Formation of 1-(thiazol-2-yl)-4,5-dihydropyrazoles from simple precursors: synthesis, spectroscopic characterization and the structures of an intermediate and two products

Ninganayaka Mahesha,^a Hemmige S. Yathirajan,^a* Holalagudu A. Nagma Banu,^b Balakrishna Kalluraya,^b Ravindranath S. Rathore^{c*} and Christopher Glidewell^d

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore-574199, India, ^cDepartment of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya-824236, India, and ^dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK. *Correspondence e-mail: yathirajan@hotmail.com, ravindranath.rathore@gmail.com

Two new 1-(thiazol-2-vl)-4,5-dihydropyrazoles have been synthesized from simple precursors, and characterized both spectroscopically and structurally. In addition, two intermediates in the reaction pathway have been isolated and characterized, one of them structurally. The molecules of the intermediate (E)- $1-(4-\text{methoxyphenyl})-3-[4-(\text{prop-2-ynyloxy})\text{phenyl}]\text{prop-2-en-1-one}, C_{19}H_{16}O_3$ (I), are linked by a combination of $C-H \cdots O$ and $C-H \cdots \pi$ (arene) hydrogen bonds to form ribbons. The products (RS)-5-(4-methoxyphenyl)-1-(4phenythiazol-2-yl)-3-[4-(prop-2-ynyloxy)phenyl]-4,5-dihydro-1*H*-pyrazole, $C_{28}H_{23}N_3O_2S$ (II), and (RS)-5-(4-methoxyphenyl)-1-[4-(4-methylphenyl)thiazol-2yl]-3-[4-(prop-2-ynyloxy)phenyl]-4,5-dihydro-1H-pyrazole, C₂₉H₂₅N₃O₂S (III), are closely related – differing only by presence or absence of a methyl group at the arylthiazolyl substituent – and crystallize in an isomorphous setting. Both molecules contain an effectively planar dihydro-pyrazole ring, and possess an overall T-shaped structure, which is a characteristic of triaryl-substituted 4,5-dihydro-1-(thiazol-2-yl)pyrazole compounds. The crystal packing is characterized by intermolecular C-H···S and C-H··· π (aryl/alkyne) interactions. A combination of two $C-H \cdots \pi$ (arene) hydrogen bonds links the product molecules into sheets.

1. Chemical context

Pyrazole derivatives are an important class of N-heterocyclic compounds with a wide spectrum of biological activities including antibacterial (Song et al., 2013; Yan et al., 2015), antifungal (Gondru et al., 2015), anti-inflammatory (El-Sayed et al., 2012; Kadambar et al., 2021), antimicrobial (Manju, Kalluraya & Kumar, 2019) and antitumor (Insuasty et al., 2010; Alam et al., 2016) activities. Thiazole derivatives similarly also exhibit a broad spectrum of biological activity, including anticancer (Bansal et al., 2020), anti-inflammatory (Sharma et al., 1998) and antimicrobial (Kalluraya et al., 2001) activity.

Accordingly, we have sought to combine pyrazole and thiazole pharmacophores in a single molecular skeleton and synthesized triaryl-substituted (thiazol-2-yl)pyrazole compounds (C3,C5-aryl substitutions on the pyrazole ring and C4-aryl substitution on the thiazole ring). We report here the synthesis of 1-(thiazolol-2-yl)-4,5-dihydropyrazoles from simple precursors. The reaction sequence is summarized in Fig. 1: a base-catalysed condensation reaction between

OPEN O ACCESS

Received 6 July 2021 Accepted 7 September 2021

Edited by M. Zeller, Purdue University, USA

Keywords: heterocyclic compounds: pyrazoles: thiazoles; synthesis; NMR spectroscopy; crystal structure; molecular structure; hydrogen bonding: supramolecular assembly.

CCDC references: 2108209; 2108208; 2108207

Supporting information: this article has supporting information at journals.iucr.org/e

Jerry P. Jasinski tribute

4-methoxybenzaldehyde (A) and a substituted acetophenone (B) yields the chalcone intermediate (I) (Shaibah *et al.*, 2020). Compound (I) undergoes a cyclocondensation reaction with a thiosemicarbazide to provide thioamide intermediate (C), which in turn undergoes a further cyclocondensation reaction with a phenacyl bromide to give the thiazolyl-dihydropyrazoles (II) and (III) (Manju, Kalluraya, Asma *et al.*, 2019).

Few triaryl-substituted (thiazol-2-yl)pyrazoles have previously been synthesized and characterized. The synthesis and crystal structure of a new thiazolyl-pyrazoline derivative bearing the 1,2,4-triazole moiety has been reported (CSD refcode BAKLOQ; Zeng et al., 2012). A new series of 1,3thiazole integrated pyrazoline scaffolds have been synthesized and characterized (DADQIL, DADQEH; Salian et al., 2017). The synthesis, fluorescence, TGA and crystal structure of a thiazolyl-pyrazoline derived from chalcones has been described (JUNRAN; Suwunwong et al., 2015). In addition, the following crystal structures of related compounds have been reported: 2-[3-(4-bromophenyl)-5-(4-fluorophenyl)-4,5dihydro-1H-pyrazol-1-yl]-4-phenyl-1,3-thiazole (IDOMOF:

Figure 1 The reaction sequence leading to the formation of compounds (I)–(III).

Abdel-Wahab *et al.*, 2013*c*), 2-[5-(4-fluorophenyl)-3-(4-methylphenyl)-4,5-dihydro-1*H*-pyrazol-1-yl]-4-phenyl-1,3-thiazol (MEWQUC; Abdel-Wahab *et al.*, 2013*a*), 2-[3-(4-chlorophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1*H*-pyrazol-1-yl]-4phenyl-1,3-thiazole (WIGQIO; Abdel-Wahab *et al.*, 2013*b*), 2-[3-(4-chlorophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1*H*-pyrazol-1-yl]-8*H*-indeno[1,2-*d*]thiazole (WOCFEC; El-Hiti *et al.*, 2019) and 2-[3-(4-bromophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1*H*-pyrazol-1-yl]-8*H*-indeno[1,2-*d*]thiazole (PUVVAG; Alotaibi *et al.*, 2020).

The proposed synthetic route, as also applied to synthesize many of the aforementioned related compounds, was selected because in some cases, we have introduced mesoionic moieties like sydnone as a part of the triaryl. These sydnones are somewhat sensitive towards vigorous reaction conditions. Under the present conditions selected, the products are stable and the reactions gave reasonably good yields. The chosen synthetic routes of the reported compounds in this study are straightforward with limited steps and readily accessible, cheap starting materials, and yields are reasonably high (Nayak et al., 2013; Bansal et al., 2020). The biological activities of few of the related triaryl-substituted (thiazol-2yl)pyrazole compounds have been reported in the literature, such as Salian et al. (2017) have demonstrated radical scavenging capacity owing to the destabilization of the radical formed during oxidation. In the present study, compounds (I)-(III) and the intermediate (C) have been characterized spectroscopically. Chalcone intermediate (I) (Fig. 2) and the di-

Figure 2 The molecular

The molecular structure of compound (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 3

The molecular structure of compound (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

hydro(thiazolyl)pyrrazole products (II) and (III) (Figs. 3 and 4) have also been characterized, and their structures will be described here.

2. Structural commentary

For the thiazolylpyrazole products (II) and (III), and for the intermediates (I) and (C) (Fig. 1), the ¹H NMR spectra contained all of the expected signals (Section 5). In particular, the spectra of each of (I), (II) and (III) contained signals from an ABX spin system arising from the H atoms bonded to atoms C4 and C5 (Figs. 2 and 3), consistent with the formation of a new 4,5-dihydropyrazole ring.

In the structure of the chalcone intermediate (I) (Fig. 2), the two aryl rings are both twisted away from the plane of the central spacer unit, atoms C11, C1, O1, C2, C3, C31 [maximum planar deviation of 0.033 (2) Å for C3 atom]. The dihedral angles between this spacer unit and the rings (C11–C16) and (C31–C36) are 21.48 (7) and 8.98 (7)°, respectively, while the dihedral angle between the (C11–C16) ring and the prop-2-ynyloxy unit (O14, C17, C18, C19) is 73.48 (13)°. The molecule of (I) exhibits no internal symmetry and so is conformationally chiral, but the centrosymmetric space group confirms that

$\begin{array}{c} c_{145} \\ c_{143} \\ c_{143} \\ c_{143} \\ c_{142} \\ c_{55} \\ c_{51} \\ c_{55} \\ c_{55} \\ c_{57} \\ c_{56} \\ c_{57} \\ c_{57} \\ c_{57} \\ c_{53} \\ c_{57} \\$

Figure 4

The molecular structure of compound (III) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

equal numbers of the two conformational enantiomers are present.

Compounds (II) and (III), differing only in the presence or absence of a methyl group at the arylthiazolyl substituent, and are isomorphous and isostructural (Fig. 1 and Table 2). In the molecules of (II) and (III), there is a stereogenic centre at atom C5 and, for each, the reference molecule was selected as one having the R-configuration at atom C5. However, the space group confirms that both compounds have crystallized as racemic mixtures: this is as expected, as the synthesis of (II) and (III) involves no reagents that could plausibly induce enantioselectivity. In each of these compounds, the dihydropyrazole ring is effectively planar (Alex & Kumar, 2014). The maximum deviations from the mean planes through the ring atoms are 0.44 (3) Å for atom C4 in (II) and only 0.012 (2) Å for atom C3 in (III). The dihydro-pyrazole ring has been found to be effectively planar among triaryl-substituted (thiazol-2yl)pyrazole compounds available in the literature (see Chemical context and Database survey for references).

In each of (I)–(III), the methoxy C atom is coplanar with the adjacent aryl ring [the maximum deviation of atom C37 in (I) and C57 in (II) and (III) from the respective planes are 0.003 (2), 0.529 (5) and 0.405 (7) Å, respectively).

Associated with this coplanarity, the values of the two exocyclic C–C–O angles, at atom C34 in (I) and at atom C54 in each of (II) and (III), differ by *ca* 10°, as typically found in planar alkoxyarenes (Seip & Seip, 1973; Ferguson *et al.*, 1996; Kiran Kumar, Yathirajan, Foro *et al.*, 2019; Kiran Kumar *et al.*, 2020). Overall, both the molecules (II) and (III) adopt a T-shaped structure with the pyrazole C5-substituent anisyl units forming the blade. The remaining part of molecule, the thiazolyl-pyrazole ring and its substituents form a more or less planar structure, which constitutes the stock of the T-shape. The angle between the plane of the anisyl unit and the remaining part of molecule is 71.8 (1) and 75.3 (1)° in (II) and (III), respectively. Both molecules adopt a more or less similar conformation and a superimposed image of (II) and (III) is shown in Fig. 5.

3. Supramolecular features

The supramolecular assembly of the chalcone (I) depends upon two hydrogen-bond-like interactions, one each of the

Figure 5 Superimposed image of (II) (shown in green) and (III).

Jerry P. Jasinski tribute

Table 1

Hydrogen-bond parameters (Å, °).

Cg1 and Cg2 represent the centroids of the (C31–C36) and (C51–C56) rings, respectively.

Compound	$D - \mathbf{H} \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
(I)	$C17-H17B\cdotsO1^{i}$	0.97	2.59	3.456 (2)	148
	C19−H19· · · Cg1 ⁱⁱ	0.93	2.73	3.660 (2)	177
	$C12-H12\cdots Cg1^{iii}$	0.93	2.89	3.5117 (18)	126
(II)	C39 $-$ H39 \cdots Cg2 ^{iv}	0.93	2.59	3.365 (5)	141
. ,	$C56-H56\cdots Cg1^{v}$	0.93	2.91	3.688 (3)	142
(III)	$C39-H39\cdots Cg2^{iv}$	0.93	2.93	3.802 (5)	156
`	$C56-H56\cdots Cg1^{v}$	0.93	2.92	3.689 (3)	141
	$C35-H35\cdots$ S 11^{vi}	0.93	2.86	3.560 (4)	133

Symmetry codes: (i) -x, -y, 1-z; (ii) -x, 1-y, 1-z; (iii) -1+x, y, z; (iv) 1+x, y, z; (v) $-\frac{1}{2} + x, \frac{1}{2} - y, -\frac{1}{2} + z$; (vi) $\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z$.

C-H···O and the C-H··· π (arene) type (Table 1). The molecules of (I) are linked into a ribbon of centrosymmetric rings running parallel to the [010] direction (Fig. 6), in which (propynyloxy-CH₂) C17-H17B···O1 (carbonyl) bonded $R_2^2(18)$ (Etter, 1990; Etter *et al.*, 1990; Bernstein *et al.*, 1995) rings centred at (0, *n*, 0.5) alternate with rings built from (propynyloxy-alkyne) C19-H19··· π (arene of anisyl)

Part of the crystal structure of compound (I) showing the formation of a hydrogen-bonded ribbon of centrosymmetric rings running parallel to the [010] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to the C atoms which are not involved in the motifs shown have been omitted.

hydrogen bonds, which are centred at (0, n + 0.5, 0.5), where *n* represents an integer in each case. The C-H(alkyne) $\cdots \pi$ interaction has been examined by Holme *et al.* (2013). Another (propynyloxy-phenyl) C12-H12 $\cdots \pi$ (arene of anisyl) interaction is also observed.

The structure of compound (II) and (III) contains two C– H··· π (arene) hydrogen bonds, namely, (propynyloxy-alkyne) C39–H39···Cg2 (arene of anisyl) and (anisyl-C_{ar}H) C56– H56···Cg1(propynyloxy-phenyl). Together, the two interactions generate a sheet (Fig. 7) lying parallel to (010) in the domain 0 < y < 0.5. The interaction is augmented by a (propynyloxy-phenyl) C35–H35···S11 interaction (Ghosh *et al.*, 2020) in (III). In (II) too, there is a short H35···S11 contact of 2.96 Å; however, it is only 0.04 Å shorter than the sum of van der Waals radii of the corresponding atoms. A second

Part of the crystal structure of compound (II) showing the formation of a hydrogen-bonded sheet lying parallel to (010). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms which are not involved in the motifs shown have been omitted.

sheet of this type, related to the first by the action of the glide planes lies in the domain 0.5 < y < 1.0, but there are no direction-specific interactions between adjacent sheets. With the exception of this, there are no significant differences in the packing of (II) and (III).

In (III), a C5–H5··· π (alkyne) interaction, also referred as a T-shaped C–H··· π interaction (McAdam *et al.*, 2012) is observed, with the shortest H5···C38ⁱ [symmetry code: (i) $-\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z$] distance being 2.74 Å and a C5–H5···C38 angle of 159°. In (II), two such short contacts of the C– H··· π (alkyne) type are observed, with H4A···C39ⁱ and H5···C38ⁱ distances of 2.80 and 2.81 Å, respectively, which are only 0.10 and 0.09 Å shorter than the sum of of corresponding van der Waals radii.

Additional short intramolecular C-H···O and C-H···N contacts are observed in (I)–(III). The packing is devoid of C(alkyne)–H···O hydrogen bonding, and no noticeable π - π interactions are observed.

4. Database survey

We briefly compare the structures reported here with those of some related compounds. A search for triaryl-substituted (thiazol-2-yl)pyrazoles in the Cambridge Structural Database (Version 2021.1; Groom et al., 2016) yielded nine structures that have C3,C5-aryl substitutions in the pyrazole ring and C4aryl substitution in the thiazole ring, CSD entries: BAKLOQ, DADQEH, DADQIL, IDOMOF, JUNRAN, MEWQUC, WIGQIO, WOCFEC and PUVVAG (for references, see Chemical context). BAKLOQ, and PUVVAG have fused thiazol and phenyl rings. All these structures are characterized by a T-shaped structure with pyrazole C5-aryl substituents forming its blade and the remaining part of the molecule, the thiazol-2-yl-pyrazole ring and its substituents, forming a more or less planar structure, which constitutes the stock of the Tshape. Classical hydrogen bonding is not observed in any of these compounds. The dihydropyrazole rings are effectively planar in all these compounds.

Finally, we note that the Cambridge Structural Database (Groom *et al.*, 2016) records 55 chalcone structures, which were determined as part of the long-time collaboration between the Yathirajan group and the late Professor Jerry P. Jasinski.

5. Synthesis and crystallization

All reagents were obtained commercially, and all were used as received. For the synthesis of compound (I), 4-methoxybenzaldehyde (A), (see Fig. 1) (1.80 g, 0.014 mol) was added to a well-stirred solution of 4-(prop-2-ynyloxy)acetophenone (B) (2.00 g, 0.012 mol) and potassium hydroxide (0.90 g, 0.017 mol) in ethanol (10 ml), and this resulting mixture was stirred at ambient temperature for 5 h. When the reaction was complete, as judged from TLC, the mixture was poured into an excess of ice-cold water and the resulting solid product (I) was collected by filtration and crystallized from a mixture of ethanol and *N*,N-dimethylformamide (3:2, *v/v*) (Shaibah *et al.*, 2020). Yield 88%, m.p. 375–378 K. IR (cm⁻¹) 2180 (alkyne), 1667 (C=O), 1620 (C=C). NMR (CDCl₃) δ (¹H) 2.79 (2H, *d*, *J* = 1.8 Hz O-CH₂), 6.67 (1H, *d*, *J* = 15.6 Hz) (H-2) and 7.54 (1H, *d*, *J* = 15.6 Hz) (H-3), 7.06 (2H, *d*, *J* = 8.8Hz) and 7.16 (2H, *d*, *J* = 8.8Hz) (-C₆H₄-), 7.12–7.24 (4H, *m*, -C₆H₄-).

For the synthesis of compounds (II) and (III), the precursor chalcone was first converted to the carbothioamide intermediate (C): thiosemicarbazide (0.155 g, 1.50 mmol) was added to a suspension of (I) (0.50 g, 1.0 mmol) and potassium hydroxide (0.14 g, 2.5 mmol) in ethanol (10 ml). This mixture was then heated under reflux for 8 h, after which time the reaction was judged from TLC to be complete. The mixture was poured onto crushed ice and the resulting solid intermediate (C) was collected by filtration and crystallized from a mixture of ethanol and N,N-dimethylformamide (3:2, v/v). Yield 79%, m.p. 422-423 K. Analysis: found C 65.8, H 5.2, N 11.5%; C₂₀H₁₅N₃O₂S requires C 65.7, H 5.2, N 11.5%. IR (cm^{-1}) 3339 (NH₂), 2120 (alkyne). ¹H NMR (DMSO- d_6) δ 3.09 (1H, dd, J = 17.5 Hz and 3.2 Hz) and 3.71 (1H, dd, J = 17.5 Hz and 11.5 Hz) (pyrazole CH₂), 3.69 (1H, t, J = 2.3 Hz, alkynic CH), 3.78 (3H, s, OMe), 4.52 (2H, d, J = 2.3 Hz, O-CH₂), 5.76 (1H, dd, J = 11.5 Hz and 3.2 Hz, pyrazole CH), 6.75 (2H, d, J = 8.8 Hz) and 7.02 (2H, d, J = 8.8 Hz) $(-C_6H_4-)$, 7.13 (2H, d, J = 8.1 Hz) and 7.64 (2H, d, J = 8.1 Hz) $(-C_6H_4-)$. Mixtures of this intermediate (1.00 g, 2.0 mmol) and either phenacyl bromide (0.5 g, 2.0 mmol) for (II) or 4-methylphenacyl bromide (0.58 g, 2.0 mmol) for (III) in ethanol (20 ml) were heated under reflux for 1 h. The mixtures were then allowed to cool to ambient temperature and the resulting solid products were collected by filtration and then crystallized from mixtures of ethanol and N.N-dimethylformamide (3:2, v/v) (Manju, Kalluraya, Asma *et al.*, 2019). Compound (II), vield 88%, m.p. 435-438 K. IR (cm⁻¹ 2198 (alkyne), 1618 (C=N), 1600 (C=C). ¹H NMR (CDCl₃) δ 2.41 (1H, t, J = 1.8 Hz), H-39), 3.46 (1H, dd, J = 16.9 Hz and 5.2 Hz) and 4.10 (1H, dd, J = 16.9 Hz and 12.4 Hz) (pyrazole CH₂), 3.90 (3H, s, OMe), 4.56 (2H, d, J = 1.8 Hz, O-CH₂), 5.43 (1H, dd, J = 12.4 Hz and 5.2 Hz, pyrazole CH), 6.95 (2H, d, J = 8.8 Hz) and 7.20 (2H, d, J = 8.8Hz, $-C_6H_4-$) 7.26–7.63 (9H, m, aryl), 7.90 (1H, s, H-15). Compound (III), yield 82%, m.p. 453-455 K. IR (cm⁻¹) 2210 (alkyne), 1620 (C=N), 1605 (C=C). ¹H NMR $(CDCl_3) \delta 2,32 (3H, s, C-CH_3), 2.54 (1H, t, J = 2.0 Hz), H-39),$ 3.28 (1H, dd, J = 17.0 Hz and 6.4 Hz) and 3.84 (1H, dd, J =17.0 Hz and 11.8 Hz) (pyrazole CH₂), 3.77 (3H, s, OMe), 4.75 $(2H, d, J = 2.0 \text{ Hz}, \text{ O}-\text{CH}_2)$, 5.69 (1H, dd, J = 11.8 Hz and5.4 Hz, pyrazole CH), 6.86 (2H, d, J = 8.8 Hz), 7.01 (2H, d, J = 8.8 Hz), 7.11 (2H, d, J = 8.8 Hz), 7.34 (2H, d, J = 8.8Hz), 7.57 (2H, d, J = 8.8 Hz) and 7.72 $(2H, d, J = 8.8 \text{ Hz}) (3 \times -C_6 CH_4)$ 8.00 (1H, s, H-15). Crystals of compounds (I)–(III) that were suitable for single-crystal X-ray diffraction were selected directly from the prepared samples.

6. Refinement

Crystal data, data collection and refinement details are summarized in Table 2. A number of low-angle reflections,

Jerry P. Jasinski tribute

 Table 2

 Experimental details.

	(I)	(II)	(III)
Crystal data			
Chemical formula	$C_{19}H_{16}O_3$	C ₂₈ H ₂₃ N ₃ O ₂ S	$C_{29}H_{25}N_{3}O_{2}S$
M_r	292.32	465.55	479.58
Crystal system, space group	Triclinic, $P\overline{1}$	Monoclinic, Cc	Monoclinic, Cc
Temperature (K)	297	297	297
a, b, c (Å)	8.6430 (15), 9.9526 (16), 10.0677 (18)	15.7724 (12), 17.6042 (15), 9.3589 (9)	16.5634 (17), 17.7250 (19), 9.4032 (11)
α, β, γ (°)	79.039 (6), 70.124 (6), 68.366 (5)	90, 114.259 (3), 90	90, 116.401 (3), 90
$V(\dot{A}^3)$	755.0 (2)	2369.1 (4)	2472.7 (5)
Z	2	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.09	0.17	0.16
Crystal size (mm)	$0.16 \times 0.15 \times 0.12$	$0.20 \times 0.18 \times 0.15$	$0.18 \times 0.16 \times 0.15$
Data collection			
Diffractometer	Bruker D8 Venture	Bruker D8 Venture	Bruker D8 Venture
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2016)	Multi-scan (SADABS; Bruker, 2016)	Multi-scan (SADABS; Bruker, 2016)
T_{\min}, T_{\max}	0.966, 0.969	0.949, 0.975	0.949, 0.976
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	45325, 5029, 3072	46650, 6087, 4331	40416, 5578, 3802
R _{int}	0.066	0.062	0.058
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.735	0.692	0.652
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.053, 0.162, 1.01	0.040, 0.103, 1.05	0.042, 0.121, 1.08
No. of reflections	5029	6087	5578
No. of parameters	200	308	318
No. of restraints	0	2	2
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.36, -0.20	0.12, -0.16	0.15, -0.17
Absolute structure	_	Flack x determined using 1715 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)	Flack x determined using 1613 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	_	0.00 (3)	-0.01(3)

Computer programs: APEX3 (Bruker, 2016), APEX3, SAINT and XPREP (Bruker, 2016), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

which had been attenuated by the beam stop, were omitted from the data sets: for (I), (100), (011), $(0\overline{11})$, (110) and (111); for (II), $(11\overline{1})$, $(\overline{1}11)$ and (200); and for (III), $(\overline{1}11)$ and (200). All H atoms were located in difference maps and they were then treated as riding atoms in geometrically idealized positions with C-H distances of 0.98 Å (saturated aliphatic C-H), 0.97 Å (CH₂), 0.96 Å (CH₃) or 0.93 Å for all other H atoms, and with $U_{iso}(H) = kU_{eq}(C)$, where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and k = 1.2 for all other H atoms. For compounds (II) and (III), the correct orientation of the structures with respect to the polar axis directions was established by means of the Flack x parameter (Flack, 1983), calculated using quotients of the type $(I^+) - (I^-)/[(I^+) + (I^-)]$ (Parsons *et al.*, 2013). For (II), x =0.00 (3), calculated using 1715 quotients, and for (III) x =-0.01 (3), calculated using 1613 quotients.

Acknowledgements

NM thanks the University of Mysore for research facilities. RSR thanks the DST and the SAIF, IIT Madras, for access to their X-ray crystallography facilities.

Funding information

HSY is grateful to the UGC, New Delhi, for the award of a BSR Faculty Fellowship for three years.

References

- Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013*a*). *Acta Cryst.* E**69**, 0392–0393.
- Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013c). Acta Cryst. E69, 0735.
- Abdel-Wahab, B. F., Ng, S. W. & Tiekink, E. R. T. (2013*b*). *Acta Cryst.* E**69**, 0576.
- Alam, R., Wahi, D., Singh, R., Sinha, D., Tandon, V., Grover, A. & Rahisuddin (2016). *Bioorg. Chem.* **69**, 77–90.
- Alex, J. M. & Kumar, R. (2014). J. Enzyme Inhib. Med. Chem. 29, 427–442.
- Alotaibi, A. A., Abdel-Wahab, B. F., Hegazy, A. S., Kariuki, B. M. & El-Hiti, G. A. (2020). Z. Krist. New Cryst. Struct. 235, 897–899.
- Bansal, K. K., Bhardwaj, J. K., Saraf, P., Thakur, V. K. & Sharma, P. C. (2020). Materials Today Chemistry, 17, 100335.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2016). *APEX3*, *SADABS*, *SAINT* and *XPREP*. Bruker AXS Inc., Madison, Wisconsin, USA.
- El-Hiti, G. A., Abdel-Wahab, B. F., Alqahtani, A., Hegazy, A. S. & Kariuki, B. M. (2019). *IUCrData*, **4**, x190218.

- El-Sayed, M. A.-A., Abdel-Aziz, N. I., Abdel-Aziz, A. A.-M., El-Azab, A. S. & ElTahir, K. E. H. (2012). *Bioorg. Med. Chem.* 20, 3306–3316.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Ghosh, S., Chopra, P. & Wategaonkar, S. (2020). *Phys. Chem. Chem. Phys.* In the press. https://doi.org/10.1039/D0CP01508C
- Gondru, R., Banothu, J., Thatipamula, R. K., Hussain, A. S. K. & Bavantula, R. (2015). *RSC Adv.* 5, 33562–33569.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Holme, A., Børve, K. J., Saethre, L. J. & Thomas, T. D. (2013). J. Phys. Chem. A, 117, 2007–2019.
- Insuasty, B., Tigreros, A., Orozco, F., Quiroga, J., Abonía, R., Nogueras, M., Sanchez, A. & Cobo, J. (2010). *Bioorg. Med. Chem.* 18, 4965–4974.
- Kadambar, A. K., Kalluraya, B., Singh, S., Agarwal, V. & Revanasiddappa, B. C. (2021). J. Heterocycl. Chem. 58, 654–664.
- Kalluraya, B., Isloor, A. M. & Shenoy, S. (2001). *Indian J. Heterocycl. Chem.* **11**, 159–162.
- Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494–1506.
- Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488–495.
- Manju, N., Kalluraya, B., Asma, Kumar, M. S., Revanasiddappa, B. & Chandra (2019). J. Med. Chem. Sci. 2, 101–109.

Manju, N., Kalluraya, B. Asma & Kumar, M. S. (2019). J. Mol. Struct.

Jerry P. Jasinski tribute

- 1193, 386–397. McAdam, C. J., Cameron, S. A., Hanton, L. R., Manning, A. R.,
- Moratti, S. C. & Simpson, J. (2012). *CrystEngComm*, **14**, 4369–4383.
- Nayak, P. S., Narayana, B., Yathirajan, H. S., Jasinski, J. P. & Butcher, R. J. (2013). Acta Cryst. E69, 0523.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Salian, V. V., Narayana, B., Sarojini, B. K., Kumar, M. S., Nagananda, G. S., Byrappa, K. & Kudva, A. K. (2017). Spectrochim. Acta A Mol. Biomol. Spectrosc. 174, 254–271.
- Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024-4027.
- Shaibah, M. A. E., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 48–52.
- Sharma, P. K., Sawnhney, S. N., Gupta, A., Singh, G. B. & Bani, S. (1998). Indian J. Chem. 37B, 376–381.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Song, M.-X., Zheng, C.-J., Deng, X.-Q., Sun, L.-P., Wu, Y., Hong, L., Li, Y.-J., Liu, Y., Wei, Z.-Y., Jin, M.-J. & Piao, H.-R. (2013). *Eur. J. Med. Chem.* **60**, 376–385.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Suwunwong, T., Chantrapromma, S. & Fun, H. K. (2015). Opt. Spectrosc. 118, 563–573.
- Yan, L., Wu, J., Chen, H., Zhang, S., Wang, Z., Wang, H. & Wu, F. (2015). RSC Adv. 5, 73660–73669.
- Zeng, Y.-M., Chen, S.-Q. & Liu, F. M. (2012). J. Chem. Crystallogr. 42, 24–28.

Acta Cryst. (2021). E77, 975-981 [https://doi.org/10.1107/S2056989021009312]

Formation of 1-(thiazol-2-yl)-4,5-dihydropyrazoles from simple precursors: synthesis, spectroscopic characterization and the structures of an intermediate and two products

Ninganayaka Mahesha, Hemmige S. Yathirajan, Holalagudu A. Nagma Banu, Balakrishna Kalluraya, Ravindranath S. Rathore and Christopher Glidewell

Computing details

For all structures, data collection: *APEX3* (Bruker, 2016); cell refinement: *APEX3* and *SAINT* (Bruker, 2016); data reduction: *SAINT* and *XPREP* (Bruker, 2016); program(s) used to solve structure: *SHELXT2014/5* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *PLATON* (Spek, 2020); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015b) and *PLATON* (Spek, 2020).

(E)-1-(4-Methoxyphenyl)-3-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one (I)

Crystal data

C₁₉H₁₆O₃ $M_r = 292.32$ Triclinic, $P\overline{1}$ a = 8.6430 (15) Å b = 9.9526 (16) Å c = 10.0677 (18) Å $a = 79.039 (6)^{\circ}$ $\beta = 70.124 (6)^{\circ}$ $\gamma = 68.366 (5)^{\circ}$ $V = 755.0 (2) Å^{3}$

Data collection

Bruker D8 Venture diffractometer Radiation source: INCOATEC high brilliance microfocus sealed tube Multilayer mirror monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2016) $T_{\min} = 0.966, T_{\max} = 0.969$ Z = 2 F(000) = 308 $D_x = 1.286 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5248 reflections $\theta = 2.7-32.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 297 KBlock, colourless $0.16 \times 0.15 \times 0.12 \text{ mm}$

45325 measured reflections 5029 independent reflections 3072 reflections with $I > 2\sigma(I)$ $R_{int} = 0.066$ $\theta_{max} = 31.5^\circ, \ \theta_{min} = 2.9^\circ$ $h = -12 \rightarrow 12$ $k = -14 \rightarrow 14$ $l = -14 \rightarrow 14$ Refinement

Refinement on F^2	Primary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: inferred from
$wR(F^2) = 0.162$	neighbouring sites
<i>S</i> = 1.01	H-atom parameters constrained
5029 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0578P)^2 + 0.2039P]$
200 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
Special details	

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.35447 (18)	0.15799 (16)	0.42144 (16)	0.0472 (3)
01	0.36622 (16)	0.11332 (14)	0.31105 (12)	0.0652 (3)
C2	0.47763 (19)	0.22583 (17)	0.42604 (16)	0.0498 (3)
H2	0.4598	0.2643	0.5094	0.060*
C3	0.61295 (19)	0.23433 (16)	0.31606 (16)	0.0480 (3)
Н3	0.6285	0.1928	0.2351	0.058*
C11	0.21298 (18)	0.14699 (14)	0.55306 (15)	0.0436 (3)
C12	0.06427 (19)	0.13056 (16)	0.54368 (16)	0.0469 (3)
H12	0.0557	0.1266	0.4550	0.056*
C13	-0.07138 (19)	0.11992 (16)	0.66299 (16)	0.0485 (3)
H13	-0.1707	0.1106	0.6545	0.058*
C14	-0.05751 (18)	0.12334 (15)	0.79527 (15)	0.0456 (3)
C15	0.0910 (2)	0.13783 (17)	0.80677 (16)	0.0514 (3)
H15	0.1007	0.1390	0.8957	0.062*
C16	0.22343 (19)	0.15049 (16)	0.68757 (16)	0.0496 (3)
H16	0.3216	0.1616	0.6965	0.060*
O14	-0.18261 (15)	0.11348 (14)	0.92107 (11)	0.0599 (3)
C17	-0.3326 (2)	0.0850 (2)	0.91866 (19)	0.0601 (4)
H17A	-0.3898	0.0520	1.0133	0.072*
H17B	-0.2950	0.0076	0.8573	0.072*
C18	-0.4578 (2)	0.2122 (2)	0.86912 (17)	0.0562 (4)
C19	-0.5601 (3)	0.3130 (2)	0.8308 (2)	0.0709 (5)
H19	-0.6414	0.3932	0.8004	0.085*
C31	0.74006 (18)	0.30161 (15)	0.30821 (14)	0.0439 (3)
C32	0.72813 (19)	0.37748 (16)	0.41724 (15)	0.0485 (3)
H32	0.6349	0.3862	0.4995	0.058*
C33	0.8511 (2)	0.43923 (17)	0.40517 (16)	0.0513 (3)
H33	0.8398	0.4896	0.4787	0.062*
C34	0.9922 (2)	0.42693 (16)	0.28368 (16)	0.0485 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C35	1.0071 (2)	0.35335 (18)	0.17388 (16)	0.0551 (4)
H35	1.1006	0.3448	0.0918	0.066*
C36	0.8814 (2)	0.29253 (18)	0.18739 (16)	0.0535 (4)
H36	0.8921	0.2438	0.1129	0.064*
O34	1.10894 (16)	0.48771 (14)	0.28515 (13)	0.0648 (3)
C37	1.2544 (3)	0.4817 (2)	0.1633 (2)	0.0728 (5)
H37A	1.3212	0.3823	0.1449	0.109*
H37B	1.3259	0.5277	0.1792	0.109*
H37C	1.2145	0.5310	0.0833	0.109*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0429 (7)	0.0456 (7)	0.0533 (8)	-0.0111 (6)	-0.0155 (6)	-0.0091 (6)
01	0.0602 (7)	0.0829 (8)	0.0585 (7)	-0.0276 (6)	-0.0111 (5)	-0.0229 (6)
C2	0.0463 (8)	0.0541 (8)	0.0498 (8)	-0.0162 (6)	-0.0111 (6)	-0.0119 (6)
C3	0.0460 (7)	0.0493 (8)	0.0485 (8)	-0.0130 (6)	-0.0136 (6)	-0.0097 (6)
C11	0.0419 (7)	0.0390 (6)	0.0507 (8)	-0.0105 (5)	-0.0160 (6)	-0.0067 (5)
C12	0.0489 (8)	0.0475 (7)	0.0503 (8)	-0.0157 (6)	-0.0201 (6)	-0.0078 (6)
C13	0.0458 (7)	0.0528 (8)	0.0556 (8)	-0.0203 (6)	-0.0204 (6)	-0.0055 (6)
C14	0.0444 (7)	0.0463 (7)	0.0482 (7)	-0.0164 (6)	-0.0167 (6)	0.0004 (6)
C15	0.0502 (8)	0.0626 (9)	0.0472 (8)	-0.0186 (7)	-0.0228 (6)	-0.0017 (6)
C16	0.0435 (7)	0.0559 (8)	0.0561 (8)	-0.0172 (6)	-0.0212 (6)	-0.0055 (6)
O14	0.0540 (6)	0.0838 (8)	0.0505 (6)	-0.0341 (6)	-0.0190 (5)	0.0056 (5)
C17	0.0565 (9)	0.0690 (10)	0.0619 (10)	-0.0341 (8)	-0.0172 (7)	0.0058 (8)
C18	0.0520 (9)	0.0707 (10)	0.0522 (8)	-0.0287 (8)	-0.0116 (7)	-0.0086 (7)
C19	0.0636 (11)	0.0788 (12)	0.0701 (12)	-0.0172 (9)	-0.0236 (9)	-0.0106 (9)
C31	0.0413 (7)	0.0449 (7)	0.0423 (7)	-0.0104 (5)	-0.0111 (5)	-0.0062 (5)
C32	0.0422 (7)	0.0549 (8)	0.0428 (7)	-0.0098 (6)	-0.0088 (6)	-0.0106 (6)
C33	0.0527 (8)	0.0546 (8)	0.0482 (8)	-0.0136 (7)	-0.0162 (6)	-0.0136 (6)
C34	0.0492 (8)	0.0474 (7)	0.0520 (8)	-0.0160 (6)	-0.0183 (6)	-0.0043 (6)
C35	0.0518 (8)	0.0662 (10)	0.0451 (8)	-0.0241 (7)	-0.0032 (6)	-0.0101 (7)
C36	0.0550 (9)	0.0632 (9)	0.0442 (8)	-0.0224 (7)	-0.0078 (6)	-0.0152 (6)
O34	0.0631 (7)	0.0746 (8)	0.0666 (7)	-0.0335 (6)	-0.0154 (6)	-0.0131 (6)
C37	0.0687 (12)	0.0856 (13)	0.0734 (12)	-0.0436 (10)	-0.0164 (9)	0.0015 (10)

Geometric parameters (Å, °)

C1-01	1.2332 (18)	C17—H17A	0.9700
C1—C2	1.472 (2)	C17—H17B	0.9700
C1-C11	1.485 (2)	C18—C19	1.170 (3)
С2—С3	1.326 (2)	C19—H19	0.9300
С2—Н2	0.9300	C31—C36	1.390 (2)
C3—C31	1.458 (2)	C31—C32	1.402 (2)
С3—Н3	0.9300	C32—C33	1.374 (2)
C11—C12	1.3896 (19)	С32—Н32	0.9300
C11—C16	1.395 (2)	C33—C34	1.390 (2)
C12—C13	1.384 (2)	С33—Н33	0.9300

C12—H12	0.9300	C34—O34	1.3594 (18)
C13—C14	1.385 (2)	C34—C35	1.384 (2)
C13H13	0.9300	C35_C36	1 385 (2)
C14 014	1,2721 (17)	C35_U35	1.505(2)
	1.3/21 (1/)		0.9300
C14—C15	1.387 (2)	С36—Н36	0.9300
C15—C16	1.372 (2)	O34—C37	1.419 (2)
С15—Н15	0.9300	С37—Н37А	0.9600
C16—H16	0.9300	С37—Н37В	0.9600
014—C17	1 4341 (19)	C37—H37C	0 9600
C17 $C18$	1.462 (2)		0.9000
017-018	1.402 (2)		
			100.0
01 - C1 - C2	121.19 (14)	O14—C17—H17B	109.0
01—C1—C11	120.62 (13)	C18—C17—H17B	109.0
C2-C1-C11	118.18 (13)	H17A—C17—H17B	107.8
C3—C2—C1	122.60 (14)	C19—C18—C17	178.89 (19)
С3—С2—Н2	1187	C18—C19—H19	180.0
$C_1 C_2 H_2$	118.7	C_{26} C_{21} C_{22}	116.87 (13)
C1 = C2 = H2	110.7	$C_{30} = C_{31} = C_{32}$	110.67 (13)
C2-C3-C31	127.06 (14)	C36-C31-C3	119.67 (13)
С2—С3—Н3	116.5	C32—C31—C3	123.46 (13)
С31—С3—Н3	116.5	C33—C32—C31	121.46 (13)
C12—C11—C16	117.96 (13)	С33—С32—Н32	119.3
C12—C11—C1	119.34 (13)	C31—C32—H32	119.3
C16—C11—C1	122.70 (13)	$C_{32} - C_{33} - C_{34}$	120.38 (13)
C_{12} C_{12} C_{11}	122.76(13) 121.65(13)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.9
	121.05 (15)	C32-C35-H35	119.0
C13—C12—H12	119.2	C34—C33—H33	119.8
C11—C12—H12	119.2	O34—C34—C35	125.05 (14)
C12—C13—C14	119.22 (13)	O34—C34—C33	115.41 (13)
С12—С13—Н13	120.4	C35—C34—C33	119.53 (14)
C14—C13—H13	120.4	C34—C35—C36	119.36 (14)
Q14—C14—C13	124.69 (13)	C34—C35—H35	120.3
014 - C14 - C15	115 39 (13)	C36_C35_H35	120.3
$C_{12} = C_{14} = C_{15}$	110.09(13)	$C_{30} = C_{30} = 1135$	120.3
	119.92 (14)		122.40 (14)
C16—C15—C14	120.30 (14)	C35—C36—H36	118.8
C16—C15—H15	119.8	С31—С36—Н36	118.8
C14—C15—H15	119.8	C34—O34—C37	118.37 (13)
C15—C16—C11	120.93 (13)	O34—C37—H37A	109.5
C15—C16—H16	119.5	O34—C37—H37B	109.5
C_{11} C_{16} H_{16}	119.5	H37A_C37_H37B	109.5
$C_{14} = O_{14} = C_{17}$	119.50 (12)	$\begin{array}{c} 1137 \text{ A} \\ 024 \\ 027 \\ 1137 \text{ B} \end{array}$	109.5
	118.39 (12)		109.3
014	112.83 (14)	H3/A—C3/—H3/C	109.5
O14—C17—H17A	109.0	Н37В—С37—Н37С	109.5
C18—C17—H17A	109.0		
O1—C1—C2—C3	-4.4 (2)	C13—C14—O14—C17	5.7 (2)
$C_{11} - C_{1} - C_{2} - C_{3}$	176.67 (14)	C15-C14-O14-C17	-174.36(14)
C1 - C2 - C3 - C31	178 55 (14)	$C_{14} - O_{14} - C_{17} - C_{18}$	-76.01(10)
01 01 011 012	(17)	$C_1 - C_1 $	175 71 (15)
	-20.5(2)		1/5./1(15)
C2-C1-C11-C12	158.44 (13)	C2—C3—C31—C32	-4.6 (2)

$\begin{array}{c} 01 & -C1 & -C11 & -C16 \\ C2 & -C1 & -C11 & -C16 \\ C16 & -C11 & -C12 & -C13 \\ C1 & -C12 & -C13 & -C14 \\ C12 & -C13 & -C14 & -O14 \\ C12 & -C13 & -C14 & -O14 \\ C12 & -C13 & -C14 & -C15 \\ O14 & -C14 & -C15 & -C16 \\ C13 & -C14 & -C15 & -C16 \\ C14 & -C15 & -C16 & -C11 \\ C12 & -C11 & -C16 & -C15 \end{array}$	158.65 (15) -22.4 (2) 0.9 (2) -179.94 (13) -1.1 (2) -179.87 (13) 0.2 (2) -179.15 (13) 0.8 (2) -0.9 (2) 0.1 (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.3 (2) -179.98 (14) -0.4 (2) -177.78 (13) 0.8 (2) 178.04 (15) -0.3 (2) -0.4 (3) 0.7 (2) -179.57 (14) 2.8 (2)
C12—C11—C16—C15	0.1 (2)	C33—C34—O34—C37	2.8 (2)
C1—C11—C16—C15	-179.02 (14)	C33—C34—O34—C37	-178.74 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
C17—H17 <i>B</i> ···O1 ⁱ	0.97	2.59	3.456 (2)	148
С3—Н3…О1	0.93	2.50	2.827 (2)	101
C12—H12···Cg1 ⁱⁱ	0.93	2.89	3.5117 (18)	126
C19—H19···· <i>Cg</i> 1 ⁱⁱⁱ	0.93	2.73	3.660 (2)	177

Symmetry codes: (i) -*x*, -*y*, -*z*+1; (ii) *x*-1, *y*, *z*; (iii) -*x*, -*y*+1, -*z*+1.

(RS)-5-(4-Methoxyphenyl)-1-(4-phenythiazol-2-yl)-3-(4-(prop-2-ynyloxy)phenyl)-4,5-dihydro-1H-pyrazole (II)

Crystal data

 $C_{28}H_{23}N_3O_2S$ $M_r = 465.55$ Monoclinic, *Cc a* = 15.7724 (12) Å *b* = 17.6042 (15) Å *c* = 9.3589 (9) Å β = 114.259 (3)° *V* = 2369.1 (4) Å³ *Z* = 4

Data collection

Bruker D8 Venture
diffractometer
Radiation source: INCOATEC high brilliance
microfocus sealed tube
Multilayer mirror monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
$T_{\min} = 0.949, \ T_{\max} = 0.975$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.103$ F(000) = 976 $D_x = 1.305 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6124 reflections $\theta = 2.5-29.7^{\circ}$ $\mu = 0.17 \text{ mm}^{-1}$ T = 297 KBlock, colourless $0.20 \times 0.18 \times 0.15 \text{ mm}$

46650 measured reflections 6087 independent reflections 4331 reflections with $I > 2\sigma(I)$ $R_{int} = 0.062$ $\theta_{max} = 29.5^\circ, \theta_{min} = 3.4^\circ$ $h = -21 \rightarrow 17$ $k = -24 \rightarrow 24$ $l = -12 \rightarrow 12$

S = 1.056087 reflections 308 parameters 2 restraints

Primary atom site location: difference Fourier map	$(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.12 \text{ e} \text{ Å}^{-3}$
Hydrogen site location: inferred from	$\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$
neighbouring sites	Absolute structure: Flack x determined using
H-atom parameters constrained	1715 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et</i>
$w = 1/[\sigma^2(F_o^2) + (0.0465P)^2 + 0.3024P]$	al., 2013)
where $P = (F_0^2 + 2F_c^2)/3$	Absolute structure parameter: 0.00 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.37305 (18)	0.29886 (13)	0.5843 (3)	0.0698 (7)	
N2	0.44590 (16)	0.30871 (13)	0.5400 (3)	0.0615 (6)	
C3	0.50583 (18)	0.25567 (14)	0.6044 (3)	0.0537 (6)	
C4	0.48110 (19)	0.20499 (17)	0.7111 (4)	0.0657 (7)	
H4A	0.5241	0.2118	0.8197	0.079*	
H4B	0.4809	0.1520	0.6828	0.079*	
C5	0.38250 (19)	0.23200 (15)	0.6834 (3)	0.0597 (6)	
H5	0.3811	0.2475	0.7830	0.072*	
S11	0.31763 (7)	0.43908 (4)	0.46457 (10)	0.0756 (2)	
C12	0.3097 (2)	0.35556 (14)	0.5592 (3)	0.0619(7)	
N13	0.24061 (17)	0.35145 (12)	0.6003 (3)	0.0640 (6)	
C14	0.1866 (2)	0.41709 (15)	0.5544 (3)	0.0639 (8)	
C15	0.2173 (3)	0.46935 (17)	0.4794 (4)	0.0760 (9)	
H15	0.1880	0.5155	0.4411	0.091*	
C141	0.1032 (2)	0.42337 (16)	0.5869 (4)	0.0668 (8)	
C142	0.0831 (2)	0.36891 (19)	0.6757 (4)	0.0764 (9)	
H142	0.1241	0.3287	0.7180	0.092*	
C143	0.0035 (3)	0.3734 (2)	0.7022 (5)	0.0927 (11)	
H143	-0.0088	0.3358	0.7610	0.111*	
C144	-0.0578 (3)	0.4323 (3)	0.6432 (4)	0.0912 (11)	
H144	-0.1114	0.4348	0.6614	0.109*	
C145	-0.0390 (3)	0.4872 (2)	0.5573 (5)	0.0928 (13)	
H145	-0.0799	0.5277	0.5179	0.111*	
C146	0.0401 (3)	0.48317 (19)	0.5284 (4)	0.0812 (10)	
H146	0.0514	0.5209	0.4689	0.097*	
C31	0.59091 (18)	0.24801 (14)	0.5805 (3)	0.0515 (6)	
C32	0.6202 (2)	0.30393 (16)	0.5045 (3)	0.0601 (7)	
H32	0.5834	0.3467	0.4649	0.072*	
C33	0.7017 (2)	0.29701 (17)	0.4871 (3)	0.0646 (7)	
H33	0.7203	0.3351	0.4375	0.078*	
C34	0.75702 (19)	0.23232 (16)	0.5444 (3)	0.0576 (6)	
C35	0.7292 (2)	0.17629 (15)	0.6179 (3)	0.0614 (7)	

H35	0.7654	0.1329	0.6546	0.074*
C36	0.6477 (2)	0.18442 (14)	0.6373 (3)	0.0583 (7)
H36	0.6302	0.1467	0.6894	0.070*
O34	0.83796 (15)	0.23069 (13)	0.5230 (2)	0.0729 (6)
C37	0.8963 (3)	0.1658 (2)	0.5840 (5)	0.0892 (11)
H37A	0.8650	0.1206	0.5278	0.107*
H37B	0.9090	0.1591	0.6938	0.107*
C38	0.9823 (3)	0.1766 (2)	0.5668 (4)	0.0791 (9)
C39	1.0545 (3)	0.1841 (2)	0.5627 (5)	0.0937 (11)
Н39	1.1122	0.1902	0.5595	0.112*
C51	0.31025 (17)	0.17114 (13)	0.6070(3)	0.0497 (5)
C52	0.30167 (19)	0.11341 (16)	0.7020(3)	0.0593 (6)
H52	0.3387	0.1145	0.8091	0.071*
C53	0.2399 (2)	0.05516 (16)	0.6411 (4)	0.0651 (7)
Н53	0.2361	0.0167	0.7063	0.078*
C54	0.1830 (2)	0.05331 (15)	0.4823 (4)	0.0626 (7)
C55	0.1922 (2)	0.10879 (15)	0.3862 (3)	0.0621 (7)
H155	0.1554	0.1073	0.2790	0.075*
C56	0.2559 (2)	0.16685 (16)	0.4487 (3)	0.0576 (6)
H56	0.2622	0.2037	0.3824	0.069*
O54	0.11946 (19)	-0.00466 (13)	0.4328 (3)	0.0955 (8)
C57	0.0407 (3)	0.0056 (2)	0.2901 (5)	0.1053 (13)
H57A	0.0590	0.0025	0.2043	0.158*
H57B	0.0138	0.0545	0.2899	0.158*
H57C	-0.0042	-0.0333	0.2793	0.158*

Atomic displacement parameters (\mathring{A}^2)

	I 711	1 122	1733	I 712	1713	1723
	0	0	U	0	0	0
N1	0.0646 (14)	0.0476 (12)	0.0985 (18)	0.0086 (11)	0.0350 (13)	0.0120 (12)
N2	0.0616 (14)	0.0458 (12)	0.0734 (15)	0.0001 (10)	0.0240 (11)	0.0015 (10)
C3	0.0566 (15)	0.0444 (12)	0.0528 (14)	-0.0031 (11)	0.0152 (11)	-0.0044 (11)
C4	0.0589 (16)	0.0601 (16)	0.0731 (18)	0.0057 (13)	0.0221 (14)	0.0128 (14)
C5	0.0607 (16)	0.0516 (14)	0.0662 (17)	0.0071 (12)	0.0255 (13)	0.0048 (12)
S11	0.0889 (5)	0.0434 (3)	0.0841 (5)	-0.0019 (4)	0.0250 (4)	0.0007 (4)
C12	0.0657 (17)	0.0396 (12)	0.0672 (18)	0.0029 (12)	0.0140 (14)	-0.0030 (12)
N13	0.0640 (15)	0.0442 (12)	0.0744 (16)	0.0111 (10)	0.0189 (12)	0.0000 (10)
C14	0.0722 (18)	0.0423 (13)	0.0574 (16)	0.0104 (12)	0.0066 (13)	-0.0089 (11)
C15	0.089 (2)	0.0418 (14)	0.082 (2)	0.0108 (14)	0.0193 (17)	-0.0013 (14)
C141	0.0698 (18)	0.0490 (15)	0.0601 (16)	0.0152 (13)	0.0050 (13)	-0.0135 (12)
C142	0.085 (2)	0.0637 (18)	0.0719 (19)	0.0242 (15)	0.0232 (17)	-0.0024 (15)
C143	0.101 (3)	0.091 (3)	0.084 (2)	0.020 (2)	0.036 (2)	-0.008 (2)
C144	0.086 (2)	0.096 (3)	0.081 (2)	0.022 (2)	0.0222 (19)	-0.024 (2)
C145	0.081 (2)	0.076 (2)	0.091 (3)	0.0353 (19)	0.0053 (19)	-0.021 (2)
C146	0.083 (2)	0.0587 (17)	0.078 (2)	0.0239 (16)	0.0081 (17)	-0.0047 (15)
C31	0.0580 (15)	0.0446 (12)	0.0453 (13)	-0.0020 (10)	0.0145 (10)	-0.0046 (10)
C32	0.0661 (17)	0.0496 (14)	0.0605 (16)	0.0088 (12)	0.0219 (13)	0.0107 (12)
C33	0.0712 (19)	0.0587 (16)	0.0682 (18)	0.0069 (13)	0.0330 (15)	0.0166 (13)

C34	0.0592 (16)	0.0570 (15)	0.0546 (15)	0.0053 (12)	0.0213 (12)	0.0001 (12)
C35	0.0700 (18)	0.0491 (14)	0.0617 (16)	0.0112 (12)	0.0236 (13)	0.0067 (12)
C36	0.0669 (17)	0.0441 (13)	0.0612 (16)	0.0011 (12)	0.0235 (13)	0.0039 (11)
O34	0.0743 (14)	0.0711 (13)	0.0813 (14)	0.0183 (11)	0.0401 (11)	0.0170 (10)
C37	0.086 (2)	0.076 (2)	0.114 (3)	0.0243 (18)	0.049 (2)	0.025 (2)
C38	0.079 (2)	0.075 (2)	0.087 (2)	0.0260 (17)	0.0390 (19)	0.0087 (16)
C39	0.086 (3)	0.098 (3)	0.105 (3)	0.037 (2)	0.047 (2)	0.008 (2)
C51	0.0518 (13)	0.0479 (12)	0.0539 (13)	0.0127 (10)	0.0264 (11)	0.0081 (10)
C52	0.0574 (15)	0.0658 (16)	0.0539 (14)	0.0118 (13)	0.0221 (12)	0.0191 (12)
C53	0.0679 (17)	0.0558 (16)	0.0735 (19)	0.0105 (13)	0.0309 (15)	0.0275 (14)
C54	0.0661 (17)	0.0415 (13)	0.079 (2)	0.0066 (12)	0.0284 (15)	0.0074 (12)
C55	0.0788 (19)	0.0509 (14)	0.0501 (14)	0.0075 (13)	0.0199 (13)	0.0026 (12)
C56	0.0750 (18)	0.0475 (14)	0.0550 (15)	0.0093 (12)	0.0313 (13)	0.0121 (11)
O54	0.0909 (17)	0.0512 (12)	0.120 (2)	-0.0097 (11)	0.0182 (15)	0.0105 (12)
C57	0.094 (3)	0.077 (2)	0.115 (3)	-0.020 (2)	0.013 (2)	-0.011 (2)

Geometric parameters (Å, °)

N1—C12	1.363 (4)	C32—C33	1.365 (4)	
N1—N2	1.383 (3)	С32—Н32	0.9300	
N1—C5	1.468 (4)	C33—C34	1.401 (4)	
N2—C3	1.289 (4)	С33—Н33	0.9300	
C3—C31	1.455 (4)	C34—O34	1.372 (3)	
C3—C4	1.505 (4)	C34—C35	1.373 (4)	
C4—C5	1.543 (4)	C35—C36	1.378 (4)	
C4—H4A	0.9700	С35—Н35	0.9300	
C4—H4B	0.9700	C36—H36	0.9300	
C5—C51	1.513 (4)	O34—C37	1.430 (4)	
С5—Н5	0.9800	C37—C38	1.443 (5)	
S11—C15	1.729 (4)	С37—Н37А	0.9700	
S11—C12	1.747 (3)	С37—Н37В	0.9700	
C12—N13	1.298 (4)	C38—C39	1.162 (5)	
N13—C14	1.395 (3)	С39—Н39	0.9300	
C14—C15	1.361 (5)	C51—C56	1.375 (4)	
C14—C141	1.471 (5)	C51—C52	1.393 (4)	
C15—H15	0.9300	C52—C53	1.367 (4)	
C141—C142	1.388 (5)	С52—Н52	0.9300	
C141—C146	1.397 (4)	C53—C54	1.385 (4)	
C142—C143	1.379 (5)	С53—Н53	0.9300	
C142—H142	0.9300	C54—O54	1.371 (4)	
C143—C144	1.370 (5)	C54—C55	1.374 (4)	
C143—H143	0.9300	C55—C56	1.384 (4)	
C144—C145	1.365 (6)	C55—H155	0.9300	
C144—H144	0.9300	С56—Н56	0.9300	
C145—C146	1.383 (6)	O54—C57	1.412 (5)	
C145—H145	0.9300	С57—Н57А	0.9600	
C146—H146	0.9300	С57—Н57В	0.9600	
C31—C36	1.396 (4)	С57—Н57С	0.9600	

C31—C32	1.400 (4)		
C12 N1 N2	110.8 (2)	C^{22} C^{21} C^{2}	122 1 (2)
C12 = N1 = C5	119.8(2) 125.0(3)	$C_{32} = C_{31} = C_{3}$	122.1(2) 121.4(2)
$N_2 = N_1 = C_5$	123.0(3)	$C_{33} = C_{32} = C_{31}$	121.4(3)
$\frac{1}{1}$	114.1(2) 108.0(2)	$C_{33} - C_{32} - H_{32}$	119.5
$C_3 - N_2 - N_1$	100.0(2) 122.7(2)	$C_{31} - C_{32} - C_{34}$	119.5 110.7(2)
N2 - C3 - C31	122.7(2)	$C_{32} = C_{33} = C_{34}$	119.7 (5)
$N_2 - C_3 - C_4$	113.0(2) 123.7(2)	$C_{32} = C_{33} = H_{33}$	120.1
$C_{3} = C_{4} = C_{5}$	123.7(2) 102.0(2)	$C_{34} = C_{35} = 1155$	120.1 124.5(3)
$C_3 = C_4 = C_3$	102.9 (2)	034 - 034 - 033	124.5(3) 1156(2)
C_{3} C_{4} H_{4A}	111.2	$C_{35} = C_{34} = C_{33}$	110.0(2) 110.0(3)
$C_3 = C_4 = H_4 R_3$	111.2	$C_{33} = C_{34} = C_{35}$	119.9(3) 110.0(2)
C_{5} C_{4} H_{4B}	111.2	C_{34} C_{35} H_{35}	119.9 (2)
$H_{4A} = C_{4} = H_{4B}$	100.1	$C_{34} = C_{35} = H_{35}$	120.1
N1 - C5 - C51	109.1 114 1 (2)	C_{35} C_{35} C_{36} C_{31}	120.1 121.4(3)
N1 - C5 - C4	114.1(2) 100.8(2)	C_{35} C_{36} H_{36}	110 3
C_{51} C_{5} C_{4}	100.8(2) 111.0(2)	$C_{33} = C_{30} = H_{30}$	119.5
N1_C5_H5	100.0	$C_{34} - C_{30} - C_{37}$	119.3 1163(2)
C51-C5-H5	109.9	034 - 037 - 038	10.3(2) 109.3(3)
C4 - C5 - H5	109.9	034 - C37 - H37A	109.5 (5)
$C_{15} = S_{11} = C_{12}$	87 71 (16)	C_{38} C_{37} H_{37A}	109.0
N13-C12-N1	1236(3)	034 - C37 - H37B	109.8
N13-C12-S11	125.0(5) 116.2(2)	C_{38} C_{37} H_{37B}	109.0
N1_C12_\$11	110.2(2) 120.2(3)	H37A - C37 - H37B	109.0
C_{12} N13 $-C_{14}$	120.2(3) 1101(3)	C_{39} C_{38} C_{37}	175.7(4)
$C_{12} - C_{14} - N_{13}$	110.1(3) 1147(3)	C_{38} C_{39} H_{39}	180.0
C_{15} C_{14} C_{141}	1264(3)	$C_{56} - C_{51} - C_{52}$	117.8(3)
N13-C14-C141	1189(3)	$C_{56} - C_{51} - C_{5}$	1243(2)
C14-C15-S11	111.4 (2)	C_{52} C_{51} C_{52}	127.8(2)
C14—C15—H15	124.3	C_{53} — C_{52} — C_{51}	121.3(3)
S11—C15—H15	124.3	C53-C52-H52	119.3
C142—C141—C146	117.0 (4)	C51—C52—H52	119.3
C142—C141—C14	121.0 (3)	C52—C53—C54	120.1 (2)
C146—C141—C14	121.9 (3)	С52—С53—Н53	119.9
C143—C142—C141	121.1 (3)	С54—С53—Н53	119.9
C143—C142—H142	119.4	O54—C54—C55	124.5 (3)
C141—C142—H142	119.4	O54—C54—C53	116.2 (3)
C144—C143—C142	121.0 (4)	C55—C54—C53	119.3 (3)
C144—C143—H143	119.5	C54—C55—C56	120.1 (3)
C142—C143—H143	119.5	С54—С55—Н155	119.9
C145—C144—C143	119.1 (4)	С56—С55—Н155	119.9
C145—C144—H144	120.5	C51—C56—C55	121.2 (2)
C143—C144—H144	120.5	С51—С56—Н56	119.4
C144—C145—C146	120.7 (3)	С55—С56—Н56	119.4
C144—C145—H145	119.7	C54—O54—C57	117.5 (3)
C146—C145—H145	119.7	O54—C57—H57A	109.5
C145—C146—C141	121.1 (4)	O54—C57—H57B	109.5

C145—C146—H146	119.5	H57A—C57—H57B	109.5
C141—C146—H146	119.5	О54—С57—Н57С	109.5
C36—C31—C32	117.6 (3)	Н57А—С57—Н57С	109.5
C36—C31—C3	120.3 (2)	Н57В—С57—Н57С	109.5
C12—N1—N2—C3	166.6 (3)	C142—C141—C146—C145	-0.4 (5)
C5—N1—N2—C3	-2.0 (3)	C14—C141—C146—C145	178.5 (3)
N1—N2—C3—C31	178.9 (2)	N2-C3-C31-C36	-172.2 (2)
N1—N2—C3—C4	-3.5 (3)	C4—C3—C31—C36	10.5 (4)
N2-C3-C4-C5	7.2 (3)	N2-C3-C31-C32	9.5 (4)
C31—C3—C4—C5	-175.2 (2)	C4—C3—C31—C32	-167.9 (3)
C12—N1—C5—C51	78.2 (4)	C36—C31—C32—C33	-0.4 (4)
N2—N1—C5—C51	-113.9 (3)	C3—C31—C32—C33	178.0 (3)
C12—N1—C5—C4	-161.8 (3)	C31—C32—C33—C34	0.8 (4)
N2—N1—C5—C4	6.1 (3)	C32—C33—C34—O34	-179.4 (3)
C3-C4-C5-N1	-7.3 (3)	C32—C33—C34—C35	-0.1 (4)
C3—C4—C5—C51	114.4 (2)	O34—C34—C35—C36	178.2 (3)
N2—N1—C12—N13	-178.5 (3)	C33—C34—C35—C36	-1.0 (4)
C5—N1—C12—N13	-11.2 (5)	C34—C35—C36—C31	1.5 (4)
N2—N1—C12—S11	2.5 (4)	C32—C31—C36—C35	-0.7 (4)
C5—N1—C12—S11	169.8 (2)	C3—C31—C36—C35	-179.1 (2)
C15—S11—C12—N13	-1.3 (2)	C35—C34—O34—C37	-0.6 (4)
C15—S11—C12—N1	177.9 (3)	C33—C34—O34—C37	178.6 (3)
N1—C12—N13—C14	-178.1 (3)	C34—O34—C37—C38	-174.0 (3)
S11-C12-N13-C14	1.0 (3)	N1-C5-C51-C56	16.6 (4)
C12—N13—C14—C15	-0.2 (4)	C4—C5—C51—C56	-97.0 (3)
C12—N13—C14—C141	178.7 (2)	N1—C5—C51—C52	-167.0 (2)
N13-C14-C15-S11	-0.8 (3)	C4—C5—C51—C52	79.4 (3)
C141—C14—C15—S11	-179.5 (2)	C56—C51—C52—C53	-1.4 (4)
C12—S11—C15—C14	1.1 (2)	C5—C51—C52—C53	-178.0 (3)
C15—C14—C141—C142	-174.7 (3)	C51—C52—C53—C54	-1.2 (4)
N13-C14-C141-C142	6.6 (4)	C52—C53—C54—O54	-176.3 (3)
C15—C14—C141—C146	6.3 (5)	C52—C53—C54—C55	2.7 (4)
N13-C14-C141-C146	-172.4 (3)	O54—C54—C55—C56	177.2 (3)
C146—C141—C142—C143	1.1 (5)	C53—C54—C55—C56	-1.7 (4)
C14—C141—C142—C143	-177.9 (3)	C52—C51—C56—C55	2.5 (4)
C141—C142—C143—C144	-0.8 (5)	C5—C51—C56—C55	178.9 (3)
C142—C143—C144—C145	-0.1 (6)	C54—C55—C56—C51	-1.0 (4)
C143—C144—C145—C146	0.8 (6)	C55—C54—O54—C57	-21.0 (5)
C144—C145—C146—C141	-0.5 (5)	C53—C54—O54—C57	157.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C56—H56…N1	0.93	2.59	2.915 (4)	101
C142—H142…N13	0.93	2.53	2.864 (5)	101

			supporting	g information
C39—H39…Cg2 ⁱ	0.93	2.59	3.365 (5)	141
C56—H56…Cg1 ⁱⁱ	0.93	2.91	3.688 (3)	142

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*-1/2, -*y*+1/2, *z*-1/2.

(*RS*)-5-(4-Methoxyphenyl)-1-[4-(4-methylphenyl)thiazol-2-yl]-3-[4-(prop-2-ynyloxy)phenyl]-4,5-dihydro-1*H*-pyrazole (III)

F(000) = 1008

 $\theta = 2.5 - 27.6^{\circ}$ $\mu = 0.16 \text{ mm}^{-1}$

Block, colourless

 $0.18 \times 0.16 \times 0.15$ mm

T = 297 K

 $D_{\rm x} = 1.288 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 5580 reflections

Crystal data

 $C_{29}H_{25}N_{3}O_{2}S$ $M_{r} = 479.58$ Monoclinic, *Cc* a = 16.5634 (17) Å b = 17.7250 (19) Å c = 9.4032 (11) Å $\beta = 116.401 (3)^{\circ}$ $V = 2472.7 (5) \text{ Å}^{3}$ Z = 4

Data collection

Bruker D8 Venture	40416 measured reflections
diffractometer	5578 independent reflections
Radiation source: INCOATEC high brilliance	3802 reflections with $I > 2\sigma(I)$
microfocus sealed tube	$R_{\rm int} = 0.058$
Multilayer mirror monochromator	$\theta_{\rm max} = 27.6^\circ, \ \theta_{\rm min} = 3.3^\circ$
φ and ω scans	$h = -21 \rightarrow 20$
Absorption correction: multi-scan	$k = -22 \rightarrow 23$
(SADABS; Bruker, 2016)	$l = -12 \rightarrow 12$
$T_{\min} = 0.949, T_{\max} = 0.976$	

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.121$	$w = 1/[\sigma^2(F_o^2) + (0.0501P)^2 + 0.6209P]$
S = 1.08	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
5578 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
318 parameters	$\Delta ho_{ m max} = 0.15 \ { m e} \ { m \AA}^{-3}$
2 restraints	$\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: difference Fourier	Absolute structure: Flack x determined using
map	1613 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et</i>
	<i>al.</i> , 2013)
	Absolute structure parameter: $-0.01(3)$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.3744 (3)	0.29841 (18)	0.5726 (4)	0.0839 (9)

N2	0.4454 (2)	0.30917 (17)	0.5355 (4)	0.0737 (8)
C3	0.5038 (3)	0.25572 (19)	0.6007 (4)	0.0669 (9)
C4	0.4776 (3)	0.2029 (2)	0.6985 (5)	0.0865 (12)
H4A	0.5215	0.2044	0.8093	0.104*
H4B	0.4725	0.1515	0.6600	0.104*
C5	0.3853 (3)	0.2328 (2)	0.6773 (5)	0.0756 (10)
Н5	0.3904	0.2505	0.7797	0.091*
S11	0.32183 (9)	0.44056 (5)	0.46246 (13)	0.0854 (3)
C12	0.3157 (3)	0.35575 (19)	0.5522 (5)	0.0724 (10)
N13	0.2519 (2)	0.35085 (16)	0.5945 (4)	0.0747 (9)
C14	0.1990 (3)	0.41597 (19)	0.5524 (4)	0.0709 (11)
C15	0.2266 (3)	0.4692 (2)	0.4798 (5)	0.0824 (12)
H15	0.1979	0.5153	0.4437	0.099*
C141	0.1221 (3)	0.4193 (2)	0.5878 (4)	0.0713 (10)
C142	0.1041 (3)	0.3605 (2)	0.6669 (5)	0.0872 (12)
H142	0.1428	0.3192	0.6997	0.105*
C143	0.0302 (4)	0.3619 (3)	0.6979 (6)	0.0973 (14)
H143	0.0210	0.3216	0.7523	0.117*
C144	-0.0303(3)	0.4203 (3)	0.6517 (5)	0.0905 (13)
C145	-0.0122 (4)	0.4792 (3)	0.5748 (6)	0.0996 (16)
H145	-0.0509	0.5205	0.5439	0.120*
C146	0.0608 (4)	0.4798 (2)	0.5416 (6)	0.0942 (14)
H146	0.0697	0.5206	0.4881	0.113*
C147	-0.1117 (4)	0.4210 (4)	0.6812 (8)	0.126 (2)
H14A	-0.0998	0.4509	0.7735	0.190*
H14B	-0.1260	0.3703	0.6981	0.190*
H14C	-0.1616	0.4422	0.5909	0.190*
C31	0.5854(2)	0.2478 (2)	0.5802 (4)	0.0656 (9)
C32	0.6106 (3)	0.3016 (2)	0.4991 (4)	0.0738 (10)
H32	0.5744	0.3438	0.4569	0.089*
C33	0.6869 (3)	0.2937 (2)	0.4803 (5)	0.0773 (11)
H33	0.7023	0.3303	0.4258	0.093*
C34	0.7425 (3)	0.2308 (2)	0.5428 (4)	0.0717 (10)
C35	0.7184 (3)	0.1771 (2)	0.6216 (5)	0.0769 (11)
H35	0.7544	0.1347	0.6621	0.092*
C36	0.6411 (3)	0.1854 (2)	0.6415 (5)	0.0751 (10)
H36	0.6261	0.1488	0.6966	0.090*
034	0.8184 (2)	0.22817 (16)	0.5206 (3)	0.0846 (8)
C37	0.8746 (3)	0.1632 (3)	0.5821 (7)	0.1023 (15)
H37A	0.8416	0.1183	0.5288	0.123*
H37B	0.8916	0.1582	0.6946	0.123*
C38	0.9547 (4)	0.1703 (3)	0.5582 (6)	0.0952 (14)
C39	1.0224 (5)	0.1735 (3)	0.5477 (7)	0.1132 (18)
H39	1.0762	0.1761	0.5393	0.136*
C51	0.3113 (2)	0.17528 (19)	0.6090 (4)	0.0651 (9)
C52	0.2983(3)	0.1276 (2)	0.7136 (5)	0.0749 (10)
H52	0.3335	0.1335	0.8222	0.090*
C53	0.2344 (3)	0.0719 (3)	0.6598 (5)	0.0817 (11)
	······································	···· · · · · · · · · · · · · · · · · ·	····· · · · · · · · · · · · · · · · ·	

H53	0.2273	0.0402	0.7322	0.098*	
C54	0.1803 (3)	0.0622 (2)	0.4989 (5)	0.0739 (10)	
C55	0.1924 (3)	0.1084 (2)	0.3941 (5)	0.0832 (12)	
H155	0.1568	0.1025	0.2856	0.100*	
C56	0.2579 (3)	0.1643 (2)	0.4491 (5)	0.0789 (11)	
H56	0.2660	0.1950	0.3762	0.095*	
O54	0.1169 (2)	0.00585 (18)	0.4582 (4)	0.1059 (11)	
C57	0.0440 (4)	0.0079 (3)	0.3046 (7)	0.1147 (17)	
H57A	0.0655	-0.0025	0.2272	0.172*	
H57B	0.0167	0.0570	0.2854	0.172*	
H57C	0.0002	-0.0294	0.2969	0.172*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U ³³	U^{12}	<i>U</i> ¹³	U^{23}
N1	0.099 (2)	0.0566 (18)	0.098 (3)	0.0104 (16)	0.046 (2)	0.0159 (16)
N2	0.091 (2)	0.0502 (15)	0.073 (2)	0.0009 (15)	0.0296 (17)	0.0010 (14)
C3	0.082 (2)	0.0499 (17)	0.0531 (19)	-0.0041 (16)	0.0163 (16)	-0.0014 (14)
C4	0.089 (3)	0.069 (2)	0.094 (3)	0.009 (2)	0.033 (2)	0.023 (2)
C5	0.091 (3)	0.060(2)	0.073 (2)	0.0107 (19)	0.034 (2)	0.0101 (17)
S11	0.1088 (8)	0.0476 (4)	0.0845 (6)	-0.0078 (5)	0.0290 (5)	-0.0009(5)
C12	0.087 (3)	0.0471 (18)	0.069 (2)	0.0006 (17)	0.022 (2)	0.0008 (16)
N13	0.092 (2)	0.0472 (15)	0.071 (2)	0.0099 (15)	0.0238 (17)	0.0051 (13)
C14	0.089 (3)	0.0447 (17)	0.056 (2)	0.0020 (16)	0.0108 (18)	-0.0061 (15)
C15	0.102 (3)	0.0448 (17)	0.083 (3)	0.0007 (19)	0.025 (2)	-0.0027 (18)
C141	0.086 (3)	0.0486 (17)	0.057 (2)	0.0062 (17)	0.0117 (18)	-0.0087 (15)
C142	0.108 (3)	0.068 (2)	0.079 (3)	0.025 (2)	0.036 (2)	0.011 (2)
C143	0.121 (4)	0.081 (3)	0.086 (3)	0.013 (3)	0.042 (3)	0.003 (2)
C144	0.093 (3)	0.081 (3)	0.078 (3)	0.007 (2)	0.021 (2)	-0.023 (2)
C145	0.092 (3)	0.079 (3)	0.102 (4)	0.025 (3)	0.019 (3)	-0.013 (3)
C146	0.108 (4)	0.057 (2)	0.091 (3)	0.013 (2)	0.020 (3)	0.005 (2)
C147	0.107 (4)	0.138 (5)	0.123 (5)	0.005 (4)	0.041 (3)	-0.042 (4)
C31	0.075 (2)	0.0540 (18)	0.0511 (19)	-0.0016 (16)	0.0130 (16)	-0.0023 (14)
C32	0.081 (3)	0.0548 (19)	0.069 (2)	0.0055 (17)	0.0191 (19)	0.0100 (16)
C33	0.084 (3)	0.064 (2)	0.074 (3)	0.0034 (19)	0.025 (2)	0.0148 (19)
C34	0.083 (3)	0.057 (2)	0.061 (2)	0.0065 (17)	0.0198 (19)	0.0017 (16)
C35	0.088 (3)	0.055 (2)	0.069 (2)	0.0114 (18)	0.019 (2)	0.0077 (16)
C36	0.093 (3)	0.0531 (19)	0.068 (2)	0.0006 (18)	0.025 (2)	0.0067 (16)
O34	0.0885 (19)	0.0718 (17)	0.0859 (18)	0.0176 (15)	0.0320 (15)	0.0155 (13)
C37	0.107 (4)	0.071 (3)	0.121 (4)	0.021 (2)	0.044 (3)	0.018 (3)
C38	0.105 (4)	0.079 (3)	0.090 (3)	0.033 (3)	0.033 (3)	0.010 (2)
C39	0.104 (4)	0.118 (4)	0.110 (4)	0.045 (3)	0.041 (3)	0.015 (3)
C51	0.078 (2)	0.0539 (17)	0.063 (2)	0.0140 (15)	0.0306 (17)	0.0074 (15)
C52	0.076 (2)	0.087 (3)	0.058 (2)	0.009 (2)	0.0264 (18)	0.0138 (18)
C53	0.080 (3)	0.088 (3)	0.076 (3)	0.011 (2)	0.034 (2)	0.028 (2)
C54	0.073 (2)	0.0547 (19)	0.086 (3)	0.0147 (18)	0.028 (2)	0.0107 (18)
C55	0.106 (3)	0.065 (2)	0.063 (2)	0.004 (2)	0.023 (2)	0.0024 (19)
C56	0.114 (3)	0.061 (2)	0.061 (2)	0.003 (2)	0.039 (2)	0.0118 (17)

O54	0.093 (2)	0.078 (2)	0.116 (3)	-0.0087 (16)	0.0193 (19)	0.0156 (17)
C57	0.101 (4)	0.090 (3)	0.120 (4)	-0.012 (3)	0.020 (3)	-0.010 (3)

Geometric parameters (Å, °)

N1—C12	1.359 (5)	C31—C36	1.391 (5)
N1—N2	1.381 (5)	C31—C32	1.396 (5)
N1—C5	1.482 (5)	C32—C33	1.359 (6)
N2—C3	1.297 (5)	С32—Н32	0.9300
C3—C31	1.454 (5)	C33—C34	1.399 (5)
C3—C4	1.505 (6)	С33—Н33	0.9300
C4—C5	1.544 (6)	C34—O34	1.364 (5)
C4—H4A	0.9700	C34—C35	1.369 (6)
C4—H4B	0.9700	C35—C36	1.382 (6)
C5—C51	1.501 (5)	С35—Н35	0.9300
С5—Н5	0.9800	С36—Н36	0.9300
S11—C15	1.732 (5)	O34—C37	1.431 (5)
S11—C12	1.749 (4)	C37—C38	1.447 (7)
C12—N13	1.287 (5)	C37—H37A	0.9700
N13—C14	1.396 (5)	С37—Н37В	0.9700
C14—C15	1.357 (6)	C38—C39	1.169 (8)
C14—C141	1.454 (6)	С39—Н39	0.9300
С15—Н15	0.9300	C51—C56	1.378 (5)
C141—C142	1.388 (6)	C51—C52	1.384 (5)
C141—C146	1.406 (6)	C52—C53	1.369 (6)
C142—C143	1.379 (6)	С52—Н52	0.9300
C142—H142	0.9300	C53—C54	1.384 (6)
C143—C144	1.371 (7)	С53—Н53	0.9300
C143—H143	0.9300	C54—C55	1.364 (6)
C144—C145	1.377 (8)	C54—O54	1.374 (5)
C144—C147	1.492 (8)	C55—C56	1.387 (6)
C145—C146	1.376 (7)	С55—Н155	0.9300
C145—H145	0.9300	С56—Н56	0.9300
C146—H146	0.9300	O54—C57	1.412 (7)
C147—H14A	0.9600	С57—Н57А	0.9600
C147—H14B	0.9600	С57—Н57В	0.9600
C147—H14C	0.9600	С57—Н57С	0.9600
C12—N1—N2	119.8 (3)	H14B—C147—H14C	109.5
C12—N1—C5	123.3 (3)	C36—C31—C32	117.7 (4)
N2—N1—C5	114.2 (3)	C36—C31—C3	120.4 (3)
C3—N2—N1	108.6 (3)	C32—C31—C3	121.9 (3)
N2—C3—C31	123.3 (3)	C33—C32—C31	121.5 (3)
N2—C3—C4	112.7 (4)	С33—С32—Н32	119.3
C31—C3—C4	124.0 (3)	C31—C32—H32	119.3
C3—C4—C5	104.2 (3)	C32—C33—C34	120.2 (4)
C3—C4—H4A	110.9	С32—С33—Н33	119.9
C5—C4—H4A	110.9	С34—С33—Н33	119.9

C3—C4—H4B	110.9	034 - C34 - C35	1247(3)
C5-C4-H4B	110.9	034-034-033	116.2 (4)
H4A - C4 - H4B	108.9	C_{35} C_{34} C_{33}	119.1(4)
N1 - C5 - C51	114 4 (3)	$C_{34} - C_{35} - C_{36}$	120.6(3)
N1 - C5 - C4	100.2(3)	C_{34} C_{35} H_{35}	119 7
C_{51}	1133(3)	C36-C35-H35	119.7
N1 C5 H5	100 5	$C_{35} = C_{35} = H_{35}$	119.7 120.8(4)
	100.5	$C_{35} = C_{36} = C_{31}$	110.6
C_{4} C_{5} H_{5}	109.5	C_{31} C_{36} H_{36}	119.0
$C_{1} = C_{1} = C_{1}$	109.5 97.5 (2)	$C_{31} = C_{30} = 1150$	119.0 116.2(2)
N12 C12 N1	07.5(2)	$C_{34} = C_{34} = C_{37}$	110.3(3)
N13 - C12 - N1	122.0(3) 1160(2)	034 - 037 - 038	110.1 (4)
N15-C12-S11	110.0(3)	$C_{28} = C_{27} = H_{27}$	109.6
NI = C12 = S11	121.3(3)	$C_{38} - C_{37} - H_{37} A$	109.6
C12 - N13 - C14	110.8 (3)	034-037-H3/B	109.6
C15—C14—N13	114.0 (4)	C38—C37—H37B	109.6
C15—C14—C141	127.8 (4)	H3/A—C3/—H3/B	108.2
N13—C14—C141	118.2 (3)	C39—C38—C37	175.7 (5)
C14—C15—S11	111.6 (3)	С38—С39—Н39	180.0
C14—C15—H15	124.2	C56—C51—C52	117.5 (4)
S11—C15—H15	124.2	C56—C51—C5	124.6 (3)
C142—C141—C146	116.1 (4)	C52—C51—C5	117.8 (3)
C142—C141—C14	120.7 (3)	C53—C52—C51	121.1 (4)
C146—C141—C14	123.1 (4)	C53—C52—H52	119.4
C143—C142—C141	121.5 (4)	С51—С52—Н52	119.4
C143—C142—H142	119.3	C52—C53—C54	120.8 (4)
C141—C142—H142	119.3	С52—С53—Н53	119.6
C144—C143—C142	122.6 (5)	С54—С53—Н53	119.6
C144—C143—H143	118.7	C55—C54—O54	125.1 (4)
C142—C143—H143	118.7	C55—C54—C53	118.9 (4)
C143—C144—C145	116.1 (5)	O54—C54—C53	116.0 (4)
C143—C144—C147	122.7 (6)	C54—C55—C56	120.1 (4)
C145—C144—C147	121.2 (5)	С54—С55—Н155	119.9
C146—C145—C144	122.9 (4)	С56—С55—Н155	119.9
C146—C145—H145	118.5	C51—C56—C55	121.6 (4)
C144—C145—H145	118.5	С51—С56—Н56	119.2
C145—C146—C141	120.7 (5)	С55—С56—Н56	119.2
C145—C146—H146	119.6	C54—O54—C57	117.8 (4)
C141 - C146 - H146	119.6	054—C57—H57A	109.5
C144—C147—H14A	109 5	054—C57—H57B	109.5
C144— $C147$ — $H14B$	109.5	H57A_C57_H57B	109.5
H14A - C147 - H14B	109.5	054 - C57 - H57C	109.5
C144— $C147$ — $H14C$	109.5	H57A_C57_H57C	109.5
$H_{14A} = C_{147} + H_{14C}$	109.5	H57B C57 H57C	109.5
	109.5	1137 D —C37—1137C	109.5
C12—N1—N2—C3	163.9 (3)	C144—C145—C146—C141	-0.9 (7)
C5—N1—N2—C3	1.9 (4)	C142—C141—C146—C145	0.1 (6)
N1—N2—C3—C31	177.2 (3)	C14—C141—C146—C145	178.4 (4)
N1—N2—C3—C4	-2.4(5)	N2-C3-C31-C36	-174.1 (3)

N2—C3—C4—C5	2.0 (5)	C4—C3—C31—C36	5.5 (5)
C31—C3—C4—C5	-177.7 (3)	N2-C3-C31-C32	5.7 (5)
C12—N1—C5—C51	76.7 (5)	C4—C3—C31—C32	-174.7 (4)
N2—N1—C5—C51	-122.1 (4)	C36—C31—C32—C33	-0.1 (5)
C12—N1—C5—C4	-161.9 (4)	C3—C31—C32—C33	-179.9 (3)
N2—N1—C5—C4	-0.6 (4)	C31—C32—C33—C34	0.0 (6)
C3—C4—C5—N1	-0.7 (4)	C32—C33—C34—O34	-179.0 (3)
C3—C4—C5—C51	121.6 (3)	C32—C33—C34—C35	0.6 (6)
N2—N1—C12—N13	-175.2 (4)	O34—C34—C35—C36	178.5 (4)
C5—N1—C12—N13	-15.0 (6)	C33—C34—C35—C36	-1.0 (6)
N2—N1—C12—S11	6.0 (5)	C34—C35—C36—C31	0.9 (6)
C5—N1—C12—S11	166.3 (3)	C32—C31—C36—C35	-0.4 (5)
C15—S11—C12—N13	-2.1 (3)	C3—C31—C36—C35	179.5 (3)
C15—S11—C12—N1	176.8 (3)	C35—C34—O34—C37	1.5 (6)
N1—C12—N13—C14	-176.8 (4)	C33—C34—O34—C37	-179.0 (4)
S11-C12-N13-C14	2.0 (4)	C34—O34—C37—C38	-176.6 (4)
C12—N13—C14—C15	-0.8 (4)	N1-C5-C51-C56	25.0 (5)
C12—N13—C14—C141	178.5 (3)	C4—C5—C51—C56	-89.0 (4)
N13—C14—C15—S11	-0.7 (4)	N1-C5-C51-C52	-158.0 (3)
C141—C14—C15—S11	-179.9 (3)	C4—C5—C51—C52	88.0 (4)
C12—S11—C15—C14	1.4 (3)	C56—C51—C52—C53	-0.3 (6)
C15—C14—C141—C142	-178.4 (4)	C5—C51—C52—C53	-177.5 (4)
N13—C14—C141—C142	2.4 (5)	C51—C52—C53—C54	-0.7 (6)
C15—C14—C141—C146	3.5 (6)	C52—C53—C54—C55	1.0 (6)
N13-C14-C141-C146	-175.7 (4)	C52—C53—C54—O54	-178.4 (4)
C146—C141—C142—C143	-0.1 (6)	O54—C54—C55—C56	179.1 (4)
C14—C141—C142—C143	-178.3 (4)	C53—C54—C55—C56	-0.3 (6)
C141—C142—C143—C144	0.8 (7)	C52—C51—C56—C55	1.0 (6)
C142—C143—C144—C145	-1.5 (7)	C5—C51—C56—C55	178.0 (4)
C142—C143—C144—C147	178.3 (5)	C54—C55—C56—C51	-0.7 (7)
C143—C144—C145—C146	1.5 (7)	C55—C54—O54—C57	-17.9 (7)
C147—C144—C145—C146	-178.2 (4)	C53—C54—O54—C57	161.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C142—H142…N13	0.93	2.48	2.823 (6)	102
C35—H35…S11 ⁱ	0.93	2.86	3.560 (4)	133
C39—H39…Cg2 ⁱⁱ	0.93	2.93	3.802 (5)	156
C56—H56… <i>Cg</i> 1 ⁱⁱⁱ	0.93	2.92	3.689 (3)	141

Symmetry codes: (i) x+1/2, -y+1/2, z+1/2; (ii) x+1, y, z; (iii) x-1/2, -y+1/2, z-1/2.