (5)
С6—С5—Н5	119.9	C25—N3—Fe1	122.4 (5)
С4—С5—Н5	119.9	C34—N4—C30	117.4 (5)
C5—C6—C7	121.2 (7)	C34—N4—Fe3	120.9 (4)
С5—С6—Н6	119.4	C30—N4—Fe3	121.7 (4)
С7—С6—Н6	119.4	N1—O1—Fe1	113.7 (3)
O3—C7—C6	118.0 (6)	N1—O1—Fe4	114.3 (3)
O3—C7—C2	123.1 (6)	Fe1—O1—Fe4	131.7 (2)
C6—C7—C2	118.8 (6)	C1	116.5 (4)
O4—C8—O5	124.8 (7)	C7—O3—Fe2	132.4 (4)
O4—C8—C9	119.4 (7)	C8—O4—Fe2	134.9 (5)
O5—C8—C9	115.9 (7)	C8—O5—Fe3	130.5 (4)
С8—С9—Н9А	109.5	C10—O6—Fe2	132.7 (5)
С8—С9—Н9В	109.5	C10—O7—Fe3	131.9 (4)
H9A—C9—H9B	109.5	C12—O8—Fe4	132.9 (4)
С8—С9—Н9С	109.5	C12—O9—Fe3	129.9 (4)
Н9А—С9—Н9С	109.5	C14-O10-Fe4	129.0 (4)
Н9В—С9—Н9С	109.5	C14—O11—Fe3	134.5 (4)
O7—C10—O6	124.9 (7)	C16—O12—Fe2	132.4 (4)
O7—C10—C11	117.7 (6)	C16-013-Fe4	131.3 (4)
O6—C10—C11	117.3 (6)	C18—O14—Fe1	138.3 (5)
C10-C11-H11A	109.5	C18—O15—Fe4	133.9 (4)
C10-C11-H11B	109.5	Fe3—O16—Fe4	120.9 (2)
H11A—C11—H11B	109.5	Fe3—O16—Fe2	121.7 (2)
C10—C11—H11C	109.5	Fe4—O16—Fe2	117.4 (2)
H11A—C11—H11C	109.5	C35—N5—C39	116 (2)
H11B—C11—H11C	109.5	C36—C35—N5	124 (2)
O9—C12—O8	125.4 (6)	С36—С35—Н35	117.9
O9—C12—C13	117.8 (6)	N5—C35—H35	117.9
O8—C12—C13	116.8 (6)	C35—C36—C37	119 (2)
C12—C13—H13A	109.5	С35—С36—Н36	120.4
С12—С13—Н13В	109.5	С37—С36—Н36	120.4
H13A—C13—H13B	109.5	C36—C37—C38	117.3 (19)
C12—C13—H13C	109.5	С36—С37—Н37	121.4
H13A—C13—H13C	109.5	С38—С37—Н37	121.4
H13B—C13—H13C	109.5	C39—C38—C37	118 (3)
O10-C14-O11	125.0 (6)	С39—С38—Н38	120.9
O10-C14-C15	117.2 (6)	С37—С38—Н38	120.9
O11—C14—C15	117.7 (6)	N5—C39—C38	123 (2)
C14—C15—H15A	109.5	N5—C39—H39	118.5
C14—C15—H15B	109.5	С38—С39—Н39	118.5
H15A—C15—H15B	109.5	H17D—O17—H17E	103.3
C14—C15—H15C	109.5		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H····A	D····A	<i>D</i> —H··· <i>A</i>
C11—H11 <i>A</i> …N5 ⁱ	0.98	2.37	3.23 (3)	146

C13—H13 A ···F1 ⁱⁱ	0.98	2.54	3.389 (7)	145	
C15—H15 <i>B</i> …F1 ⁱⁱⁱ	0.98	2.49	3.454 (8)	168	
C17—H17A····O17 ^{iv}	0.98	2.60	3.42 (3)	142	
C19—H19B…F1 ⁱⁱⁱ	0.98	2.60	3.520 (9)	156	
С19—Н19С…О11 ^v	0.98	2.47	3.446 (8)	172	
C20—H20…O13	0.95	2.64	3.269 (8)	124	
C20—H20…O15	0.95	2.49	3.365 (8)	153	
C23—H23…O5 ⁱ	0.95	2.55	3.473 (9)	164	
C25—H25…O1	0.95	2.60	3.149 (8)	117	
C26—H26…O6 ^{vi}	0.95	2.64	3.431 (8)	141	
C29—H29…F1	0.95	2.46	2.930 (8)	110	
C31—H31…O2 ⁱⁱ	0.95	2.48	3.282 (8)	143	
C39—H39…O6 ^{vii}	0.95	2.54	3.27 (2)	134	
O17—H17 <i>E</i> ···O13 ^{viii}	0.84	2.15	2.97 (3)	164	

Symmetry codes: (i) x+1/4, -y+3/4, z+3/4; (ii) x, y, z-1; (iii) -x+1, -y+1/2, z-1/2; (iv) -x+3/4, y+1/4, z+3/4; (v) -x+1, -y+1/2, z+1/2; (vi) x-1/4, -y+3/4, z+1/4; (vii) x-1/4, -y+3/4, z-3/4; (viii) -x+3/4, y-1/4, z-3/4.

Hexa- μ -acetato-chlorido(μ -N,2-dioxodobenzene-1-carboximidato)- μ_3 -oxido-tetrairon(III)-water (1/1) (1-Cl)

Crystal data

$[Fe_4(C_2H_3O_2)_6(C_7H_4O_3)ClO(C_5H_5N)_3]$ ·H ₂ O	$D_{\rm x} = 1.639 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 1034.54$	Melting point: 238 K
Monoclinic, $P2_1$	Mo Ka radiation, $\lambda = 0.71073$ Å
a = 11.8460 (6) Å	Cell parameters from 9996 reflections
b = 15.5041 (7) Å	$\theta = 2.3 - 24.9^{\circ}$
c = 12.6425 (6) Å	$\mu = 1.50 \text{ mm}^{-1}$
$\beta = 115.449 \ (1)^{\circ}$	T = 100 K
$V = 2096.64 (17) Å^3$	Block, dark brown
Z = 2	$0.28 \times 0.28 \times 0.14 \text{ mm}$
F(000) = 1056	
Data collection	
Bruker APEXII CCD	8621 independent reflections
diffractometer	7877 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.048$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.5^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
(SADABS; Krause et al., 2015)	$h = -14 \rightarrow 14$
$T_{\min} = 0.688, \ T_{\max} = 0.745$	$k = -19 \rightarrow 19$
52843 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.071$ S = 1.068621 reflections 570 parameters 7 restraints Primary atom site location: dual Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0296P)^2 + 1.4211P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.43$ e Å⁻³ $\Delta\rho_{min} = -0.34$ e Å⁻³ Absolute structure: Refined as an inversion twin Absolute structure parameter: 0.014 (16)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin. A lattice water containing O17 was refined over two sites with a PART command and the occupancies were refined using a free variable. H atoms were found on the difference map and refined with DFIX and DANG commands. Minor disorder of the pyridine containing N4 was not refined and is likely due to the disorder of the lattice water.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cl1	-0.46846 (12)	0.72584 (9)	0.49062 (11)	0.0297 (3)	
Fe2	0.12283 (6)	0.75827 (4)	0.96279 (6)	0.01283 (15)	
Fe4	0.08443 (6)	0.69044 (4)	0.70471 (6)	0.01401 (15)	
Fe1	-0.25727 (6)	0.71218 (4)	0.60363 (6)	0.01778 (16)	
Fe3	0.28619 (6)	0.84403 (4)	0.83141 (6)	0.01368 (15)	
C1	-0.1641 (4)	0.7441 (3)	0.8433 (4)	0.0134 (10)	
C2	-0.1680 (4)	0.7585 (3)	0.9578 (4)	0.0132 (9)	
C3	-0.2869 (5)	0.7669 (3)	0.9550 (5)	0.0205 (11)	
H3	-0.358389	0.767725	0.881605	0.025*	
C4	-0.3023 (5)	0.7740 (4)	1.0561 (5)	0.0254 (12)	
H4	-0.383326	0.780059	1.053180	0.031*	
C5	-0.1969 (5)	0.7722 (3)	1.1630 (5)	0.0245 (12)	
Н5	-0.206497	0.775901	1.233706	0.029*	
C6	-0.0793 (5)	0.7651 (3)	1.1678 (4)	0.0195 (11)	
H6	-0.008649	0.764313	1.241787	0.023*	
C7	-0.0619 (5)	0.7589 (3)	1.0642 (4)	0.0155 (9)	
C16	0.1488 (5)	0.5709 (3)	0.9094 (4)	0.0188 (11)	
C17	0.1697 (6)	0.4792 (4)	0.9525 (5)	0.0346 (14)	
H17A	0.187704	0.477933	1.035774	0.052*	
H17B	0.240496	0.454736	0.942055	0.052*	
H17C	0.094403	0.445083	0.907825	0.052*	
C10	0.3908 (5)	0.8117 (3)	1.0937 (4)	0.0198 (11)	
C11	0.5042 (5)	0.8197 (4)	1.2090 (5)	0.0342 (15)	
H11A	0.575040	0.840336	1.195386	0.051*	
H11B	0.524424	0.763221	1.247435	0.051*	
H11C	0.486972	0.860736	1.259151	0.051*	
C8	0.1256 (5)	0.9514 (3)	0.9086 (4)	0.0171 (10)	
C9	0.0811 (6)	1.0401 (3)	0.9203 (5)	0.0294 (13)	
H9A	-0.005582	1.037004	0.910108	0.044*	
H9B	0.085787	1.078003	0.860182	0.044*	
H9C	0.134156	1.063301	0.998078	0.044*	
C14	0.1095 (4)	0.8432 (3)	0.5730 (4)	0.0168 (10)	
C15	0.0728 (5)	0.8871 (4)	0.4569 (4)	0.0276 (13)	
H15A	-0.001668	0.859109	0.397687	0.041*	
H15B	0.141664	0.882858	0.433746	0.041*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H15C	0.054627	0.947974	0.463693	0.041*
C12	0.3554 (5)	0.6848 (3)	0.7421 (4)	0.0198 (10)
C13	0.4548 (5)	0.6284 (4)	0.7343 (5)	0.0305 (13)
H13A	0.502815	0.661681	0.701670	0.046*
H13B	0.415516	0.578984	0.683336	0.046*
H13C	0.510937	0.607745	0.812649	0.046*
C18	-0.1213 (5)	0.6292 (3)	0.4774 (4)	0.0192 (11)
C19	-0.1451 (6)	0.5866 (4)	0.3639 (4)	0.0327 (14)
H19A	-0.202946	0.538237	0.350530	0.049*
H19B	-0.066066	0.565132	0.366613	0.049*
H19C	-0.181915	0.628372	0.299934	0.049*
C30	0.4475 (5)	1.0113 (4)	0.8995 (5)	0.0286 (13)
H30	0.412411	1.015750	0.954165	0.034*
C31	0.5223 (5)	1.0776 (4)	0.8928 (5)	0.0348 (14)
H31	0.537259	1.126859	0.941708	0.042*
C32	0.5751 (6)	1.0719 (4)	0.8145 (5)	0.0385 (16)
H32	0.625285	1.117159	0.807069	0.046*
C33	0.5522 (5)	0.9987 (4)	0.7481 (5)	0.0323 (14)
H33	0.589537	0.991713	0.695426	0.039*
C34	0.4756 (5)	0.9350 (4)	0.7568 (4)	0.0247 (12)
H34	0.459736	0.885358	0.708364	0.030*
C20	-0.1920(5)	0.5370 (3)	0.7353 (4)	0.0241 (12)
H20	-0.125234	0.570544	0.789816	0.029*
C21	-0.2018(5)	0.4517 (4)	0.7622 (5)	0.0286 (13)
H21	-0.143450	0.427567	0.833943	0.034*
C22	-0.2970(5)	0.4025 (4)	0.6837 (5)	0.0291 (13)
H22	-0.305480	0.343694	0.699843	0.035*
C23	-0.3809 (6)	0.4403 (4)	0.5798 (5)	0.0368 (15)
H23	-0.447467	0.407585	0.523709	0.044*
C24	-0.3659 (5)	0.5263 (4)	0.5595 (5)	0.0302 (13)
H24	-0.423884	0.552129	0.488893	0.036*
C25	-0.2080 (8)	0.9070 (4)	0.6453 (6)	0.051 (2)
H25	-0.203735	0.891707	0.719715	0.062*
C26	-0.1904 (9)	0.9928 (5)	0.6251 (7)	0.073 (3)
H26	-0.175730	1.035107	0.683979	0.088*
C27	-0.1947 (8)	1.0154 (6)	0.5189 (8)	0.067 (3)
H27	-0.181755	1.073511	0.502907	0.080*
C28	-0.2185 (6)	0.9516 (6)	0.4351 (7)	0.052 (2)
H28	-0.223206	0.965351	0.360092	0.063*
C29	-0.2350 (6)	0.8685 (4)	0.4624 (5)	0.0359 (15)
H29	-0.250573	0.825214	0.404569	0.043*
N1	-0.0574 (4)	0.7339 (2)	0.8375 (3)	0.0140 (8)
N4	0.4229 (4)	0.9407 (3)	0.8313 (4)	0.0196 (9)
N2	-0.2723 (4)	0.5746 (3)	0.6361 (4)	0.0206 (9)
N3	-0.2304 (4)	0.8448 (3)	0.5661 (4)	0.0254 (10)
O1	-0.0757 (3)	0.7135 (2)	0.7220 (2)	0.0147 (7)
O2	-0.2688 (3)	0.7401 (2)	0.7496 (3)	0.0182 (8)
O3	0.0537 (3)	0.7516 (2)	1.0747 (3)	0.0164 (7)

016	0.1694 (3)	0.7641 (2)	0.8334 (3)	0.0143 (7)		
012	0.1617 (3)	0.6289 (2)	0.9829 (3)	0.0205 (8)		
013	0.1159 (3)	0.5825 (2)	0.8016 (3)	0.0208 (8)		
06	0.2944 (3)	0.7771 (2)	1.0935 (3)	0.0216 (8)		
07	0.4011 (3)	0.8406 (2)	1.0054 (3)	0.0204 (7)		
O4	0.0908 (3)	0.8899 (2)	0.9526 (3)	0.0191 (8)		
05	0.1963 (3)	0.9458 (2)	0.8581 (3)	0.0196 (7)		
O10	0.0420 (3)	0.7825 (2)	0.5788 (3)	0.0178 (7)		
011	0.2077 (3)	0.8700 (2)	0.6584 (3)	0.0182 (8)		
08	0.2429 (3)	0.6626 (2)	0.6858 (3)	0.0207 (8)		
09	0.3926 (3)	0.7530 (2)	0.8034 (3)	0.0192 (7)		
015	-0.0180 (3)	0.6149 (2)	0.5639(3)	0.0213 (8)		
O14	-0.2075 (3)	0.6755 (2)	0.4795 (3)	0.0232 (8)		
017	0.2126 (7)	0.6698 (6)	0.2870 (8)	0.076 (4)	0.715 (13)	
H17D	0.289 (5)	0.680 (9)	0.332 (10)	0.115*	0.715 (13)	
H17E	0.181 (10)	0.704 (7)	0.230 (8)	0.115*	0.715 (13)	
017A	0.2102 (17)	0.6965 (16)	0.3790 (16)	0.061 (7)	0.285 (13)	
H17F	0.269 (19)	0.670 (18)	0.434 (16)	0.091*	0.285 (13)	
H17G	0.16 (2)	0.71 (2)	0.41 (2)	0.091*	0.285 (13)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0217 (6)	0.0401 (8)	0.0221 (6)	-0.0020 (6)	0.0044 (5)	0.0074 (6)
Fe2	0.0166 (3)	0.0122 (3)	0.0120 (3)	-0.0007 (3)	0.0084 (3)	-0.0021 (3)
Fe4	0.0166 (3)	0.0132 (3)	0.0144 (3)	-0.0023 (3)	0.0087 (3)	-0.0046 (3)
Fe1	0.0165 (3)	0.0243 (4)	0.0122 (3)	-0.0019 (3)	0.0058 (3)	0.0018 (3)
Fe3	0.0163 (3)	0.0135 (3)	0.0128 (3)	-0.0024 (3)	0.0078 (3)	-0.0021 (3)
C1	0.017 (2)	0.010(2)	0.016 (2)	0.0008 (19)	0.009(2)	0.0005 (17)
C2	0.021 (2)	0.008 (2)	0.015 (2)	0.000 (2)	0.012 (2)	0.0008 (19)
C3	0.021 (3)	0.017 (3)	0.028 (3)	-0.004(2)	0.015 (2)	-0.005 (2)
C4	0.024 (3)	0.029 (3)	0.033 (3)	-0.006(2)	0.021 (3)	-0.011 (2)
C5	0.034 (3)	0.024 (3)	0.024 (3)	-0.002 (2)	0.020 (3)	-0.004 (2)
C6	0.031 (3)	0.017 (3)	0.015 (2)	-0.005 (2)	0.015 (2)	-0.001 (2)
C7	0.026 (3)	0.006 (2)	0.019 (2)	0.001 (2)	0.014 (2)	-0.0007 (19)
C16	0.017 (3)	0.015 (3)	0.024 (3)	0.000 (2)	0.009 (2)	-0.002 (2)
C17	0.054 (4)	0.018 (3)	0.028 (3)	0.005 (3)	0.013 (3)	0.002 (2)
C10	0.020(3)	0.023 (3)	0.021 (3)	0.007 (2)	0.012 (2)	0.000(2)
C11	0.022 (3)	0.066 (5)	0.017 (3)	-0.001 (3)	0.010(2)	-0.002 (3)
C8	0.021 (3)	0.015 (2)	0.014 (2)	0.001 (2)	0.006 (2)	-0.0025 (19)
C9	0.042 (3)	0.015 (3)	0.038 (3)	0.006 (3)	0.024 (3)	0.001 (2)
C14	0.021 (3)	0.019 (2)	0.017 (2)	-0.002(2)	0.014 (2)	-0.002(2)
C15	0.031 (3)	0.037 (3)	0.012 (3)	-0.012 (3)	0.007 (2)	0.001 (2)
C12	0.021 (3)	0.022 (3)	0.020 (2)	-0.003 (2)	0.012 (2)	-0.004 (2)
C13	0.028 (3)	0.025 (3)	0.045 (4)	-0.001 (2)	0.022 (3)	-0.010 (3)
C18	0.027 (3)	0.015 (3)	0.016 (3)	-0.009 (2)	0.009 (2)	-0.001 (2)
C19	0.052 (4)	0.026 (3)	0.015 (3)	0.006 (3)	0.009 (3)	-0.005 (2)
C30	0.029 (3)	0.027 (3)	0.029 (3)	-0.009 (2)	0.012 (3)	-0.007 (2)

C31	0.031 (3)	0.024 (3)	0.041 (4)	-0.013 (3)	0.007 (3)	-0.004 (3)
C32	0.030 (3)	0.042 (4)	0.033 (3)	-0.016 (3)	0.003 (3)	0.007 (3)
C33	0.026 (3)	0.044 (4)	0.022 (3)	-0.011 (3)	0.005 (3)	0.007 (3)
C34	0.025 (3)	0.032 (3)	0.018 (3)	-0.005 (2)	0.010(2)	0.005 (2)
C20	0.031 (3)	0.023 (3)	0.016 (3)	-0.004 (2)	0.008 (2)	0.001 (2)
C21	0.036 (3)	0.028 (3)	0.024 (3)	-0.003 (3)	0.015 (3)	0.006 (2)
C22	0.038 (3)	0.024 (3)	0.029 (3)	-0.004 (3)	0.018 (3)	0.002 (2)
C23	0.040 (4)	0.029 (3)	0.035 (3)	-0.015 (3)	0.010 (3)	-0.004 (3)
C24	0.031 (3)	0.031 (3)	0.020 (3)	-0.010 (3)	0.003 (3)	-0.003 (2)
C25	0.079 (5)	0.038 (4)	0.026 (3)	-0.016 (4)	0.011 (4)	0.014 (3)
C26	0.101 (7)	0.043 (5)	0.046 (5)	-0.031 (5)	0.004 (5)	0.013 (4)
C27	0.060 (5)	0.060 (5)	0.066 (5)	-0.013 (4)	0.013 (4)	0.041 (5)
C28	0.034 (4)	0.080 (6)	0.051 (4)	0.021 (4)	0.026 (3)	0.047 (4)
C29	0.036 (3)	0.045 (4)	0.033 (3)	0.018 (3)	0.021 (3)	0.023 (3)
N1	0.018 (2)	0.015 (2)	0.0102 (18)	-0.0002 (16)	0.0081 (16)	-0.0008 (15)
N4	0.017 (2)	0.022 (2)	0.017 (2)	-0.0036 (18)	0.0053 (18)	-0.0004 (18)
N2	0.024 (2)	0.024 (2)	0.014 (2)	-0.0051 (19)	0.0081 (19)	-0.0025 (17)
N3	0.024 (2)	0.030 (3)	0.022 (2)	-0.001 (2)	0.0095 (19)	0.010 (2)
01	0.0172 (16)	0.0210 (18)	0.0071 (14)	-0.0009 (14)	0.0062 (13)	-0.0020 (13)
O2	0.0154 (17)	0.024 (2)	0.0163 (17)	-0.0009 (14)	0.0078 (14)	0.0014 (14)
03	0.0202 (17)	0.0175 (17)	0.0138 (16)	0.0008 (15)	0.0097 (14)	-0.0008 (14)
016	0.0166 (17)	0.0129 (17)	0.0150 (16)	0.0017 (14)	0.0083 (14)	0.0001 (14)
012	0.027 (2)	0.0153 (18)	0.0218 (19)	0.0031 (15)	0.0130 (16)	0.0024 (15)
013	0.027 (2)	0.0151 (18)	0.0211 (19)	-0.0010 (15)	0.0110 (16)	-0.0016 (14)
06	0.0217 (19)	0.028 (2)	0.0166 (18)	-0.0034 (16)	0.0097 (16)	-0.0021 (15)
O7	0.0196 (18)	0.0269 (19)	0.0148 (17)	-0.0044 (16)	0.0075 (14)	-0.0033 (15)
O4	0.029 (2)	0.0138 (18)	0.0187 (18)	-0.0010 (15)	0.0140 (16)	-0.0011 (14)
05	0.0238 (19)	0.0136 (17)	0.0241 (19)	-0.0008 (15)	0.0128 (16)	0.0004 (14)
O10	0.0186 (18)	0.0202 (18)	0.0143 (17)	-0.0048 (14)	0.0069 (15)	-0.0021 (13)
011	0.0226 (19)	0.0199 (19)	0.0113 (17)	-0.0067 (15)	0.0066 (15)	-0.0037 (14)
08	0.0207 (19)	0.0213 (19)	0.0242 (19)	-0.0028 (15)	0.0135 (16)	-0.0108 (15)
09	0.0197 (17)	0.0185 (18)	0.0225 (18)	-0.0017 (15)	0.0120 (15)	-0.0064 (15)
015	0.028 (2)	0.0177 (19)	0.0164 (18)	-0.0035 (15)	0.0073 (16)	-0.0070 (14)
O14	0.0224 (19)	0.031 (2)	0.0153 (17)	-0.0058 (17)	0.0076 (15)	-0.0001 (15)
017	0.062 (5)	0.106 (8)	0.076 (7)	0.042 (5)	0.043 (5)	0.068 (6)
017A	0.047 (11)	0.094 (16)	0.048 (12)	-0.002 (11)	0.027 (9)	0.016 (11)

Geometric parameters (Å, °)

Cl1—Fe1	2.2963 (14)	C14—O10	1.256 (6)	
Fe2—O3	1.918 (3)	C14—O11	1.269 (6)	
Fe2—O16	1.940 (3)	C14—C15	1.503 (7)	
Fe2—O6	2.015 (4)	C15—H15A	0.9800	
Fe2—O12	2.050 (3)	C15—H15B	0.9800	
Fe2—O4	2.070 (3)	C15—H15C	0.9800	
Fe2—N1	2.075 (4)	C12—O8	1.259 (6)	
Fe4—O16	1.886 (3)	C12—O9	1.272 (6)	
Fe4—O13	2.011 (3)	C12—C13	1.504 (7)	

Fe4—O1	2.033 (3)	С13—Н13А	0.9800
Fe4—O10	2.035 (3)	C13—H13B	0.9800
Fe4—O8	2.039 (3)	C13—H13C	0.9800
Fe4—015	2.039 (3)	C18—O14	1.258 (6)
Fe1—O2	1.957 (3)	C18—O15	1.262 (6)
Fe1—014	1.982 (3)	C18—C19	1.493 (7)
Fe1—O1	2.025 (3)	C19—H19A	0.9800
Fe1—N3	2.165 (5)	C19—H19B	0.9800
Fe1—N2	2.194 (4)	C19—H19C	0.9800
Fe3—O16	1.866 (3)	C30—N4	1.346 (7)
Fe3—O5	2.012 (3)	C30—C31	1.383 (8)
Fe3—O11	2.016 (3)	С30—Н30	0.9500
Fe3—O9	2.023 (3)	C31—C32	1.382 (9)
Fe3—O7	2.030 (3)	С31—Н31	0.9500
Fe3—N4	2.206 (4)	C32—C33	1.369 (9)
C1—O2	1.297 (6)	С32—Н32	0.9500
C1—N1	1.306 (6)	C33—C34	1.378 (8)
C1—C2	1.485 (6)	С33—Н33	0.9500
C2—C7	1.392 (7)	C34—N4	1.338 (6)
C2—C3	1.400 (6)	С34—Н34	0.9500
C3—C4	1.370 (7)	C20—N2	1.338 (7)
С3—Н3	0.9500	C20—C21	1.383 (8)
C4—C5	1.392 (8)	C20—H20	0.9500
C4—H4	0.9500	C21—C22	1.369 (8)
C5—C6	1.372 (7)	C21—H21	0.9500
С5—Н5	0.9500	C22—C23	1.390 (8)
C6—C7	1.414 (6)	C22—H22	0.9500
С6—Н6	0.9500	C23—C24	1.383 (8)
С7—ОЗ	1.322 (6)	C23—H23	0.9500
C16—O12	1.254 (6)	C24—N2	1.343 (7)
C16—O13	1.260 (6)	C24—H24	0.9500
C16—C17	1.505 (7)	C25—N3	1.332 (8)
C17—H17A	0.9800	C25—C26	1.388 (9)
C17—H17B	0.9800	C25—H25	0.9500
С17—Н17С	0.9800	C26—C27	1.367 (11)
C10—O7	1.257 (6)	C26—H26	0.9500
C10—O6	1.260 (6)	C27—C28	1.387 (12)
C10—C11	1.504 (8)	С27—Н27	0.9500
C11—H11A	0.9800	C28—C29	1.370 (10)
C11—H11B	0.9800	C28—H28	0.9500
C11—H11C	0.9800	C29—N3	1.339 (7)
C8—O5	1.255 (6)	С29—Н29	0.9500
C8—O4	1.259 (6)	NI—Ol	1.416 (4)
C8—C9	1.502 (7)	017—H17D	0.85 (3)
C9—H9A	0.9800	017—H17E	0.84 (3)
С9—Н9В	0.9800	OT/A—HT/F	0.86 (3)
С9—Н9С	0.9800	017A—H17G	0.85 (3)

O3—Fe2—O16	172.17 (14)	Н9В—С9—Н9С	109.5
O3—Fe2—O6	90.17 (14)	O10-C14-O11	124.7 (4)
O16—Fe2—O6	97.63 (13)	O10-C14-C15	118.1 (4)
O3—Fe2—O12	90.00 (14)	O11—C14—C15	117.2 (4)
O16—Fe2—O12	91.14 (14)	C14—C15—H15A	109.5
O6—Fe2—O12	86.91 (14)	C14—C15—H15B	109.5
O3—Fe2—O4	88.54 (14)	H15A—C15—H15B	109.5
O16—Fe2—O4	90.71 (13)	C14—C15—H15C	109.5
O6—Fe2—O4	90.10 (14)	H15A—C15—H15C	109.5
O12—Fe2—O4	176.67 (15)	H15B—C15—H15C	109.5
O3—Fe2—N1	85.84 (14)	O8—C12—O9	125.3 (5)
O16—Fe2—N1	86.39 (14)	O8—C12—C13	118.2 (5)
O6—Fe2—N1	175.53 (15)	O9—C12—C13	116.5 (4)
O12—Fe2—N1	91.08 (15)	С12—С13—Н13А	109.5
O4—Fe2—N1	91.80 (15)	C12—C13—H13B	109.5
O16—Fe4—O13	95.04 (14)	H13A—C13—H13B	109.5
016—Fe4—01	88.71 (13)	С12—С13—Н13С	109.5
013—Fe4—01	91.05 (14)	H13A—C13—H13C	109.5
O16—Fe4—O10	96.37 (13)	H13B—C13—H13C	109.5
013—Fe4—010	168.28 (14)	014-018-015	125.1 (5)
01—Fe4—010	91.88 (13)	014-018-019	117.0 (5)
O16—Fe4—O8	93.00 (13)	O15—C18—C19	117.9 (5)
O13—Fe4—O8	87.50 (14)	С18—С19—Н19А	109.5
O1—Fe4—O8	177.85 (14)	C18—C19—H19B	109.5
O10—Fe4—O8	89.23 (14)	H19A—C19—H19B	109.5
O16—Fe4—O15	176.24 (14)	С18—С19—Н19С	109.5
O13—Fe4—O15	86.51 (14)	H19A—C19—H19C	109.5
O1—Fe4—O15	87.84 (14)	H19B—C19—H19C	109.5
O10—Fe4—O15	82.26 (13)	N4—C30—C31	122.3 (5)
O8—Fe4—O15	90.48 (14)	N4—C30—H30	118.9
O2—Fe1—O14	167.24 (14)	С31—С30—Н30	118.9
O2—Fe1—O1	77.46 (12)	C32—C31—C30	119.7 (6)
O14—Fe1—O1	90.32 (13)	С32—С31—Н31	120.2
O2—Fe1—N3	94.22 (15)	С30—С31—Н31	120.2
O14—Fe1—N3	88.66 (16)	C33—C32—C31	117.5 (6)
O1—Fe1—N3	86.72 (15)	С33—С32—Н32	121.3
O2—Fe1—N2	89.67 (15)	С31—С32—Н32	121.3
O14—Fe1—N2	86.85 (16)	C32—C33—C34	120.6 (6)
O1—Fe1—N2	90.99 (15)	С32—С33—Н33	119.7
N3—Fe1—N2	174.96 (17)	С34—С33—Н33	119.7
O2—Fe1—Cl1	93.87 (10)	N4—C34—C33	122.1 (5)
O14—Fe1—Cl1	98.56 (11)	N4—C34—H34	118.9
O1—Fe1—Cl1	170.45 (10)	С33—С34—Н34	118.9
N3—Fe1—Cl1	89.97 (12)	N2—C20—C21	123.1 (5)
N2—Fe1—Cl1	92.98 (12)	N2—C20—H20	118.5
O16—Fe3—O5	93.99 (14)	C21—C20—H20	118.5
O16—Fe3—O11	98.53 (13)	C22—C21—C20	119.0 (5)
O5—Fe3—O11	89.69 (14)	C22—C21—H21	120.5
	× /		

O16—Fe3—O9	93.46 (14)	C20—C21—H21	120.5
O5—Fe3—O9	172.54 (14)	C21—C22—C23	118.8 (5)
O11—Fe3—O9	88.91 (14)	C21—C22—H22	120.6
O16—Fe3—O7	97.10 (14)	C23—C22—H22	120.6
O5—Fe3—O7	89.76 (14)	C24—C23—C22	119.0 (5)
O11—Fe3—O7	164.36 (14)	C24—C23—H23	120.5
O9—Fe3—O7	89.61 (14)	С22—С23—Н23	120.5
O16—Fe3—N4	178.69 (15)	N2—C24—C23	122.3 (5)
O5—Fe3—N4	84.80 (15)	N2—C24—H24	118.8
O11—Fe3—N4	81.96 (14)	C23—C24—H24	118.8
O9—Fe3—N4	87.76 (15)	N3—C25—C26	123.5 (7)
O7—Fe3—N4	82.43 (15)	N3—C25—H25	118.2
O2—C1—N1	120.8 (4)	C26—C25—H25	118.2
O2—C1—C2	118.6 (4)	C27—C26—C25	118.8 (8)
N1—C1—C2	120.6 (4)	С27—С26—Н26	120.6
C7—C2—C3	120.3 (4)	С25—С26—Н26	120.6
C7—C2—C1	123.3 (4)	C26—C27—C28	118.5 (7)
C3—C2—C1	116.2 (4)	С26—С27—Н27	120.8
C4—C3—C2	121.3 (5)	С28—С27—Н27	120.8
С4—С3—Н3	119.4	C29—C28—C27	118.9 (6)
С2—С3—Н3	119.4	C29—C28—H28	120.6
C3—C4—C5	118.8 (5)	C27—C28—H28	120.6
C3—C4—H4	120.6	N3—C29—C28	123.6 (7)
C5—C4—H4	120.6	N3—C29—H29	118.2
C6—C5—C4	120.9 (5)	С28—С29—Н29	118.2
С6—С5—Н5	119.5	C1—N1—O1	111.2 (4)
С4—С5—Н5	119.5	C1—N1—Fe2	129.6 (3)
C5—C6—C7	120.9 (5)	O1—N1—Fe2	118.6 (2)
С5—С6—Н6	119.5	C34—N4—C30	117.8 (5)
С7—С6—Н6	119.5	C34—N4—Fe3	121.4 (4)
O3—C7—C2	124.2 (4)	C30—N4—Fe3	120.6 (4)
O3—C7—C6	118.0 (4)	C20—N2—C24	117.8 (5)
C2—C7—C6	117.7 (4)	C20—N2—Fe1	121.1 (3)
O12-C16-O13	125.6 (4)	C24—N2—Fe1	121.0 (4)
O12—C16—C17	117.4 (5)	C25—N3—C29	116.7 (5)
O13—C16—C17	117.0 (4)	C25—N3—Fe1	121.5 (4)
C16—C17—H17A	109.5	C29—N3—Fe1	121.8 (4)
C16—C17—H17B	109.5	N1—O1—Fe1	114.1 (2)
H17A—C17—H17B	109.5	N1—O1—Fe4	114.4 (2)
C16—C17—H17C	109.5	Fe1—O1—Fe4	131.50 (15)
H17A—C17—H17C	109.5	C1—O2—Fe1	116.4 (3)
H17B—C17—H17C	109.5	C7—O3—Fe2	132.3 (3)
O7—C10—O6	125.7 (5)	Fe3—O16—Fe4	120.97 (16)
O7—C10—C11	116.3 (5)	Fe3—O16—Fe2	121.56 (17)
O6—C10—C11	117.9 (5)	Fe4—O16—Fe2	117.36 (16)
C10-C11-H11A	109.5	C16—O12—Fe2	131.3 (3)
C10-C11-H11B	109.5	C16—O13—Fe4	131.9 (3)
H11A—C11—H11B	109.5	C10—O6—Fe2	131.0 (3)

C10—C11—H11C	109.5	C10—O7—Fe3	134.1 (3)
H11A—C11—H11C	109.5	C8—O4—Fe2	133.5 (3)
H11B—C11—H11C	109.5	C8—O5—Fe3	131.1 (3)
O5—C8—O4	126.0 (4)	C14—O10—Fe4	128.4 (3)
O5—C8—C9	116.9 (5)	C14—O11—Fe3	133.1 (3)
O4—C8—C9	117.1 (4)	C12—O8—Fe4	132.8 (3)
С8—С9—Н9А	109.5	C12—O9—Fe3	127.4 (3)
С8—С9—Н9В	109.5	C18—O15—Fe4	130.4 (3)
H9A—C9—H9B	109.5	C18—O14—Fe1	134.5 (3)
С8—С9—Н9С	109.5	H17D—O17—H17E	114 (7)
Н9А—С9—Н9С	109.5	H17F—O17A—H17G	104 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	D—H···A
C6—H6…O17 <i>A</i> ⁱ	0.95	2.64	3.486 (19)	149
C15—H15C…O15 ⁱⁱ	0.98	2.62	3.581 (7)	166
C19—H19A…O11 ⁱⁱⁱ	0.98	2.61	3.424 (7)	141
C20—H20…N1	0.95	2.65	3.429 (7)	140
C20—H20…O1	0.95	2.53	3.100 (6)	118
C21—H21····O4 ^{iv}	0.95	2.56	3.403 (6)	148
C23—H23···Cl1 ^v	0.95	2.97	3.697 (6)	135
C24—H24…Cl1	0.95	2.75	3.301 (6)	118
C25—H25…O2	0.95	2.55	3.126 (7)	119
C26—H26…O17 ⁱⁱ	0.95	2.20	3.014 (12)	144
C26—H26····O17 <i>A</i> ⁱⁱ	0.95	2.60	3.17 (3)	118
C29—H29…O14	0.95	2.48	3.007 (7)	115
O17—H17D····Cl1 ^{vi}	0.85 (3)	2.80 (3)	3.647 (9)	174 (15)
O17—H17 <i>E</i> ···O3 ^{vii}	0.84 (3)	2.03 (5)	2.830 (8)	159 (12)

Symmetry codes: (i) x, y, z+1; (ii) -x, y+1/2, -z+1; (iii) -x, y-1/2, -z+1; (iv) -x, y-1/2, -z+2; (v) -x-1, y-1/2, -z+1; (vi) x+1, y, z; (vii) x, y, z-1.