

Received 15 October 2021 Accepted 9 November 2021

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; phosphate; mixed occupancy; framework structure.

CCDC references: 2121192; 2121193

Supporting information: this article has supporting information at journals.iucr.org/e

Mixed-metal phosphates $K_{1.64}Na_{0.36}TiFe(PO_4)_3$ and $K_{0.97}Na_{1.03}Ti_{1.26}Fe_{0.74}(PO_4)_3$ with a langbeinite framework

Igor V. Zatovsky,^a* Nataliia Yu. Strutynska,^b Ivan V. Ogorodnyk,^c Vyacheslav N. Baumer,^d Nickolai S. Slobodyanik^b and Denis S. Butenko^{e,f}

^aF.D. Ovcharenko Institute of Biocolloidal Chemistry, NAS Ukraine, 42 Acad. Vernadskoho blv., 03142 Kyiv, Ukraine, ^bDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Str., 01601 Kyiv, Ukraine, ^cShimUkraine LLC 18, Chigorina Str., office 429, 01042 Kyiv, Ukraine, ^dSTC "Institute for Single Crystals", NAS of Ukraine, 60 Lenin ave., 61001 Kharkiv, Ukraine, ^cShenzhen Key Laboratory of Solid State Batteries, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China, and ^fGuangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China. *Correspondence e-mail: zvigo@ukr.net

Single crystals of the langbeinite-type phosphates $K_{1.65}Na_{0.35}TiFe(PO_4)_3$ and $K_{0.97}Na_{1.03}Ti_{1.26}Fe_{0.74}(PO_4)_3$ were grown by crystallization from high-temperature self-fluxes in the system $Na_2O-K_2O-P_2O_5-TiO_2-Fe_2O_3$ using fixed molar ratios of (Na+K):P = 1.0, Ti:P = 0.20 and Na:K = 1.0 or 2.0 over the temperature range 1273–953 K. The three-dimensional framework of the two isotypic phosphates are built up from $[(Ti/Fe)_2(PO_4)_3]$ structure units containing two mixed $[(Ti/Fe)O_6]$ octahedra (site symmetry 3) connected *via* three bridging PO_4 tetrahedra. The potassium and sodium cations share two different sites in the structure that are located in the cavities of the framework. One of these sites has nine and the other twelve surrounding O atoms.

1. Chemical context

Over the last decade, numerous research efforts have been directed towards the creation of new phosphate materials for Li- or Na-ion batteries (Nose et al., 2013; Zhang et al., 2021). In particular, significant progress has been made for complex phosphates with general formula $M_{1+x}^{I}Z_{2}(PO_{4})_{3}$ ($M^{I} = Li$, Na; Z = polyvalent metals; x values can range from 0 to 3; Zatovsky et al., 2016) adopting NASICON-type structures. The composition of phosphates with a langbeinite-type structure is very similar to the composition of NASICON-type ones, and langbeinite-type phosphates are also considered to be potential hosts for new electrode materials (Luo et al., 2019). However, langbeinite-type phosphates with a composition $M_{1+x}^{I}Z_{2}(PO_{4})_{3}$ (x = 0–1) can only be prepared with large monovalent cations (e.g., K, Rb, Cs, NH₄; Norberg, 2002; Ogorodnyk et al., 2007a). The langbeinite-type structure has only been reported for $Na_2Z^{III}Ti(PO_4)_3$ ($Z^{III} = Cr, Fe$; Isasi & Daidouh, 2000). More recently, a good prospect for using such kinds of materials as anodes for Na-ion batteries has been predicted because of the recently reported migration mechanisms in langbeinite-type Na₂CrTi(PO₄)₃ determined by atomic simulation (Luo et al., 2019). However, according to Wang et al. (2019), the phosphate $Na_2CrTi(PO_4)_3$ belongs to the family of compounds with a NASICON-type structure. Therefore, the issue of preparing Na-containing langbeinitetype phosphates requires further research and development.

research communications

Table 1	
Selected bond lengths	(Å) for (I).

Fe1-O2 ⁱ	1.954 (3)	$K2-O2^{vi}$	2.911 (4)
Fe1-O1	1.976 (3)	K2-O4 ^{vii}	3.007 (4)
Fe2–O3 ⁱⁱ	1.938 (3)	K2–O4 ^{viii}	3.231 (4)
Fe2-O4 ⁱⁱⁱ	1.970 (3)	P3-O4	1.516 (4)
$K1 - O1^{iv}$	2.830 (4)	P3-O2	1.522 (3)
$K1 - O2^{v}$	3.019 (4)	P3-O3	1.523 (3)
$K1 - O4^{v}$	3.129 (4)	P3-O1	1.523 (3)
$K2-O3^{v}$	2.854 (4)		

In recent years, the synthesis of K/Na-containing complex phosphates has been realized using the self-flux method and resulted in the compounds $K_{1.75}Na_{0.25}Ti_2(PO_4)_3$ (Zatovsky *et al.*, 2018) and $K_{0.877}Na_{0.48}Ti_2(PO_4)_3$ (Strutynska *et al.*, 2016).

Here, we report the preparation, structure analysis and characterization of two new mixed-metal phosphates $K_{1.64}Na_{0.36}TiFe(PO_4)_3$ (I) and $K_{0.97}Na_{1.03}Ti_{1.26}Fe_{0.74}(PO_4)_3$ (II), which are isotypic with the mineral langbeinite, $K_2Mg_2(SO_4)_3$ (Zemann & Zemann, 1957; Mereiter, 1979).

2. Structural commentary

As it is illustrated in Fig. 1, two pairs of mixed sites occupied by alkali metals (K/Na) and transition metals (Ti/Fe) are located on threefold rotation axes (Wyckoff position 4 *a*), whereas the P and all O atoms occupy general sites (12 *b*). In the structures, the main structural element for building of the three-dimensional framework is a $[(Ti/Fe)_2(PO_4)_3]$ fragment consisting of two mixed-metal $[(Ti/Fe)O_6]$ octahedra and three PO₄ tetrahedra (Fig. 2*a*). Such building units run in three orthogonal directions along the cubic space diagonals (Fig. 2*b*), which is typical for the langbeinite-related family of compounds (sulfates, phosphates, vanadates *etc*, Ogorodnyk *et al.*, 2007*a*).

Two octahedrally coordinated sites (Ti1/Fe1) and (Ti2/Fe2) show mixed occupancy with an Fe:Ti ratio close to 1:1. For (I), the Ti occupancy is 0.48 (3) for the *M*1 site, while for the *M*2 site it is 0.52 (3); for (II), the Ti occupancy is 0.61 (2) for the *M*1 site and 0.65 (2) for the *M*2 site. In the case of (I), this corresponds to Fe³⁺ and Ti⁴⁺ cations, while for (II), the

Figure 1

A view of the asymmetric units of (I) and (II), with displacement ellipsoids drawn at the 50% probability level.

Table 2	
Selected bond lengths (Å) for (II)	۱.

Fe1-O2 ⁱ	1.940 (2)	K2-O2 ^{vi}	2.910 (3)
Fe1-O1	1.974 (2)	$K2-O4^{v}$	2.982 (4)
Fe2–O3 ⁱⁱ	1.938 (2)	$K2-O4^{vii}$	3.237 (3)
Fe2-O4	1.954 (2)	P3-O4	1.517 (3)
$K1 - O1^{iii}$	2.820 (3)	P3-O3	1.518 (2)
$K1 - O2^{iv}$	3.009 (3)	P3-O2	1.520 (2)
$K1 - O4^{v}$	3.122 (3)	P3-O1	1.523 (2)
$K2-O3^{v}$	2.843 (3)		

simultaneous presence of Fe³⁺, Ti³⁺ and Ti⁴⁺ is suggested. The prepared crystals of (II) are violet in color and the Ti³⁺:Ti⁴⁺ ratio is about 1:4 taking into account the total charge of the cationic part of the compound. Partial self-reduction of Ti⁴⁺ to Ti³⁺ often accompanies the synthesis of langbeinite-type complex phosphates in fluxes of multicomponent systems when various trivalent or divalent metals are present (Gustafsson et al., 2005; Zatovskii et al., 2006). For structures (I) and (II), the [Ti/FeO₆] octahedra are slightly distorted (Tables 1 and 2). The range of M-O bond lengths [1.938 (2) – 1.976 (3) Å] is close to those in other langbeinite-related phosphates containing Ti and transition metals, such as $K_{2}Fe_{0.5}Ti_{1.5}(PO_{4})_{3}$ [1.940 (2)–1.992 (2) Å]; $K_{2}Ni_{0.5}Ti_{1.5}(PO_{4})_{3}$ [1.938 (5)–1.962 (5) Å]; $K_2Co_{0.5}Ti_{1.5}(PO_4)_3$ [1.945(2)-1.974 (2) Å]; $K_2Mn_{0.5}Ti_{1.5}(PO_4)_3$ [1.961 (2)–2.002 (2) Å] (Ogorodnyk et al., 2008, 2007b, 2006). The P-O distances for both structures are in the narrow ranges of 1.516 (4)-1.523 (3) for (I) and 1.517 (3)-1.523 (2) Å for (II).

There are two sites where the alkali metal cations reside (Fig. 1). The first one, (K/Na)1 is occupied by K^+ and Na⁺ cations at ratios of 0.85 (2):0.15 (2) and 0.676 (18):0.324 (18) for (I) and (II), respectively. The [(K/Na)1O₉] polyhedra show three sets of (K/Na)–O distances assuming a cut-off value for the contact lengths of 3.129 (4) Å; the bond lengths are similar for both structures (Tables 1 and 2). The coordination environment of the alkali cations related to the (K/Na)2–O distances ranging from 2.843 (3) to 3.237 (3) Å, which includes four sets of distances (Tables 1 and 2). For this site, the K:Na ratios are 0.80 (3):0.20 (3) for (I) and 0.294 (19):0.706 (19) for (II). An interesting fact is that the substitution of potassium by sodium in the position (K/Na)2 is greater for (II) than for (I), but the (K/Na)2–O distances change insignificantly.

(a) $[(Ti/Fe)_2(PO_4)_3]$ building unit and (b) three-dimensional framework for (I) and (II).

3. Synthesis and crystallization

Phosphates (I) and (II) were obtained from the melts of the system Na₂O-K₂O-P₂O₅-TiO₂-Fe₂O₃ at fixed molar ratios of (Na+K)/P = 1.0, Ti/P = 0.20 and different values of Na/K = 1.0 or 2.0 over the temperature range 1273–953 K. All initial components M^{I} H₂PO₄ (M^{I} = Na, K), Fe₂O₃ and TiO₂ were of an analytical grade.

A mixture of KH_2PO_4 (10 g), NaH_2PO_4 (8.82 g), Fe_2O_3 (2.35 g) and TiO_2 (2.35 g) was used for the preparation of (I), while a mixture of KH_2PO_4 (10 g), NaH_2PO_4 (17.64 g), Fe_2O_3 (3.53 g) and TiO_2 (3.53 g) was used for the preparation of (II). In both cases, the mixtures of calculated amounts of starting components were ground in an agate mortar and melted in a platinum crucible at 1273 K. The obtained melts were kept under isothermal conditions for 2 h for dissolving of the corresponding $TiO_2 + Fe_2O_3$ mixture in the phosphate melt. Then the temperature was decreased with a rate of 25 K h⁻¹ to 953 K and kept at this temperature for 2 h before cooling down to room temperature by turning off the furnace power. The obtained crystalline phases were separated from soluble salts by leaching with hot water and dried at 373 K.

The molar ratio Na/K in the initial melts had an influence on the composition of the obtained crystals. Light-yellow crystals formed in the melt with a ratio of Na:K = 1.0 while violet crystals were obtained for a ratio Na:K = 2.0 (Fig. 3). It should be noted that increasing the amount of sodium in the initial melts to a ratio Na/K = 2.0 caused the growth of crystals with sizes of 2–3 mm (Fig. 3*b*) in length.

The chemical compositions of the prepared samples (quantitative determination of K, Na, Ti, Fe and P) were confirmed by ICP–AES with a Shimadzu ICPE-9820 spectrometer. The analyses showed that the molar ratios of K:Na:Ti:Fe:P were close to 1.65:0.35:1:1:3 for (I) and 1:1:1.25:0.75:3 for (II).

The phosphates (I) and (II) were further characterized using Fourier transform infrared (FTIR) spectroscopy. The spectra were obtained using a PerkinElmer Spectrum BX spectrometer in the range 4000–400 cm⁻¹ (at 4 cm⁻¹ resolution) with sample material pressed into KBr pellets. The FTIR spectra for both compounds are similar in band positions of vibration modes (Fig. 4). The broad and intense bands in the frequency region 1150–900 cm⁻¹ are characteristic for P–O stretching vibrations [ν_{as} (PO₃) – region 1150–1090 cm⁻¹ and ν_{s} (PO₃) – region 1020–900 cm⁻¹] of the PO₄ tetrahedron. The

Figure 3 Photographs of single crystals of (*a*) (I) and (*b*) (II).

band group at 650–550 cm⁻¹ is caused by bending δ (P–O) vibrations of P–O bonds. Some differences in the spectra were observed in the range 500–400 cm⁻¹, which are due to *X*–O (*X* = Ti, Fe) vibrations and correlate with insignificant differences in the composition of the prepared compounds (I) and (II).

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. According to the results of the chemical analysis, large quantities of Na and Ti are present in the structures. Taking into account possible coordination spheres of Na and Ti and previously reported langbeinite-type phosphates with a mixed-metal framework, we supposed that Ti occupies the same sites as Fe, and Na the same positions as K. Hence, the corresponding positions of Fe1 and Fe2, K1 and K2 were occupied with Ti and Na, respectively. As the Fe(Ti) positions are part of the rigid framework, we assumed that these sites show full occupancy, while the sites related with the alkali metal can be fully or partially occupied. At a first approach, the occupancies were refined using linear combinations of free variables (SUMP restraint). Two SUMP restraints were applied to occupancies of Fe1(Ti1) and Fe2(Ti2) sites. One more SUMP restraint was then applied to the sum of valence units of all metal-atom positions. This refinement resulted in satisfactory reliability factors. It was found that the occupancies of K1(Na1) and K2(Na2) are close to 1. Thus, to simplify the refinement we tried to refine the occupancies with free variable constraints instead of SUMP restraints while keeping the alkali metal site occupancies equal to 1. To each refined position, a unique free variable constraint was applied, plus constrained identical coordinates and ADPs for each site. The resulting reliability factors were

Figure 4 FTIR spectra of (I) (curve 1) and (II) (curve 2).

research communications

Table	3	
Experi	mental	details.

	(I)	(II)
Crystal data		
Chemical formula	$K_{1,45}Na_{0,25}TiFe(PO_4)_2$	$K_{0.07}Na_{1.02}Ti_{1.26}Fe_{0.74}(PO_4)_2$
М.,	461.19	448.16
Crystal system, space group	Cubic. $P2_13$	Cubic. $P2_13$
Temperature (K)	293	293
$a(\mathbf{A})$	9.82010 (13)	9.7945 (1)
$V(A^3)$	947.00 (4)	939.61 (3)
Z	4	4
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	3.69	3.27
Crystal size (mm)	$0.13\times0.10\times0.07$	$0.15 \times 0.11 \times 0.08$
Data collection		
Diffractometer	Oxford Diffraction Xcalibur-3	Oxford Diffraction Xcalibur-3
Absorption correction	Multi-scan (Blessing, 1995)	Multi-scan (Blessing, 1995)
T_{\min}, \hat{T}_{\max}	0.675, 0.782	0.622, 0.835
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	1897, 847, 829	10546, 837, 833
R _{int}	0.027	0.026
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.681	0.681
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.025, 0.064, 1.14	0.016, 0.043, 1.12
No. of reflections	847	837
No. of parameters	63	63
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.48, -0.37	0.29, -0.27
Absolute structure	Flack x determined using 339 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)	Flack x determined using 349 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-0.02 (2)	-0.042 (11)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015), DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 2012), enCIFer (Allen et al., 2004) and publcIF (Westrip, 2010).

found to be almost equal to those where the SUMP restraints were used. For the final refinement cycles, the second approach was applied to both structures.

Funding information

This work was been supported by the Ministry of Education and Science of Ukraine: Grant of the Ministry of Education and Science of Ukraine for perspective development of the scientific direction 'Mathematical sciences and natural sciences' at Taras Shevchenko National University of Kyiv.

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gustafsson, J. C. M., Norberg, S. T., Svensson, G. & Albertsson, J. (2005). Acta Cryst. C61, i9–i13.
- Isasi, J. & Daidouh, A. (2000). Solid State Ionics, 133, 303-313.
- Luo, Y., Sun, T., Shui, M. & Shu, J. (2019). Mater. Chem. Phys. 233, 339–345.
- Mereiter, K. (1979). N. Jb. Mineral. Monatsh. pp. 182-188.
- Norberg, S. T. (2002). Acta Cryst. B58, 743-749.
- Nose, M., Nakayama, H., Nobuhara, K., Yamaguchi, H., Nakanishi, S. & Iba, H. (2013). *J. Power Sources*, **234**, 175–179.
- Ogorodnyk, I. V., Baumer, V. N., Zatovsky, I. V., Slobodyanik, N. S., Shishkin, O. V. & Domasevitch, K. V. (2007*a*). *Acta Cryst.* B**63**, 819– 827.

- Ogorodnyk, I. V., Zatovsky, I. V., Baumer, V. N., Slobodyanik, N. S., Shishkin, O. V. & Vorona, I. P. (2008). Z. Naturforsch. Teil B, 63, 261–266.
- Ogorodnyk, I. V., Zatovsky, I. V. & Slobodyanik, N. S. (2007b). Russ. J. Inorg. Chem. 52, 121–125.
- Ogorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). J. Solid State Chem. 179, 3461–3466.
- Oxford Diffraction (2006). *CrysAlis CCD* and *CrysAlis RED*. Oxford Diffraction Ltd, Abingdon, England.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Strutynska, N., Bondarenko, M., Slobodyanik, N., Baumer, V., Zatovsky, I., Bychkov, K. & Puzan, A. (2016). *Cryst. Res. Technol.* **51**, 627–633.
- Wang, D., Wei, Z., Lin, Y., Chen, N., Gao, Y., Chen, G., Song, L. & Du, F. (2019). J. Mater. Chem. A, 7, 20604–20613.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zatovskii, I. V., Slobodyanik, N. S., Ushchapivskaya, T. I., Ogorodnik, I. V. & Babarik, A. A. (2006). *Russ. J. Appl. Chem.* **79**, 10–15.
- Zatovsky, I. V., Strutynska, N. Yu., Hizhnyi, Y. A., Nedilko, S. G., Slobodyanik, N. S. & Klyui, N. I. (2018). *ChemistryOpen*, **7**, 504– 512.
- Zatovsky, I. V., Strutynska, N. Yu., Ogorodnyk, I. V., Baumer, V. N., Slobodyanik, N. S., Yatskin, M. M. & Odynets, I. V. (2016). *Struct. Chem.* 27, 323–330.
- Zemann, A. & Zemann, J. (1957). Acta Cryst. 10, 409-413.
- Zhang, B., Ma, K., Lv, X., Shi, K., Wang, Y., Nian, Z., Li, Y., Wang, L., Dai, L. & He, Z. (2021). J. Alloys Compd. 867, 159060.

Acta Cryst. (2021). E77, 1299-1302 [https://doi.org/10.1107/S2056989021011877]

Mixed-metal phosphates $K_{1.64}Na_{0.36}TiFe(PO_4)_3$ and $K_{0.97}Na_{1.03}Ti_{1.26}Fe_{0.74}(PO_4)_3$ with a langbeinite framework

Igor V. Zatovsky, Nataliia Yu. Strutynska, Ivan V. Ogorodnyk, Vyacheslav N. Baumer, Nickolai S. Slobodyanik and Denis S. Butenko

Computing details

For both structures, data collection: *CrysAlis CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis CCD* (Oxford Diffraction, 2006); data reduction: *CrysAlis RED* (Oxford Diffraction, 2006); program(s) used to solve structure: *SHELXS* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *WinGX* (Farrugia, 2012), *enCIFer* (Allen *et al.*, 2004) and *publCIF* (Westrip, 2010).

Potassium sodium titanium iron tris(phosphate) (I)

Crystal data

$K_{1.65}Na_{0.35}TiFe(PO_4)_3$
$M_r = 461.19$
Cubic, $P2_13$
Hall symbol: P 2ac 2ab 3
a = 9.82010 (13) Å
$V = 947.00 (4) Å^3$
Z = 4
F(000) = 896.8

Data collection

Oxford Diffraction Xcalibur-3 diffractometer Graphite monochromator φ and ω scans Absorption correction: multi-scan (Blessing, 1995) $T_{\min} = 0.675, T_{\max} = 0.782$ 1897 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.064$ S = 1.14847 reflections 63 parameters 0 restraints $D_x = 3.235 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1897 reflections $\theta = 2.9-29.0^{\circ}$ $\mu = 3.69 \text{ mm}^{-1}$ T = 293 KTetrahedron, light yellow $0.13 \times 0.10 \times 0.07 \text{ mm}$

847 independent reflections 829 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 29.0^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = -13 \rightarrow 3$ $k = -5 \rightarrow 13$ $l = -12 \rightarrow 12$

$$\begin{split} 'w &= 1/[\sigma^2(F_o{}^2) + (0.0292P)^2 + 0.5767P] \\ \text{where } P &= (F_o{}^2 + 2F_c{}^2)/3' \\ (\Delta/\sigma)_{\text{max}} &< 0.001 \\ \Delta\rho_{\text{max}} &= 0.48 \text{ e } \text{\AA}{}^{-3} \\ \Delta\rho_{\text{min}} &= -0.37 \text{ e } \text{\AA}{}^{-3} \\ \text{Extinction correction: SHELXL-2018/3} \\ \text{(Sheldrick 2015)} \\ \text{Extinction coefficient: } 0.0042 (16) \end{split}$$

Absolute structure: Flack *x* determined using 339 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: 0.02

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Fe1	0.14303 (6)	0.14303 (6)	0.14303 (6)	0.0085 (3)	0.52 (3)
Ti1	0.14303 (6)	0.14303 (6)	0.14303 (6)	0.0085 (3)	0.48 (3)
Fe2	0.41389 (6)	0.41389 (6)	0.41389 (6)	0.0087 (3)	0.48 (3)
Ti2	0.41389 (6)	0.41389 (6)	0.41389 (6)	0.0087 (3)	0.52 (3)
K1	0.70712 (13)	0.70712 (13)	0.70712 (13)	0.0254 (7)	0.85 (2)
Na1	0.70712 (13)	0.70712 (13)	0.70712 (13)	0.0254 (7)	0.15 (2)
K2	0.93216 (12)	0.93216 (12)	0.93216 (12)	0.0228 (8)	0.80 (3)
Na2	0.93216 (12)	0.93216 (12)	0.93216 (12)	0.0228 (8)	0.20 (3)
P3	0.45810 (10)	0.22783 (10)	0.12639 (11)	0.0089 (3)	
01	0.3106 (3)	0.2345 (3)	0.0792 (3)	0.0181 (7)	
O2	0.5477 (4)	0.2988 (4)	0.0217 (3)	0.0214 (8)	
O3	0.5021 (3)	0.0809 (3)	0.1494 (4)	0.0207 (7)	
O4	0.4787 (4)	0.3041 (4)	0.2590 (4)	0.0254 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0085 (3)	0.0085 (3)	0.0085 (3)	-0.0002 (2)	-0.0002 (2)	-0.0002 (2)
0.0085 (3)	0.0085 (3)	0.0085 (3)	-0.0002 (2)	-0.0002 (2)	-0.0002 (2)
0.0087 (3)	0.0087 (3)	0.0087 (3)	-0.0005 (2)	-0.0005 (2)	-0.0005 (2)
0.0087 (3)	0.0087 (3)	0.0087 (3)	-0.0005 (2)	-0.0005 (2)	-0.0005 (2)
0.0254 (7)	0.0254 (7)	0.0254 (7)	0.0004 (5)	0.0004 (5)	0.0004 (5)
0.0254 (7)	0.0254 (7)	0.0254 (7)	0.0004 (5)	0.0004 (5)	0.0004 (5)
0.0228 (8)	0.0228 (8)	0.0228 (8)	-0.0021 (4)	-0.0021 (4)	-0.0021 (4)
0.0228 (8)	0.0228 (8)	0.0228 (8)	-0.0021 (4)	-0.0021 (4)	-0.0021 (4)
0.0078 (5)	0.0098 (5)	0.0090 (5)	-0.0003 (3)	0.0014 (4)	0.0001 (4)
0.0103 (14)	0.0218 (16)	0.0222 (17)	-0.0032 (12)	-0.0019 (12)	0.0080 (14)
0.0190 (17)	0.0273 (17)	0.0178 (16)	0.0001 (14)	0.0060 (14)	0.0096 (14)
0.0225 (16)	0.0123 (14)	0.0273 (17)	0.0070 (13)	0.0027 (14)	0.0027 (14)
0.0278 (19)	0.029 (2)	0.0190 (17)	-0.0027 (15)	0.0019 (15)	-0.0148 (15)
	U ¹¹ 0.0085 (3) 0.0085 (3) 0.0087 (3) 0.0254 (7) 0.0254 (7) 0.0228 (8) 0.0228 (8) 0.0078 (5) 0.0103 (14) 0.0190 (17) 0.0225 (16) 0.0278 (19)	U^{11} U^{22} 0.0085 (3) 0.0085 (3) 0.0085 (3) 0.0085 (3) 0.0085 (3) 0.0085 (3) 0.0087 (3) 0.0087 (3) 0.0087 (3) 0.0087 (3) 0.0254 (7) 0.0254 (7) 0.0254 (7) 0.0254 (7) 0.0228 (8) 0.0228 (8) 0.0228 (8) 0.0228 (8) 0.0078 (5) 0.0098 (5) 0.0103 (14) 0.0218 (16) 0.0190 (17) 0.0273 (17) 0.0225 (16) 0.0123 (14) 0.0278 (19) 0.029 (2)	U^{11} U^{22} U^{33} $0.0085(3)$ $0.0085(3)$ $0.0085(3)$ $0.0085(3)$ $0.0085(3)$ $0.0085(3)$ $0.0087(3)$ $0.0087(3)$ $0.0087(3)$ $0.0087(3)$ $0.0087(3)$ $0.0087(3)$ $0.0254(7)$ $0.0254(7)$ $0.0254(7)$ $0.0254(7)$ $0.0254(7)$ $0.0254(7)$ $0.0228(8)$ $0.0228(8)$ $0.0228(8)$ $0.0228(8)$ $0.0228(8)$ $0.0228(8)$ $0.0078(5)$ $0.0098(5)$ $0.0090(5)$ $0.0103(14)$ $0.0218(16)$ $0.0222(17)$ $0.0190(17)$ $0.0273(17)$ $0.0178(16)$ $0.0225(16)$ $0.0123(14)$ $0.0273(17)$ $0.0278(19)$ $0.029(2)$ $0.0190(17)$	U^{11} U^{22} U^{33} U^{12} 0.0085 (3)0.0085 (3)0.0085 (3)-0.0002 (2)0.0085 (3)0.0085 (3)0.0085 (3)-0.0002 (2)0.0087 (3)0.0087 (3)0.0087 (3)-0.0005 (2)0.0087 (3)0.0087 (3)0.0087 (3)-0.0005 (2)0.0254 (7)0.0254 (7)0.0254 (7)0.0004 (5)0.0228 (8)0.0228 (8)0.0228 (8)-0.0021 (4)0.0228 (8)0.0228 (8)0.0228 (8)-0.0021 (4)0.0078 (5)0.0098 (5)0.0090 (5)-0.0003 (3)0.0103 (14)0.0218 (16)0.0222 (17)-0.0032 (12)0.0190 (17)0.0273 (17)0.0178 (16)0.0001 (14)0.0228 (19)0.029 (2)0.0190 (17)-0.0027 (15)	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0085 (3)0.0085 (3)0.0085 (3)-0.0002 (2)-0.0002 (2)0.0085 (3)0.0085 (3)0.0085 (3)-0.0002 (2)-0.0002 (2)0.0087 (3)0.0087 (3)0.0087 (3)-0.0005 (2)-0.0005 (2)0.0087 (3)0.0087 (3)0.0087 (3)-0.0005 (2)-0.0005 (2)0.0254 (7)0.0254 (7)0.0254 (7)0.0004 (5)0.0004 (5)0.0228 (8)0.0228 (8)0.0228 (8)-0.0021 (4)-0.0021 (4)0.0228 (8)0.0228 (8)0.0228 (8)-0.0021 (4)-0.0021 (4)0.0078 (5)0.0098 (5)0.0090 (5)-0.0003 (3)0.0014 (4)0.0103 (14)0.0218 (16)0.0222 (17)-0.0032 (12)-0.0019 (12)0.0190 (17)0.0273 (17)0.0178 (16)0.0001 (14)0.0027 (14)0.0228 (19)0.029 (2)0.0190 (17)-0.0027 (15)0.0019 (15)

Geometric parameters (Å, °)

Fe1—O2 ⁱ	1.954 (3)	K1—O2 ^{xviii}	3.019 (4)
Fe1—O2 ⁱⁱ	1.954 (3)	K1—O4 ^{xvi}	3.129 (4)

Fe1—O2 ⁱⁱⁱ	1.954 (3)	K1—O4 ^{xvii}	3.129 (4)
Fe1—O1	1.976 (3)	K1—O4 ^{xviii}	3.129 (4)
Fe1—O1 ^{iv}	1.976 (3)	K1—P3 ^{xvi}	3.4416 (16)
Fe1—O1 ^v	1.976 (3)	K1—P3 ^{xviii}	3.4416 (16)
Fe1—K2 ^{vi}	3.587 (2)	K1—P3 ^{xvii}	3.4416 (16)
Fe1—K1 ^{vii}	3.7927 (9)	K2—O3 ^{xvi}	2.854 (4)
Fe1—K1 ^{viii}	3.7927 (9)	K2—O3 ^{xvii}	2.854 (4)
Fe1—K1 ^{ix}	3.7927 (9)	K2—O3 ^{xviii}	2.854 (4)
Fe2—O3 ^x	1.938 (3)	K2—O2 ^{xix}	2.911 (4)
Fe2—O3 ^{xi}	1.938 (3)	K2—O2 ^{xx}	2.911 (4)
Fe2—O3 ^{xii}	1.938 (3)	K2—O2 ^{xxi}	2.911 (4)
Fe2—O4 ^v	1.970 (3)	K2—O4 ^{xvii}	3.007 (4)
Fe2—O4 ^{iv}	1.970 (3)	K2—O4 ^{xvi}	3.007 (4)
Fe2—O4	1.970 (3)	K2—O4 ^{xviii}	3.007 (4)
Fe2—K2 ^{xiii}	3.7237 (7)	K2—O4 ^{xx}	3.231 (4)
Fe2—K2 ^{xiv}	3.7237 (7)	K2—O4 ^{xxi}	3.231 (4)
Fe2—K2 ^{xv}	3.7237 (7)	K2—O4 ^{xix}	3.231 (4)
K1—O1 ^{xii}	2.830 (4)	P3—O4	1.516 (4)
K1—01 ^x	2.830 (4)	P3—O2	1.522 (3)
K1—O1 ^{xi}	2.830 (4)	Р3—О3	1.523 (3)
K1—O2 ^{xvi}	3.019 (4)	P3—O1	1.523 (3)
K1—O2 ^{xvii}	3.019 (4)		
-			
O2 ⁱ —Fe1—O2 ⁱⁱ	89.19 (16)	O4 ^{xvi} —K1—P3 ^{xviii}	69.72 (7)
O2 ⁱ —Fe1—O2 ⁱⁱⁱ	89.19 (16)	O4 ^{xvii} —K1—P3 ^{xviii}	103.33 (10)
O2 ⁱⁱ —Fe1—O2 ⁱⁱⁱ	89.19 (16)	O4 ^{xviii} —K1—P3 ^{xviii}	26.12 (7)
O2 ⁱ —Fe1—O1	177.99 (16)	P3 ^{xvi} —K1—P3 ^{xviii}	94.91 (5)
O2 ⁱⁱ —Fe1—O1	88.89 (15)	O1 ^{xii} —K1—P3 ^{xvii}	94.57 (7)
O2 ⁱⁱⁱ —Fe1—O1	90.18 (14)	O1 ^x —K1—P3 ^{xvii}	79.17 (7)
O2 ⁱ —Fe1—O1 ^{iv}	88.88 (15)	O1 ^{xi} —K1—P3 ^{xvii}	169.22 (7)
O2 ⁱⁱ —Fe1—O1 ^{iv}	90.18 (14)	O2 ^{xvi} —K1—P3 ^{xvii}	108.29 (8)
O2 ⁱⁱⁱ —Fe1—O1 ^{iv}	177.99 (16)	O2 ^{xvii} —K1—P3 ^{xvii}	26.23 (6)
O1—Fe1—O1 ^{iv}	91.72 (14)	O2 ^{xviii} —K1—P3 ^{xvii}	115.08 (8)
$O2^{i}$ —Fe1—O1 ^v	90.18 (14)	O4 ^{xvi} —K1—P3 ^{xvii}	103.33 (10)
O2 ⁱⁱ —Fe1—O1 ^v	177.99 (16)	O4 ^{xvii} —K1—P3 ^{xvii}	26.12 (7)
O2 ⁱⁱⁱⁱ —Fe1—O1 ^v	88.88 (15)	O4 ^{xviii} —K1—P3 ^{xvii}	69.72 (7)
O1—Fe1—O1 ^v	91.71 (14)	P3 ^{xvi} —K1—P3 ^{xvii}	94.91 (5)
$O1^{iv}$ —Fe1—O1 ^v	91.72 (14)	P3 ^{xviii} —K1—P3 ^{xvii}	94.91 (5)
O2 ⁱ —Fe1—K2 ^{vi}	54.17 (11)	O3 ^{xvi} —K2—O3 ^{xvii}	100.76 (10)
O2 ⁱⁱ —Fe1—K2 ^{vi}	54.17 (11)	O3 ^{xvi} —K2—O3 ^{xviii}	100.76 (10)
O2 ⁱⁱⁱⁱ —Fe1—K2 ^{vi}	54.17 (11)	O3 ^{xvii} —K2—O3 ^{xviii}	100.76 (10)
O1—Fe1—K2 ^{vi}	124.04 (10)	$O3^{xvi}$ —K2— $O2^{xix}$	100.42 (10)
O1 ^{iv} —Fe1—K2 ^{vi}	124.04 (10)	O3 ^{xvii} —K2—O2 ^{xix}	149.92 (11)
O1 ^v —Fe1—K2 ^{vi}	124.04 (10)	O3 ^{xviii} —K2—O2 ^{xix}	95.97 (10)
O2 ⁱ —Fe1—K1 ^{vii}	52.19 (11)	O3 ^{xvi} —K2—O2 ^{xx}	95.97 (10)
O2 ⁱⁱ —Fe1—K1 ^{vii}	131.75 (12)	O3 ^{xvii} —K2—O2 ^{xx}	100.42 (10)
O2 ⁱⁱⁱⁱ —Fe1—K1 ^{vii}	65.77 (11)	O3 ^{xviii} —K2—O2 ^{xx}	149.92 (11)
O1—Fe1—K1 ^{vii}	129.13 (11)	$O2^{xix}$ —K2— $O2^{xx}$	56.22 (11)
	× /		× /

O1 ^{iv} —Fe1—K1 ^{vii}	113.38 (10)	$O3^{xvi}$ —K2— $O2^{xxi}$	149.92 (11)
O1 ^v —Fe1—K1 ^{vii}	46.69 (10)	O3 ^{xvii} —K2—O2 ^{xxi}	95.97 (10)
K2 ^{vi} —Fe1—K1 ^{vii}	78.252 (17)	O3 ^{xviii} —K2—O2 ^{xxi}	100.42 (10)
O2 ⁱ —Fe1—K1 ^{viii}	65.77 (11)	O2 ^{xix} —K2—O2 ^{xxi}	56.22 (11)
O2 ⁱⁱ —Fe1—K1 ^{viii}	52.19 (11)	$O2^{xx}$ —K2— $O2^{xxi}$	56.22 (11)
O2 ⁱⁱⁱ —Fe1—K1 ^{viii}	131.75 (12)	O3 ^{xvi} —K2—O4 ^{xvii}	52.44 (10)
O1—Fe1—K1 ^{viii}	113.38 (10)	O3 ^{xvii} —K2—O4 ^{xvii}	49.39 (9)
O1 ^{iv} —Fe1—K1 ^{viii}	46.69 (10)	O3 ^{xviii} —K2—O4 ^{xvii}	115.63 (12)
O1 ^v —Fe1—K1 ^{viii}	129.13 (11)	$O2^{xix}$ —K2—O4 ^{xvii}	140.25 (11)
$K2^{vi}$ —Fe1—K1 ^{viii}	78.252 (17)	$O2^{xx}$ K2 $O4^{xvii}$	94,39 (10)
K1 ^{vii} —Fe1—K1 ^{viii}	115 965 (12)	O^{2xxi} K2 O^{4xvii}	132.45(10)
Ω^{2i} Fe1 K^{1ix}	131.75 (12)	$O3^{xvi}$ K2 $O4^{xvi}$	49 39 (9)
Ω^{2ii} Fe1 K1 ^{ix}	65 77 (11)	M_{2}^{3xvii} K_{2}^{2} M_{2}^{3vvi}	115.63(12)
$\Omega^{2^{iii}}$ Fe1—K1 ^{ix}	52 19 (11)	03^{xviii} K^2 04^{xvi}	52 44 (10)
$O1$ Fe1 $K1^{ix}$	46 69 (10)	$O2^{xix}$ $K2 O4^{xvi}$	94 39 (10)
O_1^{iv} Fe1 K_1^{ix}	120 13 (11)	O^{2xx} K2 O^{4xvi}	132.45(10)
$O_1 - K_1 - K_1$	129.13(11) 112.38(10)	O^{2} K^{2} O^{4}	132.43(10) 140.25(11)
$V_1 - V_2 = V_1 = V_1 = V_1$	79.252(17)	$O_2 - K_2 - O_4$	140.23(11)
KZ^{-} $FEI - KI^{-}$	78.232(17)	$O_{4}^{\text{A}} = K_2 = O_{4}^{\text{A}}$	87.30 (11) 115.62 (12)
KI^{m} Fel KI^{m}	115.905 (12)	03^{AV} K_2 04^{AV}	113.03(12)
KI^{m} FeI KI^{m}	115.905(12)	03^{AVIII} K2 04^{AVIIII}	52.44 (10) 40.20 (0)
$O_{3^{n}}$ Fe2 $O_{3^{n}}$	92.72 (15)	03^{xvm} K2 04^{xvm}	49.39 (9)
$O_{3^{\text{A}}}$ Fe2 $O_{3^{\text{A}}}$	92.72 (15)	02^{AV} K2 04^{AV}	132.45 (10)
03^{A} Fe2 03^{A}	92.72 (15)	02^{xx} K2 04^{xy}	140.25 (11)
$O3^{x}$ —Fe2—O4 ^v	171.85 (17)	$O2^{xxi}$ —K2—O4 ^{xviii}	94.39 (10)
$O3^{x_1}$ —Fe2— $O4^{v}$	83.11 (16)	$O4^{xvn}$ —K2— $O4^{xvin}$	87.30 (11)
$O3^{xn}$ —Fe2— $O4^{v}$	94.47 (15)	$O4^{xvi}$ K2 $O4^{xviii}$	87.30 (11)
$O3^{x}$ —Fe2—O4 ^{iv}	94.47 (15)	$O3^{xvi}$ —K2—O4 ^{xx}	55.86 (9)
$O3^{xi}$ —Fe2—O4 ^{iv}	171.85 (17)	$O3^{xvii}$ —K2— $O4^{xx}$	85.99 (9)
$O3^{xii}$ —Fe2—O4 ^{iv}	83.11 (16)	$O3^{xviii}$ —K2—O4 ^{xx}	156.61 (10)
O4 ^v —Fe2—O4 ^{iv}	90.22 (16)	$O2^{xix}$ —K2—O4 ^{xx}	88.46 (10)
O3 ^x —Fe2—O4	83.11 (16)	$O2^{xx}$ —K2— $O4^{xx}$	46.20 (9)
O3 ^{xi} —Fe2—O4	94.47 (15)	$O2^{xxi}$ —K2—O4 ^{xx}	101.11 (10)
O3 ^{xii} —Fe2—O4	171.85 (17)	O4 ^{xvii} —K2—O4 ^{xx}	53.02 (13)
O4 ^v —Fe2—O4	90.22 (16)	$O4^{xvi}$ —K2— $O4^{xx}$	104.40 (2)
O4 ^{iv} —Fe2—O4	90.22 (16)	O4 ^{xviii} —K2—O4 ^{xx}	137.03 (8)
O3 ^x —Fe2—K2 ^{xiii}	127.93 (11)	$O3^{xvi}$ —K2— $O4^{xxi}$	156.61 (10)
O3 ^{xi} —Fe2—K2 ^{xiii}	118.56 (11)	O3 ^{xvii} —K2—O4 ^{xxi}	55.86 (9)
O3 ^{xii} —Fe2—K2 ^{xiii}	48.96 (11)	O3 ^{xviii} —K2—O4 ^{xxi}	85.99 (9)
O4 ^v —Fe2—K2 ^{xiii}	60.13 (13)	O2 ^{xix} —K2—O4 ^{xxi}	101.11 (10)
O4 ^{iv} —Fe2—K2 ^{xiii}	53.60 (12)	$O2^{xx}$ —K2— $O4^{xxi}$	88.46 (10)
O4—Fe2—K2 ^{xiii}	129.40 (12)	O2 ^{xxi} —K2—O4 ^{xxi}	46.20 (9)
O3 ^x —Fe2—K2 ^{xiv}	118.56 (11)	O4 ^{xvii} —K2—O4 ^{xxi}	104.40 (2)
O3 ^{xi} —Fe2—K2 ^{xiv}	48.96 (11)	O4 ^{xvi} —K2—O4 ^{xxi}	137.03 (8)
O3 ^{xii} —Fe2—K2 ^{xiv}	127.93 (11)	O4 ^{xviii} —K2—O4 ^{xxi}	53.02 (13)
O4 ^v —Fe2—K2 ^{xiv}	53.60 (12)	O4 ^{xx} —K2—O4 ^{xxi}	115.75 (5)
O4 ^{iv} —Fe2—K2 ^{xiv}	129.40 (12)	O3 ^{xvi} —K2—O4 ^{xix}	85.99 (9)
O4—Fe2—K2 ^{xiv}	60.13 (12)	O3 ^{xvii} —K2—O4 ^{xix}	156.61 (10)
K2 ^{xiii} —Fe2—K2 ^{xiv}	113.261 (15)	$O3^{xviii}$ —K2— $O4^{xix}$	55.86 (9)
			(-)

$O3^{x}$ —Fe2—K2 ^{xv}	48.96 (11)	$O2^{xix}$ —K2—O4 ^{xix}	46.20 (9)
O3 ^{xi} —Fe2—K2 ^{xv}	127.93 (11)	$O2^{xx}$ —K2— $O4^{xix}$	101.11 (10)
O3 ^{xii} —Fe2—K2 ^{xv}	118.56 (11)	O2 ^{xxi} —K2—O4 ^{xix}	88.46 (10)
O4 ^v —Fe2—K2 ^{xv}	129.40 (12)	O4 ^{xvii} —K2—O4 ^{xix}	137.03 (8)
O4 ^{iv} —Fe2—K2 ^{xv}	60.13 (12)	O4 ^{xvi} —K2—O4 ^{xix}	53.02 (13)
O4—Fe2—K2 ^{xv}	53.60 (12)	O4 ^{xviii} —K2—O4 ^{xix}	104.40 (2)
K2 ^{xiii} —Fe2—K2 ^{xv}	113.261 (15)	O4 ^{xx} —K2—O4 ^{xix}	115.75 (5)
K2 ^{xiv} —Fe2—K2 ^{xv}	113.261 (15)	O4 ^{xxi} —K2—O4 ^{xix}	115.75 (5)
$O1^{xii}$ —K1—O1 ^x	92.24 (11)	O4—P3—O2	106.1 (2)
$O1^{xii}$ K1 $O1^{xi}$	92.24 (12)	O4—P3—O3	107.6 (2)
$01^{x}-K1-01^{xi}$	92.24 (11)	$0^{2}-P^{3}-0^{3}$	111.7(2)
$O1^{xii}$ K1 $O2^{xvi}$	56.73 (9)	04 - P3 - 01	111.6(2)
01^{x} K1 02^{xvi}	148.02(12)	$0^{2}-P^{3}-0^{1}$	1090(2)
01^{xi} K1 02^{xvi}	82 44 (10)	03 - P3 - 01	109.0(2)
$O1^{xii}$ $K1 - O2^{xvii}$	82 44 (10)	$O4$ P3 K^{2xiv}	70 72 (16)
01^{x} K1 02^{xvii}	56 73 (9)	$O2 - P3 - K2^{xiv}$	58 63 (14)
$O1^{xi}$ K1 $O2^{xvii}$	148.02(12)	$O3 P3 K2^{xiv}$	167.81(14)
$O_{1} = K_{1} = O_{2}$	140.02(12) 118.00(3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80 51 (13)
$O_2 = K_1 = O_2$	118.99(3) 148.02(12)	$O_1 = 13 = K2$ $O_4 = P_3 = K1^{XV}$	65.34(15)
$O_1 = K_1 = O_2$	146.02(12)	O_{4} D_{2} D_{2} K_{1} K_{1}	61.34(13)
$O1^{xi}$ $K1$ $O2^{xyiji}$	82.44 (10) 56.72 (0)	$O_2 = P_3 = K_1 x x$	01.21(14)
O1 - K1 - O2	50.75(9)	O_{3} P_{3} K_{1}	62.39(14)
O_2 $K_1 = O_2$ V_1	118.99 (3)	$01 - F_3 - K_1^{m}$	100.21(14)
O_{2}^{AVA} K_{1} O_{2}^{AVA}	118.99 (5)	K^{2} $-F^{3}$ $-K^{1}$	83.88 (3) 5(80 (1()
$O1^{\text{All}}$ K1 $O4^{\text{All}}$	103.04 (9)	$04 - P3 - K2^{xy}$	56.80 (16)
$O1^{-}K1 - O4^{-}V1$	164.18 (10)	$O_2 P_3 K_2^{xy}$	126.68 (15)
$O1^{\text{AV}}$ K1 $O4^{\text{AV}}$	83.19 (10)	$O_3 - P_3 - K_2^{xy}$	50.98 (15)
$O2^{xv_1}$ K1 $O4^{xv_1}$	46.48 (9)	$O1 - P3 - K2^{xv}$	124.35 (14)
$O2^{xvii}$ K1 $O4^{xvi}$	128.76 (12)	$K2^{xiv}$ P3— $K2^{xv}$	126.85 (4)
$O2^{xvm}$ —K1— $O4^{xvi}$	82.41 (10)	$K1^{xv}$ P3 $K2^{xv}$	66.30 (5)
$O1^{xn}$ —K1— $O4^{xvn}$	83.19 (10)	$O4$ — $P3$ — $K1^{1x}$	148.79 (17)
$O1^{x}$ —K1— $O4^{xvn}$	103.04 (9)	$O2$ — $P3$ — $K1^{1x}$	71.17 (14)
$O1^{xi}$ —K1— $O4^{xvii}$	164.18 (10)	$O3$ — $P3$ — $K1^{ix}$	101.86 (15)
$O2^{xvi}$ —K1—O4 ^{xvii}	82.41 (10)	$O1$ — $P3$ — $K1^{ix}$	46.23 (13)
$O2^{xvii}$ —K1—O4 ^{xvii}	46.48 (9)	$K2^{xiv}$ —P3— $K1^{ix}$	82.53 (3)
$O2^{xviii}$ —K1—O4 ^{xvii}	128.76 (12)	$K1^{xv}$ $P3$ $K1^{ix}$	129.78 (5)
$O4^{xvi}$ —K1— $O4^{xvii}$	83.10 (12)	$K2^{xv}$ —P3— $K1^{ix}$	149.91 (4)
$O1^{xii}$ —K1— $O4^{xviii}$	164.18 (10)	P3—O1—Fe1	132.5 (2)
$O1^{x}$ —K1— $O4^{xviii}$	83.19 (10)	P3—O1—K1 ^{ix}	110.90 (17)
O1 ^{xi} —K1—O4 ^{xviii}	103.04 (9)	Fe1—O1—K1 ^{ix}	102.77 (13)
O2 ^{xvi} —K1—O4 ^{xviii}	128.76 (12)	P3—O2—Fe1 ^{xxii}	165.9 (2)
O2 ^{xvii} —K1—O4 ^{xviii}	82.41 (10)	$P3-O2-K2^{xiv}$	94.85 (16)
$O2^{xviii}$ —K1—O4 ^{xviii}	46.48 (9)	Fe1 ^{xxii} —O2—K2 ^{xiv}	92.87 (13)
O4 ^{xvi} —K1—O4 ^{xviii}	83.10 (12)	P3—O2—K1 ^{xv}	92.56 (16)
O4 ^{xvii} —K1—O4 ^{xviii}	83.10 (12)	$Fe1^{xxii}$ — $O2$ — $K1^{xv}$	97.07 (13)
O1 ^{xii} —K1—P3 ^{xvi}	79.17 (7)	$K2^{xiv}$ — $O2$ — $K1^{xv}$	103.55 (11)
$O1^{x}$ — $K1$ — $P3^{xvi}$	169.22 (7)	P3—O3—Fe2 ^{ix}	151.0 (2)
$O1^{xi}$ — $K1$ — $P3^{xvi}$	94.57 (7)	P3—O3—K2 ^{xv}	104.53 (18)
O2 ^{xvi} —K1—P3 ^{xvi}	26.23 (6)	$Fe2^{ix}$ —O3— $K2^{xv}$	100.23 (13)

115.08 (8)	P3—O4—Fe2	152.9 (3)
108.29 (8)	P3—O4—K2 ^{xv}	98.25 (18)
26.12 (7)	Fe2—O4—K2 ^{xv}	94.57 (14)
69.72 (7)	P3—O4—K1 ^{xv}	88.54 (16)
103.33 (10)	Fe2—O4—K1 ^{xv}	117.62 (15)
169.22 (7)	$K2^{xv}$ —O4— $K1^{xv}$	77.17 (10)
94.57 (7)	P3—O4—K2 ^{xiv}	83.00 (16)
79.17 (7)	Fe2—O4—K2 ^{xiv}	87.94 (14)
115.08 (8)	$K2^{xv}$ —O4— $K2^{xiv}$	171.21 (14)
108.29 (8)	$K1^{xv}$ —O4— $K2^{xiv}$	94.20 (11)
26.23 (6)		
	115.08 (8) 108.29 (8) 26.12 (7) 69.72 (7) 103.33 (10) 169.22 (7) 94.57 (7) 79.17 (7) 115.08 (8) 108.29 (8) 26.23 (6)	115.08 (8)P3-O4-Fe2 108.29 (8)P3-O4-K2xv 26.12 (7)Fe2-O4-K2xv 69.72 (7)P3-O4-K1xv 103.33 (10)Fe2-O4-K1xv 169.22 (7)K2xv-O4-K1xv 94.57 (7)P3-O4-K2xiv 79.17 (7)Fe2-O4-K2xiv 115.08 (8)K2xv-O4-K2xiv 108.29 (8)K1xv-O4-K2xiv 26.23 (6)

Symmetry codes: (i) -z, x-1/2, -y+1/2; (ii) -y+1/2, -z, x-1/2; (iii) x-1/2, -y+1/2, -z; (iv) y, z, x; (v) z, x, y; (vi) x-1, y-1, z-1; (vii) -x+1/2, -y+1/2, -y+1/2; (viii) x-1/2, -y+1/2, -z+1; (ix) -x+1, y-1/2, -z+1/2; (x) y+1/2, -z+1/2; (x) y+1/2, -z+1/2; (x) y+1/2, -z+1/2; (x) y+1/2, -z+1/2; (xii) -z+1/2, -x+1, y+1/2; (xiii) -x+1, y-1/2, -z+3/2; (xiv) x-1/2, -y+3/2, -z+1; (xv) -x+3/2, -y+1, z-1/2; (xvi) z+1/2, -x+3/2, -y+1; (xvii) -y+1, z+1/2, -x+3/2; (xviii) -x+3/2, -y+1, z+1/2; (xix) x+1/2, -y+3/2, -z+1; (xv) -z+1, x+1/2, -y+3/2; (xvi) -y+3/2, -z+1; (xv) -y+3/2; (xvi) -y+3/2; (xvi) -y+3/2, -z+1; (xv) -y+3/2; (xvi) -y+3/2; (xvi) -y+3/2, -z+1; (xv) -z+1, x+1/2, -y+3/2; (xvi) -y+3/2; (xvi) -y+3/2, -z+1; (xv) -z+1, x+1/2, -y+3/2; (xvi) -y+3/2, -z+1; (xv) -z+1; (xv) -z+1, x+1/2; (xvi) -y+3/2, -z+1; (xv) -z+1; (xv) -z+1; (xv) -z+1, x+1/2; (xvi) -x+3/2; (xvi) -z+1; (xv) -z+1; (xv)

Potassium sodium titanium iron tris(phosphate) (II)

Crystal data

 $K_{0.97}Na_{1.03}Ti_{1.26}Fe_{0.74}(PO_4)_3$ $M_r = 448.16$ Cubic, $P2_13$ Hall symbol: P 2ac 2ab 3 a = 9.7945 (1) Å V = 939.61 (3) Å³ Z = 4F(000) = 870.9

Data collection

Oxford Diffraction Xcalibur-3 diffractometer Graphite monochromator φ and ω scans Absorption correction: multi-scan (Blessing, 1995) $T_{\min} = 0.622, T_{\max} = 0.835$ 10546 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.016$ $wR(F^2) = 0.043$ S = 1.12837 reflections 63 parameters 0 restraints ' $w = 1/[\sigma^2(F_o^2) + (0.0186P)^2 + 1.1348P]$ where $P = (F_o^2 + 2F_c^2)/3'$ $D_x = 3.168 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 10546 reflections $\theta = 2.9-29.0^{\circ}$ $\mu = 3.27 \text{ mm}^{-1}$ T = 293 KTetrahedron, violet $0.15 \times 0.11 \times 0.08 \text{ mm}$

837 independent reflections 833 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 29.0^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = -12 \rightarrow 13$ $k = -13 \rightarrow 13$ $l = -13 \rightarrow 13$

 $\begin{array}{l} (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.28 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Extinction \ correction: \ SHELXL-2018/3} \\ ({\rm Sheldrick \ 2015}) \\ {\rm Extinction \ coefficient: \ 0.0015 \ (10)} \\ {\rm Absolute \ structure: \ Flack \ x \ determined \ using} \\ {\rm 349 \ quotients \ } [(I^+)-(I^-)]/[(I^+)+(I^-)] \ ({\rm Parsons \ et \ al., \ 2013}) \\ {\rm Absolute \ structure \ parameter: \ 0.02} \end{array}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Fe1	0.14198 (4)	0.14198 (4)	0.14198 (4)	0.0079 (2)	0.39 (2)
Ti1	0.14198 (4)	0.14198 (4)	0.14198 (4)	0.0079 (2)	0.61 (2)
Fe2	0.41334 (4)	0.41334 (4)	0.41334 (4)	0.0079 (2)	0.35 (2)
Ti2	0.41334 (4)	0.41334 (4)	0.41334 (4)	0.0079 (2)	0.65 (2)
K1	0.70732 (10)	0.70732 (10)	0.70732 (10)	0.0266 (6)	0.676 (18)
Na1	0.70732 (10)	0.70732 (10)	0.70732 (10)	0.0266 (6)	0.324 (18)
K2	0.93159 (11)	0.93159 (11)	0.93159 (11)	0.0254 (8)	0.294 (19)
Na2	0.93159 (11)	0.93159 (11)	0.93159 (11)	0.0254 (8)	0.706 (19)
P3	0.45787 (7)	0.22778 (7)	0.12657 (7)	0.00815 (19)	
O1	0.3100 (2)	0.2337 (3)	0.0789 (2)	0.0210 (5)	
O2	0.5478 (3)	0.2989 (3)	0.0220 (3)	0.0266 (6)	
O3	0.5024 (3)	0.0810(2)	0.1492 (3)	0.0269 (5)	
O4	0.4786 (3)	0.3034 (3)	0.2602 (3)	0.0313 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic aisplacement parameters (A

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0079 (2)	0.0079 (2)	0.0079 (2)	0.00028 (15)	0.00028 (15)	0.00028 (15)
Ti1	0.0079 (2)	0.0079 (2)	0.0079 (2)	0.00028 (15)	0.00028 (15)	0.00028 (15)
Fe2	0.0079 (2)	0.0079 (2)	0.0079 (2)	-0.00052 (15)	-0.00052 (15)	-0.00052 (15)
Ti2	0.0079 (2)	0.0079 (2)	0.0079 (2)	-0.00052 (15)	-0.00052 (15)	-0.00052 (15)
K1	0.0266 (6)	0.0266 (6)	0.0266 (6)	0.0015 (4)	0.0015 (4)	0.0015 (4)
Na1	0.0266 (6)	0.0266 (6)	0.0266 (6)	0.0015 (4)	0.0015 (4)	0.0015 (4)
K2	0.0254 (8)	0.0254 (8)	0.0254 (8)	-0.0021 (4)	-0.0021 (4)	-0.0021 (4)
Na2	0.0254 (8)	0.0254 (8)	0.0254 (8)	-0.0021 (4)	-0.0021 (4)	-0.0021 (4)
Р3	0.0075 (3)	0.0087 (3)	0.0083 (3)	-0.0003 (2)	0.0015 (2)	-0.0007 (2)
O1	0.0088 (9)	0.0299 (12)	0.0242 (12)	-0.0033 (8)	-0.0020 (8)	0.0089 (10)
O2	0.0197 (11)	0.0361 (14)	0.0241 (12)	-0.0014 (10)	0.0088 (10)	0.0136 (11)
O3	0.0263 (12)	0.0128 (10)	0.0415 (14)	0.0088 (9)	0.0053 (11)	0.0032 (11)
04	0.0333 (14)	0.0373 (15)	0.0232 (12)	-0.0027 (12)	0.0014 (11)	-0.0206 (11)

Geometric parameters (Å, °)

Fe1—O2 ⁱ	1.940 (2)	K1—O2 ^{xviii}	3.009 (3)
Fe1—O2 ⁱⁱ	1.940 (2)	K1—O4 ^{xvii}	3.122 (3)
Fe1—O2 ⁱⁱⁱ	1.940 (2)	K1—O4 ^{xviii}	3.122 (3)
Fe1—O1	1.974 (2)	K1—O4 ^{xvi}	3.122 (3)
Fe1—O1 ^{iv}	1.974 (2)	K1—P3 ^{xviii}	3.4327 (11)
Fe1—O1 ^v	1.974 (2)	K1—P3 ^{xvii}	3.4327 (11)

Fe1—K2 ^{vi}	3.569 (2)	K1—P3 ^{xvi}	3.4327 (11)
Fe1—K1 ^{vii}	3.7806 (7)	K2—O3 ^{xvii}	2.843 (3)
Fe1—K1 ^{viii}	3.7806 (7)	K2—O3 ^{xvi}	2.843 (3)
Fe1—K1 ^{ix}	3.7806 (7)	K2—O3 ^{xviii}	2.843 (3)
Fe2—O3 ^x	1.938 (2)	K2—O2 ^{xix}	2.910 (3)
Fe2—O3 ^{xi}	1.938 (2)	$K2-O2^{xx}$	2.910 (3)
Fe2—O3 ^{xii}	1.938 (2)	K2—O2 ^{xxi}	2.910 (3)
Fe2—O4	1.954 (2)	K2—O4 ^{xvii}	2.982 (4)
Fe2—O4 ^{iv}	1.954 (2)	K2—O4 ^{xvi}	2.982 (4)
Fe2—O4 ^v	1.954 (2)	K2—O4 ^{xviii}	2.982 (4)
Fe2—K2 ^{xiii}	3.7084 (6)	K2—O4 ^{xx}	3.237 (3)
Fe2—K2 ^{xiv}	3.7084 (6)	K2—O4 ^{xix}	3.237 (3)
Fe2—K2 ^{xv}	3.7084 (6)	K2—O4 ^{xxi}	3.237 (3)
K1—O1 ^{xi}	2.820 (3)	P3—O4	1.517 (3)
K1—O1 ^{xii}	2.820 (3)	P3—O3	1.518 (2)
K1—O1 ^x	2.820 (3)	P3—O2	1.520 (2)
K1—O2 ^{xvi}	3.009 (3)	P3—O1	1.523 (2)
K1—O2 ^{xvii}	3.009 (3)		
-			
O2 ⁱ —Fe1—O2 ⁱⁱ	89.72 (12)	O4 ^{xvii} —K1—P3 ^{xvii}	26.22 (5)
O2 ⁱ —Fe1—O2 ⁱⁱⁱ	89.72 (12)	O4 ^{xviii} —K1—P3 ^{xvii}	103.21 (8)
O2 ⁱⁱ —Fe1—O2 ⁱⁱⁱ	89.72 (12)	O4 ^{xvi} —K1—P3 ^{xvii}	69.59 (5)
O2 ⁱ —Fe1—O1	178.52 (12)	P3 ^{xviii} —K1—P3 ^{xvii}	94.92 (4)
O2 ⁱⁱ —Fe1—O1	88.81 (11)	$O1^{xi}$ —K1—P 3^{xvi}	94.74 (5)
O2 ⁱⁱⁱ —Fe1—O1	90.09 (10)	O1 ^{xii} —K1—P3 ^{xvi}	79.13 (5)
$O2^{i}$ —Fe1—O1 ^{iv}	90.09 (10)	O1 ^x —K1—P3 ^{xvi}	169.06 (5)
$O2^{ii}$ —Fe1—O1 ^{iv}	178.52 (12)	O2 ^{xvi} —K1—P3 ^{xvi}	26.25 (5)
O2 ⁱⁱⁱ —Fe1—O1 ^{iv}	88.81 (11)	O2 ^{xvii} —K1—P3 ^{xvi}	108.35 (6)
O1—Fe1—O1 ^{iv}	91.38 (10)	O2 ^{xviii} —K1—P3 ^{xvi}	115.09 (6)
$O2^{i}$ —Fe1—O1 ^v	88.81 (11)	O4 ^{xvii} —K1—P3 ^{xvi}	103.21 (8)
$O2^{ii}$ —Fe1—O1 ^v	90.09 (10)	O4 ^{xviii} —K1—P3 ^{xvi}	69.59 (5)
O2 ⁱⁱⁱ —Fe1—O1 ^v	178.52 (12)	$O4^{xvi}$ — $K1$ — $P3^{xvi}$	26.22 (5)
O1—Fe1—O1 ^v	91.38 (10)	P3 ^{xviii} —K1—P3 ^{xvi}	94.92 (4)
$O1^{iv}$ —Fe1—O1 ^v	91.38 (10)	P3 ^{xvii} —K1—P3 ^{xvi}	94.92 (4)
O2 ⁱ —Fe1—K2 ^{vi}	54.54 (9)	O3 ^{xvii} —K2—O3 ^{xvi}	100.89 (8)
O2 ⁱⁱ —Fe1—K2 ^{vi}	54.54 (9)	O3 ^{xvii} —K2—O3 ^{xviii}	100.89 (8)
O2 ⁱⁱⁱ —Fe1—K2 ^{vi}	54.54 (9)	O3 ^{xvi} —K2—O3 ^{xviii}	100.89 (8)
O1—Fe1—K2 ^{vi}	124.28 (7)	O3 ^{xvii} —K2—O2 ^{xix}	149.75 (9)
O1 ^{iv} —Fe1—K2 ^{vi}	124.28 (7)	O3 ^{xvi} —K2—O2 ^{xix}	95.89 (7)
O1 ^v —Fe1—K2 ^{vi}	124.28 (7)	$O3^{xviii}$ —K2— $O2^{xix}$	100.42 (8)
O2 ⁱ —Fe1—K1 ^{vii}	132.34 (9)	O3 ^{xvii} —K2—O2 ^{xx}	95.89 (7)
O2 ⁱⁱ —Fe1—K1 ^{vii}	66.00 (8)	O3 ^{xvi} —K2—O2 ^{xx}	100.42 (8)
O2 ⁱⁱⁱ —Fe1—K1 ^{vii}	52.14 (8)	$O3^{xviii}$ —K2— $O2^{xx}$	149.75 (9)
O1—Fe1—K1 ^{vii}	46.70 (7)	$O2^{xix}$ —K2— $O2^{xx}$	56.11 (8)
O1 ^{iv} —Fe1—K1 ^{vii}	113.14 (8)	O3 ^{xvii} —K2—O2 ^{xxi}	100.42 (8)
O1 ^v —Fe1—K1 ^{vii}	129.02 (8)	O3 ^{xvi} —K2—O2 ^{xxi}	149.75 (9)
K2 ^{vi} —Fe1—K1 ^{vii}	78.502 (13)	O3 ^{xviii} —K2—O2 ^{xxi}	95.89 (7)
O2 ⁱ —Fe1—K1 ^{viii}	66.00 (8)	$O2^{xix}$ —K2— $O2^{xxi}$	56.11 (8)

O2 ⁱⁱ —Fe1—K1 ^{viii}	52.14 (8)	$O2^{xx}$ —K2— $O2^{xxi}$	56.11 (8)
O2 ⁱⁱⁱ —Fe1—K1 ^{viii}	132.34 (9)	O3 ^{xvii} —K2—O4 ^{xvii}	49.57 (7)
O1—Fe1—K1 ^{viii}	113.14 (8)	O3 ^{xvi} —K2—O4 ^{xvii}	115.99 (10)
O1 ^{iv} —Fe1—K1 ^{viii}	129.02 (8)	O3 ^{xviii} —K2—O4 ^{xvii}	52.41 (7)
O1 ^v —Fe1—K1 ^{viii}	46.70 (7)	O2 ^{xix} —K2—O4 ^{xvii}	140.03 (8)
K2 ^{vi} —Fe1—K1 ^{viii}	78.502 (13)	$O2^{xx}$ —K2— $O4^{xvii}$	132.27 (7)
K1 ^{vii} —Fe1—K1 ^{viii}	116.129 (8)	O2 ^{xxi} —K2—O4 ^{xvii}	94.19 (7)
$O2^{i}$ —Fe1—K1 ^{ix}	52.14 (8)	$O3^{xvii}$ —K2—O4 ^{xvi}	52.41 (7)
$O2^{ii}$ —Fe1—K1 ^{ix}	132.34 (9)	$O3^{xvi}$ K2 $O4^{xvi}$	49.57 (7)
O^{2iii} Fe1 K^{1ix}	66.00 (8)	$M_{\rm A}^{\rm Xviii}$ K2— $M_{\rm A}^{\rm Xvi}$	115 99 (10)
01—Fe1—K1 ^{ix}	129 02 (8)	Ω^{2xix} $K^2 - \Omega^{4xvi}$	132 27 (7)
$O1^{iv}$ Fe1 $K1^{ix}$	46 70 (7)	Ω^{2xx} K^2 Ω^{4xvi}	94 19 (7)
$O1^v$ Fe1 K1 ^{ix}	113 14 (8)	02^{xxi} K2 04^{xvi}	140.03 (8)
K^{2vi} Fel K^{1ix}	78 502 (13)	O_{4}^{xvii} K2 O_{4}^{xvi}	87 67 (9)
K_{1}^{vii} Eq. K_{1}^{vii}	116 129 (8)	O_{3}^{xvii} K2 O_{4}^{xviii}	115.09(10)
$K_1 \longrightarrow K_1 \longrightarrow K_1$	116,129 (8)	$O_3 - K_2 - O_4$	113.39(10) 52 41 (7)
KI - I C I - KI	110.129(0)	$O_2 x_{iji} = K_2 = O_4 x_{iji}$	32.41(7)
O_3^{-} Fe_2^{-} O_3^{-}	92.37(12)	$O_{2xix} = K_2 = O_4 V_{2xix}$	49.37 (7)
$O_{3^{\text{A}}}$ Fe2 $O_{3^{\text{A}}}$	92.37 (12)	02^{xx} K2 04^{xyiii}	94.19 (7)
03^{-1} Fe2 03^{-1}	92.37 (12)	02^{xx} K2 04^{xyiii}	140.03 (8)
O_3^{-} Fe2 $-O_4$	94.89 (12)	02^{AVIII} K2-04 ^{AVIII}	132.27 (8)
03^{A} —Fe2—04	171.47 (13)	$O4^{\text{xvin}}$ K2 $O4^{\text{xvin}}$	87.67 (9)
O3 ^{xn} —Fe2—O4	82.87 (13)	$O4^{xvi}$ —K2— $O4^{xvin}$	87.67 (9)
$O3^{x}$ —Fe2—O4 ^{IV}	82.87 (13)	$O3^{xvn}$ —K2—O4 ^{xx}	55.81 (6)
$O3^{xi}$ —Fe2—O4 ^{iv}	94.90 (12)	$O3^{xv_1}$ K2 $O4^{xx}$	86.02 (7)
$O3^{xii}$ —Fe2—O4 ^{iv}	171.46 (13)	$O3^{xviii}$ —K2—O4 ^{xx}	156.68 (8)
O4—Fe2—O4 ^{iv}	90.46 (12)	$O2^{xix}$ —K2—O4 ^{xx}	100.98 (8)
$O3^{x}$ —Fe2—O4 ^v	171.46 (13)	$O2^{xx}$ —K2—O4 ^{xx}	46.19 (7)
$O3^{xi}$ —Fe2—O4 ^v	82.87 (13)	$O2^{xxi}$ —K2—O4 ^{xx}	88.43 (8)
$O3^{xii}$ —Fe2—O4 ^v	94.90 (12)	$O4^{xvii}$ —K2— $O4^{xx}$	104.497 (19)
$O4$ —Fe2— $O4^{v}$	90.46 (12)	$O4^{xvi}$ —K2— $O4^{xx}$	52.80 (10)
$O4^{iv}$ —Fe2—O4 ^v	90.46 (12)	O4 ^{xviii} —K2—O4 ^{xx}	137.10 (6)
O3 ^x —Fe2—K2 ^{xiii}	118.47 (8)	O3 ^{xvii} —K2—O4 ^{xix}	156.68 (8)
O3 ^{xi} —Fe2—K2 ^{xiii}	49.04 (9)	O3 ^{xvi} —K2—O4 ^{xix}	55.81 (6)
O3 ^{xii} —Fe2—K2 ^{xiii}	127.81 (8)	O3 ^{xviii} —K2—O4 ^{xix}	86.02 (7)
O4—Fe2—K2 ^{xiii}	129.70 (9)	$O2^{xix}$ —K2—O4 ^{xix}	46.19 (7)
O4 ^{iv} —Fe2—K2 ^{xiii}	60.69 (10)	$O2^{xx}$ —K2— $O4^{xix}$	88.43 (8)
O4 ^v —Fe2—K2 ^{xiii}	53.21 (10)	O2 ^{xxi} —K2—O4 ^{xix}	100.98 (8)
$O3^{x}$ —Fe2—K2 ^{xiv}	127.81 (8)	O4 ^{xvii} —K2—O4 ^{xix}	137.10 (6)
O3 ^{xi} —Fe2—K2 ^{xiv}	118.47 (8)	O4 ^{xvi} —K2—O4 ^{xix}	104.497 (19)
O3 ^{xii} —Fe2—K2 ^{xiv}	49.04 (9)	O4 ^{xviii} —K2—O4 ^{xix}	52.80 (10)
O4—Fe2—K2 ^{xiv}	53.21 (10)	$O4^{xx}$ —K2— $O4^{xix}$	115.71 (4)
O4 ^{iv} —Fe2—K2 ^{xiv}	129.70 (9)	O3 ^{xvii} —K2—O4 ^{xxi}	86.02 (7)
O4 ^v —Fe2—K2 ^{xiv}	60.69 (10)	$O3^{xvi}$ K2 $O4^{xxi}$	156.68 (8)
K2 ^{xiii} —Fe2—K2 ^{xiv}	113.409 (11)	$O3^{xviii}$ K2— $O4^{xxi}$	55.81 (6)
$O3^x$ —Fe2—K2 ^{xv}	49.04 (9)	02^{xix} K2 04^{xxi}	88.43 (8)
$O3^{xi}$ Fe2 K2 ^{xv}	127.81 (8)	02^{xx} K2 04^{xxi}	100.98 (8)
$O3^{xii}$ Fe2 K2 ^{xv}	118 47 (8)	02^{xxi} K^2 04^{xxi}	46 19 (7)
$\Delta = \frac{1}{2} $	60.69 (10)	Δ^{4} K^{2} Δ^{4} Δ^{4}	52.80 (10)
01 102 112	00.07 (10)		22.00 (10)

26.22 (5)

P3—O4—K1^{xiv}

O4^{xviii}—K1—P3^{xviii}

88.41 (12)

O4 ^{iv} —Fe2—K2 ^{xv}	53.21 (10)	O4 ^{xvi} —K2—O4 ^{xxi}	137.10(6)
O4 ^v —Fe2—K2 ^{xv}	129.70 (9)	O4 ^{xviii} —K2—O4 ^{xxi}	104.497 (19)
K2 ^{xiii} —Fe2—K2 ^{xv}	113.409 (11)	O4 ^{xx} —K2—O4 ^{xxi}	115.71 (4)
K2 ^{xiv} —Fe2—K2 ^{xv}	113.409 (11)	O4 ^{xix} —K2—O4 ^{xxi}	115.71 (4)
O1 ^{xi} —K1—O1 ^{xii}	92.11 (9)	O4—P3—O3	107.34 (18)
01 ^{xi} —K1—O1 ^x	92.11 (9)	O4—P3—O2	106.27 (16)
O1 ^{xii} —K1—O1 ^x	92.11 (9)	O3—P3—O2	111.46 (16)
O1 ^{xi} —K1—O2 ^{xvi}	82.55 (7)	O4—P3—O1	111.89 (15)
O1 ^{xii} —K1—O2 ^{xvi}	56.64 (6)	O3—P3—O1	110.74 (14)
O1 ^x —K1—O2 ^{xvi}	147.84 (9)	O2—P3—O1	109.06 (14)
O1 ^{xi} —K1—O2 ^{xvii}	56.64 (6)	O4—P3—K2 ^{xv}	71.04 (13)
O1 ^{xii} —K1—O2 ^{xvii}	147.84 (9)	O3—P3—K2 ^{xv}	167.62 (11)
O1 ^x —K1—O2 ^{xvii}	82.55 (7)	$O2 - P3 - K2^{xv}$	58.68 (11)
$O2^{xvi}$ —K1— $O2^{xvii}$	119.008 (19)	$O1$ — $P3$ — $K2^{xv}$	80.72 (10)
O1 ^{xi} —K1—O2 ^{xviii}	147.84 (9)	O4—P3—K1 ^{xiv}	65.37 (11)
O1 ^{xii} —K1—O2 ^{xviii}	82.55 (7)	O3—P3—K1 ^{xiv}	82.38 (11)
O1 ^x —K1—O2 ^{xviii}	56.64 (6)	O2—P3—K1 ^{xiv}	61.12 (11)
$O2^{xvi}$ —K1— $O2^{xviii}$	119.008 (19)	O1—P3—K1 ^{xiv}	166.43 (11)
O2 ^{xvii} —K1—O2 ^{xviii}	119.008 (19)	$K2^{xv}$ —P3— $K1^{xiv}$	85.93 (3)
O1 ^{xi} —K1—O4 ^{xvii}	103.13 (7)	O4—P3—K2 ^{xiv}	56.40 (13)
$O1^{xii}$ — $K1$ — $O4^{xvii}$	164.24 (7)	O3—P3—K2 ^{xiv}	51.08 (12)
O1 ^x —K1—O4 ^{xvii}	83.46 (8)	O2—P3—K2 ^{xiv}	126.42 (11)
$O2^{xvi}$ —K1— $O4^{xvii}$	128.67 (9)	O1—P3—K2 ^{xiv}	124.51 (10)
O2 ^{xvii} —K1—O4 ^{xvii}	46.65 (7)	K2 ^{xv} —P3—K2 ^{xiv}	126.74 (3)
$O2^{xviii}$ —K1— $O4^{xvii}$	82.39 (7)	$K1^{xiv}$ —P3— $K2^{xiv}$	66.11 (4)
$O1^{xi}$ —K1— $O4^{xviii}$	164.24 (7)	O4—P3—K1 ^{vii}	149.07 (13)
O1 ^{xii} —K1—O4 ^{xviii}	83.46 (8)	O3—P3—K1 ^{vii}	101.87 (12)
O1 ^x —K1—O4 ^{xviii}	103.13 (7)	O2—P3—K1 ^{vii}	71.24 (11)
$O2^{xvi}$ —K1— $O4^{xviii}$	82.39 (7)	O1—P3—K1 ^{vii}	46.09 (9)
$O2^{xvii}$ —K1— $O4^{xviii}$	128.67 (9)	$K2^{xv}$ —P3— $K1^{vii}$	82.54 (3)
$O2^{xviii}$ —K1—O4 ^{xviii}	46.65 (7)	$K1^{xiv}$ —P3— $K1^{vii}$	129.74 (3)
O4 ^{xvii} —K1—O4 ^{xviii}	82.84 (10)	$K2^{xiv}$ —P3— $K1^{vii}$	150.05 (3)
$O1^{xi}$ — $K1$ — $O4^{xvi}$	83.46 (8)	P3—O1—Fe1	132.78 (15)
$O1^{xii}$ —K1— $O4^{xvi}$	103.13 (7)	P3	111.02 (12)
O1 ^x —K1—O4 ^{xvi}	164.24 (7)	Fe1—O1—K1 ^{vii}	102.66 (9)
$O2^{xvi}$ —K1—O4 ^{xvi}	46.65 (7)	P3—O2—Fe1 ^{xxii}	165.93 (19)
$O2^{xvii}$ —K1—O4 ^{xvi}	82.39 (7)	P3—O2—K2 ^{xv}	94.82 (12)
$O2^{xviii}$ —K1—O4 ^{xvi}	128.67 (9)	$Fe1^{xxii}$ —O2— $K2^{xv}$	92.57 (10)
$O4^{xvii}$ —K1— $O4^{xvi}$	82.84 (10)	P3—O2—K1 ^{xiv}	92.63 (12)
O4 ^{xviii} —K1—O4 ^{xvi}	82.84 (10)	Fe1 ^{xxii} —O2—K1 ^{xiv}	97.25 (10)
O1 ^{xi} —K1—P3 ^{xviii}	169.06 (5)	$K2^{xv}$ — $O2$ — $K1^{xiv}$	103.64 (9)
$O1^{xii}$ — $K1$ — $P3^{xviii}$	94.74 (5)	P3—O3—Fe2 ^{vii}	151.51 (19)
$O1^{x}$ — $K1$ — $P3^{xviii}$	79.13 (5)	P3—O3—K2 ^{xiv}	104.38 (14)
$O2^{xvi}$ —K1—P 3^{xviii}	108.35 (6)	Fe2 ^{vii} —O3—K2 ^{xiv}	100.00 (10)
$O2^{xvii}$ —K1—P 3^{xviii}	115.09 (6)	P3—O4—Fe2	152.6 (2)
O2 ^{xviii} —K1—P3 ^{xviii}	26.25 (5)	P3—O4—K2 ^{xiv}	98.53 (14)
$O4^{xvii}$ — $K1$ — $P3^{xviii}$	69.59 (5)	Fe2—O4—K2 ^{xiv}	95.14 (11)

$O4^{xvi}$ —K1—P 3^{xviii}	103.21 (8)	Fe2—O4—K1 ^{xiv}	117.90 (11)
$O1^{xi}$ —K1—P 3^{xvii}	79.13 (5)	$K2^{xiv}$ —O4— $K1^{xiv}$	77.09 (8)
O1 ^{xii} —K1—P3 ^{xvii}	169.06 (5)	P3—O4—K2 ^{xv}	82.65 (13)
O1 ^x —K1—P3 ^{xvii}	94.74 (5)	Fe2—O4—K2 ^{xv}	87.54 (11)
O2 ^{xvi} —K1—P3 ^{xvii}	115.09 (6)	$K2^{xiv}$ —O4— $K2^{xv}$	171.00 (11)
$O2^{xvii}$ —K1—P 3^{xvii}	26.25 (5)	$K1^{xiv}$ —O4— $K2^{xv}$	94.06 (9)
O2 ^{xviii} —K1—P3 ^{xvii}	108.35 (6)		

Symmetry codes: (i) -z, x-1/2, -y+1/2; (ii) -y+1/2, -z, x-1/2; (iii) x-1/2, -y+1/2, -z; (iv) z, x, y; (v) y, z, x; (vi) x-1, y-1, z-1; (vii) -x+1, y-1/2, -z+1/2; (viii) x-1/2, -y+1/2, -z+1/2; (xi) -z+1/2, -z+1/2; (xi) -z+1/2, -z+1/2; (xii) -z+1/2