

Received 7 October 2021 Accepted 27 October 2021

Edited by O. Blacque, University of Zürich, Switzerland

Keywords: Ugi reaction; multicomponent reaction; molecular structure; crystal structure; Hirshfeld surface analysis.

CCDC reference: 2118094

Supporting information: this article has supporting information at journals.iucr.org/e

N-tert-Butyl-2-{2-[2-(4-chlorophenyl)-4-hydroxy-1-(5-methylisoxazol-3-yl)-5-oxo-2,5-dihydro-1*H*pyrrol-3-yl]-*N*-(4-methoxyphenyl)acetamido}-2-(4methoxyphenyl)acetamide methanol monosolvate: single-crystal X-ray diffraction study and Hirshfeld surface analysis

Mariia O. Shyshkina,^a* Yana I. Sakhno,^a Oleksandr V. Radchenko,^b Svitlana V. Shishkina,^{a,b} Sergey M. Desenko^a and Valentyn A. Chebanov^{a,b}

^aDivision of Chemistry of Functional Materials, State Scientific Institution "Institute for Single Crystals" of the National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv 61072, Ukraine, and ^bFaculty of Chemistry, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61077, Ukraine. *Correspondence e-mail: masha.o.shishkina@gmail.com

The title compound, $C_{36}H_{37}ClN_4O_7 \cdot CH_3OH$, which crystallizes as a methanol solvate, may possess biological activity, which is inherent for a natural peptide or protein. In the crystal, molecules of the title compound form hydrogen-bonded tetramers with the solvate molecules acting as bridges as a result of the O-H···O and N-H···O intermolecular hydrogen bonds. Hirshfeld surface analysis was used to study the different types of intermolecular interactions whose contributions are: H···H = 53.8%, O···H/H···O = 19.0%, C···H/H···C = 14.8%, Cl···H/H···Cl = 5.3%, N···H/H···N = 3.2%.

1. Chemical context

The combined application of Doebner and Ugi-type multicomponent reactions, with the participation of the azoloazine type of carboxylic acid as an acid component in the Ugi reaction to increase the molecular diversity of the target heterocyclic compounds, was reported in our previous publication (Murlykina *et al.*, 2019).

In the current work, the final product was synthesized *via* the four-component Ugi reaction of 2-[2-(4-chlorophenyl)-4-hydroxy-1-(5-methylisoxazol-3-yl)-5-oxo-2,5-dihydro-1*H*-pyr-rol-3-yl]acetic acid, 4-methoxyaniline, 4-methoxybenzalde-hyde and *tert*-butylisocyanide. The target product contains a heterocyclic core bound to peptidomimetics, compounds that mimic a natural peptide or protein and which may have high biological activity. The pyrrolone fragment is also a privileged

motif because of its biological activities, namely antibacterial (Murlykina *et al.*, 2013), antiviral (Murlykina *et al.*, 2015; Rashid *et al.*, 2012; Pace *et al.*, 2008), antitumor (Mori *et al.*, 2013; Koz'minykh *et al.*, 2002) and antimicrobial (Khalaf *et al.*, 2004; Gein *et al.*, 2006).

2. Structural commentary

The title compound crystallizes as a methanol solvate (Fig. 1). The methanol molecule is disordered over two positions (A and B) with the populations of A:B in a 0.303 (10):0.697 (10) ratio. All atoms of the partially saturated five-membered heterocycle are in the same plane with an accuracy of 0.008 Å. The N2–C4 bond length of 1.380 (3) Å and the C8–N2– C4–N1 torsion angle of 2.2 (4) $^{\circ}$ indicate conjugation between the π -systems of the partially saturated and oxazole cycles. The para-chlorophenyl substituent is located in the pseudoequatorial position and is turned in relation to the C7-C8 endocyclic bond $[C6-C7-C8-C9 = -120.9 (3)^{\circ} \text{ and } C7 C8-C9-C10 = 60.9 (3)^{\circ}$]. The C16(=O4)-N3 carbamide group is located in the *-ac* position in relation to the C6-C7endocyclic bond $[C6-C7-C15-C16 = -107.2 (3)^{\circ}]$, and the C16=O4 carbonyl group is slightly non-coplanar to the C7-C15 bond $[C7-C15-C16-O4 = 22.5 (4)^{\circ}]$. The para-methoxyphenyl substituent at the nitrogen atom is turned almost orthogonally to the plane of the carbamide group [C16-N3-C17-C22 = -99.5 (3)°]. The *para*-methoxyphenyl substituent at the carbon atom is located in a position intermediate between sp and -sc and is also rotated almost orthogonally to the plane of the carbamide group [the C17-N3-C24-C25] and N3-C24-C25-C26 torsion angles are -33.4 (3) and $-83.4 (3)^{\circ}$, respectively]. In both *para*-methoxyphenyl substituents, the methoxy group is coplanar with the plane of the aromatic ring [the C19-C20-O5-C23 and C29-C28-O7-C31 torsion angles are -3.3(5) and $3.6(4)^{\circ}$, respectively] despite the steric repulsion between the methyl group and the aromatic ring atoms (the shortened contacts are:

Figure 1

Molecular structure of the title compound (solvent molecule and hydrogen atoms are omitted for clarity). Displacement ellipsoids are shown at the 50% probability level.

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O3−H3···O8A	0.75 (4)	1.88 (5)	2.61 (3)	162 (4)
$O3-H3\cdots O8B$	0.75 (4)	1.93 (4)	2.680 (10)	175 (4)
$N4-H4\cdots O2^{i}$	0.87 (3)	2.33 (3)	3.193 (3)	170 (3)
$O8A - H8A \cdots O4^{i}$	0.82	1.88	2.60 (3)	145
$O8B - H8B \cdots O4^{i}$	0.82	2.50	2.843 (8)	107

Symmetry code: (i) -x + 1, -y + 2, -z + 1.

C23···H19 = 2.52, H23B···C19 = 2.73, H23A···C19 = 2.76 and H29···C31 = 2.50, H31C···C29 = 2.77 and H31B···C29 = 2.70 Å as compared with the C···H van der Waals radii sum of 2.87 Å). The substituent at the C24 atom is located in the *-sc* position relative to the N3–C16 bond [C32–C24–N3–C16 = -78.1 (3)°] and the C32–O6 carbonyl group is slightly noncoplanar to the N3–C24 bond [O6–C32–C24–N3 = -27.8 (3)°]. The *tert*-butyl substituent is located in antiperplanar position to the C32–C24 bond [C33–N4–C32– C24 = 172.9 (2)°].

3. Supramolecular features

In the crystal, the molecules of the title compound are linked by bridging methanol molecules due to the formation of the O3-H8A···O8A, O3-H8B···O8B, O8A-H8A···O4 and O8B-H8B···O4 intermolecular hydrogen bonds (Table 1). Additionally, two main molecules are bound by N4-H4···O2 hydrogen bonds (Table 1) within this dimer. As a result, a hydrogen-bonded tetramer may be recognized as a structural motif of the crystal packing (Fig. 2).

4. Hirshfeld surface analysis

Different types of intra- and intermolecular interactions in a crystal structure can be identified and visualized with Hirsh-feld surface analysis (Turner *et al.*, 2017). The molecular Hirshfeld surface of the major compound was generated using a high surface resolution with three-dimensional d_{norm} surfaces. The areas that are coloured red on the d_{norm} surfaces correspond to contacts that are shorter than the van der Waals radii sum of the closest atoms (Fig. 3). These red spots indicate atoms participating in hydrogen bonding or short contacts. The brightest red spots are observed at the hydroxyl groups of both the main and the methanol molecules, indicating a strong $O-H \cdots O$ intermolecular hydrogen bond. In addition, bright-red spots are observed at the carboxyl group and at the

Figure 3

Two views of the Hirshfeld surface of the title molecule mapped over d_{norm} in the range -0.295 to 1.590 a.u.

Figure 4

Two-dimensional fingerprint plot for the title compound showing (a) all interactions, and delineated into (b) $H \cdots H$, (c) $O \cdots H/H \cdots O$, (d) $C \cdots H/H \cdots C$. (e) $C I \cdots H/H \cdots C I$. (f) $N \cdots H/H \cdots N$ contacts.

hydrogen atom of the amino group, indicating short contacts. It should be mentioned that smaller red areas are found at the nitrogen atom of the partially saturated five-membered heterocycle, at the $C31H_3$ methyl group and at the C32=O6 carboxyl group, indicating short contacts.

In the two-dimensional fingerprint plots the pair of sharp spikes indicate strong hydrogen bonds and short contacts in the crystal structure (Fig. 4*a*). The highest contribution is from $H \cdots H$ contacts (53.8%), while these made by the $O \cdots H/$ $H \cdots O$ (19.0%) and $C \cdots H/H \cdots C$ (14.8%) interactions are similar (Fig. 4*c*, 4*d*). The contributions of $Cl \cdots H/H \cdots Cl$ (5.3%) and $N \cdots H/H \cdots N$ (3.2%) interactions (Fig. 4*e*, 4*f*) are very small.

5. Database survey

A search of the Cambridge Structural Database (CSD Version 5.42, update of November 2020; Groom et al., 2016) for the 3hydroxy-1,5-dihydro-pyrrol-2-one fragment revealed 79 hits. Only 27 of these hits contain a fragment with the same structure as that of the title compound [refcodes: BOQXEN (del Corte et al., 2019), CIKPAQ (Sarkar et al., 2018), EVIYUD (Aliev et al., 2003b), GEJZAY (Mashevskaya et al., 2011), GIMGEQ (Sarkar et al., 2013), GITCAQ, GITDEV (Saha et al., 2017), IRUBUS (Aliev et al., 2003a), LIFBEJ, LIFBOT (Sun et al., 2011), NUXPIG (Wiedemann et al., 2009), PADHUA (Zonouz et al., 2015), PASTOT (Nicolaou et al., 2005), QIPNAH (Bhajammanavar et al., 2019), ROHNAG (Hosseinzadeh et al., 2019), TOMPER (Sakhno et al., 2008), UJEXOY (Ahankar et al., 2016), VILQEP (Gein et al., 2018), VIPNAJ (Mylari et al., 1991), VIQDOP (Guseinov et al., 2006), VOWGAP (Kazakov et al., 1990), WAPMIM (Dubovtsev et al., 2016), XINHIL (Aliev et al., 2001), XOKRAT, XOKRAT01 (Ramazani et al., 2019), YAJMOM (Wei et al., 2004), YIYFAP (Denislamova et al., 2014)]. All these structures and the title compound have the same electron density distribution within the 3-hydroxy-1,5-dihydropyrrol-2-one fragment.

6. Synthesis and crystallization

4-Methoxyaniline (3) (0.5 mmol) and 4-methoxybenzaldehyde (2) (0.5 mmol) were dissolved in methanol (4 mL) and stirred for 0.5 h. Then, 2-[2-(4-chlorophenyl)-4-hydroxy-1-(5-methyl-isoxazol-3-yl)-5-oxo-2,5-dihydro-1*H*-pyrrol-3-yl]acetic acid (1) (0.5 mmol) and *tert*-butylisocyanide (4) (0.5 mmol) were added consistently and the reaction mixture was stirred for 24 h at 319 K. The mixture was allowed to stand overnight. The crystal precipitate was filtered off and dried. The reaction scheme is shown in Fig. 5.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were located in difference-Fourier maps. They were included in calculated positions and treated as riding with C-H = 0.96 Å and O-H = 0.82 Å, $U_{iso}(H) = 1.5U_{eq}(C,O)$ for methyl and hydroxyl groups and with Car-H = 0.93 Å, Csp^3 -H = 0.97 Å, N-H = 0.89 Å $U_{iso}(H) = 1.2U_{eq}(C,N)$ for all other hydrogen atoms. The solvent molecule is disordered over two positions (*A* and *B*) in a 0.303 (10):0.697 (10) occupancy ratio. Csp^3 -O bonds were refined with fixed length of 1.413 Å.

Funding information

The work was supported by a grant from the National Research Foundation of Ukraine 2020.02/0023.

References

- Ahankar, H., Ramazani, A., Ślepokura, K., Lis, T. & Joo, S. W. (2016). *Green Chem.* 18, 3582–3593.
- Aliev, Z. G., Atovmyan, L. O., Gein, V. L., Gein, L. F. & Kataeva, A. V. (2003a). *Izv. Akad. Nauk SSSR, Ser. Khim.* 52, 1343– 1348.
- Aliev, Z. G., Krasnykh, O. P., Konyukhova, N. A., Maslivets, A. N. & Atovmyan, L. O. (2001). *Zh. Strukt. Khim.* 42, 1008–1013.
- Aliev, Z. G., Maslivets, A. N., Simonchil, O. L., Bannikova, Yu. N. & Atovmyan, L. O. (2003b). *Zh. Strukt. Khim.* 44, 769–772.
- Bhajammanavar, V., Mallik, S. & Baidya, M. (2019). Org. Biomol. Chem. 17, 1740–1743.
- Corte, X. del, de Marigirta, E. M., Palacios, F. & Vicario, J. (2019). *Molecules*, 24, 2951.
- Denislamova, E. S., Slepukhin, P. A. & Maslivets, A. N. (2014). Zh. Org. Khim. 50, 232–235.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Table 2Experimental details.

Crystal data Chemical formula C36H37ClN4O7·CH4O 705.19 M_{r} Crystal system, space group Triclinic, $P\overline{1}$ Temperature (K) 293 10.3211 (7), 13.9316 (11), a, b, c (Å) 15.0269 (10) 107.179 (6), 100.769 (6), α, β, γ (°) 109.649(7) $V(Å^3)$ 1843.2 (2) Z 2 Radiation type Μο Κα μ (mm⁻¹) 0.16 Crystal size (mm) $0.12 \times 0.08 \times 0.04$ Data collection Rigaku Xcalibur, Sapphire3 Diffractometer Multi-scan (CrysAlis PRO; Rigaku Absorption correction OD, 2018) 0.718, 1.000 T_{\min}, T_{\max} No. of measured, independent and 12120, 6484, 3993 observed $[I > 2\sigma(I)]$ reflections $R_{\rm int}$ 0.062 $(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$ 0.595 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.063, 0.180, 0.98 No. of reflections 6484 No. of parameters 488 No. of restraints 14 H atoms treated by a mixture of H-atom treatment independent and constrained refinement $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$ 0.37, -0.37

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2017/1 (Sheldrick, 2015b), Mercury (Macrae et al., 2020) and OLEX2 (Dolomanov et al., 2009).

- Dubovtsev, A. Yu., Silaichev, P. S., Zheleznova, M. A., Aliev, Z. G. & Maslivets, A. N. (2016). *Zh. Org. Khim.* 52, 1779–1783.
- Gein, V. L., Buldakova, E. A., Korol, A. N., Veikhman, G. A. & Dmitriev, M. V. (2018). *Zh. Obshch. Khim.* **88**, 908–911.
- Gein, V. L., Kasimova, N. N., Panina, M. A. & Voronina, V. (2006). *Pharm. Chem. J.* 40, 410–412.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Guseinov, F. I., Burangulova, R. N., Mukhamedzyanova, E. F., Strunin, B. P., Sinyashin, O. G., Litvinov, I. A. & Gubaidullin, A. T. (2006). *Khim. Get. Soedin.*, SSSR, 42, 1089–1093.
- Hosseinzadeh, Z., Ramazani, A., Ahankar, H., Ślepokura, K. & Lis, T. (2019). *Silicon*, **11**, 2933–2943.
- Kazakov, P. V., Odinets, I. L., Antipin, M. Yu., Petrovskii, P. V., Kovalenko, L. V., Struchkov, Yu. T. & Mastryukova, T. A. (1990). *Izv. Akad. Nauk SSSR, Ser. Khim.* **39**, 2120–2126.
- Khalaf, A. I., Waigh, R. D., Drummond, A. J., Pringle, B., McGroarty, I., Skellern, G. G. & Suckling, C. (2004). J. Med. Chem. 47, 2133– 2156.
- Koz'minykh, V. O., Igidov, N. M., Zykova, S. S., Kolla, V. É., Shuklina, N. S. & Odegova, T. F. (2002). *Pharm. Chem. J.* 36, 188–191.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Mashevskaya, I. V., Mokrushin, I. G., Kuslina, L. V., Aliev, Z. G. & Maslivets, A. N. (2011). *Zh. Org. Khim.* 47, 424–427.
- Mori, M., Tintori, C., Christopher, R. S. A., Radi, M., Schenone, S., Musumeci, F., Brullo, C., Sanità, P., Delle Monache, S., Angelucci, A., Kissova, M., Crespan, E., Maga, G. & Botta, M. (2013). *ChemMedChem*, 8, 484–496.

research communications

- Murlykina, M. V., Kolomiets, O. V., Kornet, M. M., Sakhno, Y. I., Desenko, S. M., Dyakonenko, V. V., Shishkina, S. V., Brazhko, O. A., Musatov, V. I., Tsygankov, A. V., Van der Eycken, E. V. & Chebanov, V. A. (2019). *Beilstein J. Org. Chem.* **15**, 1281–1288.
- Murlykina, M. V., Sakhno, Y. I., Desenko, S. M., Konovalova, I. S., Shishkin, O. V., Sysoiev, D. A., Kornet, M. N. & Chebanov, V. A. (2013). *Tetrahedron*, **69**, 9261–9269.
- Murlykina, M. V., Sakhno, Y. I., Desenko, S. M., Shishkina, S. V., Shishkin, O. V., Sysoiev, D. O., Kornet, M. N., Schols, D., Goeman, J. L., Van der Eycken, L., Van der Eycken, E. V. & Chebanov, V. A. (2015). Eur. J. Org. Chem. 2015, 4481–4492.
- Mylari, B. L., Beyer, T. A. & Siegel, T. W. (1991). J. Med. Chem. 34, 1011–1018.
- Nicolaou, K. C., Lee, S. H., Estrada, A. A. & Zak, M. (2005). Angew. Chem. Int. Ed. 44, 3736–3740.
- Pace, P., Spieser, S. A. H. & Summa, V. (2008). *Bioorg. Med. Chem. Lett.* **18**, 3865–3869.
- Ramazani, A., Ahankar, H., Slepokura, K., Lis, T. & Joo, S. W. (2019). *Zh. Strukt. Khim.* **60**, 662–670.
- Rashid, M., Husain, A. & Mishra, R. (2012). Eur. J. Med. Chem. 54, 855–866.
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.

- Saha, M. & Das, A. R. (2017). ChemistrySelect 2, 10249-10260.
- Sakhno, Y. I., Desenko, S. M., Shishkina, S. V., Shishkin, O. V., Sysoyev, D. O., Groth, U., Kappe, C. O. & Chebanov, V. A. (2008). *Tetrahedron*, 64, 11041–11049.
- Sarkar, R. & Mukhopadhyay, C. (2013). *Tetrahedron Lett.* 54, 3706–3711.
- Sarkar, R. & Mukhopadhyay, C. (2018). Tetrahedron Lett. 59, 3069– 3076.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.
- Sun, J., Wu, Q., Xia, E.-Y. & Yan, C.-G. (2011). Eur. J. Org. Chem. pp. 2981–2986.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17*. University of Western Australia. http://Hirshfeldsurface.net
- Wei, H.-X., Zhou, C., Ham, S., White, J. M. & Birney, D. M. (2004). Org. Lett. 6, 4289–4292.
- Wiedemann, D. & Grohmann, A. (2009). Z. Naturforsch. Teil B, 64, 1276–1288.
- Zonouz, A. M., Eskandari, I. & Notash, B. (2015). Synth. Commun. 45, 2115–2121.

Acta Cryst. (2021). E77, 1208-1212 [https://doi.org/10.1107/S2056989021011312]

N-tert-Butyl-2-{2-[2-(4-chlorophenyl)-4-hydroxy-1-(5-methylisoxazol-3-yl)-5oxo-2,5-dihydro-1H-pyrrol-3-yl]-N-(4-methoxyphenyl)acetamido}-2-(4-methoxyphenyl)acetamide methanol monosolvate: single-crystal X-ray diffraction study and Hirshfeld surface analysis

Mariia O. Shyshkina, Yana I. Sakhno, Oleksandr V. Radchenko, Svitlana V. Shishkina, Sergey M. Desenko and Valentyn A. Chebanov

Computing details

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

N-tert-Butyl-2-{2-[2-(4-chlorophenyl)-4-hydroxy-1-(5-methylisoxazol-3-yl)-5-oxo-2,5-dihydro-1H-pyrrol-3-yl]-N-(4-methoxyphenyl)acetamido}-2-(4-methoxyphenyl)acetamide methanol monosolvate

Crystal data

$C_{36}H_{37}ClN_4O_7{\cdot}CH_4O$
$M_r = 705.19$
Triclinic, $P\overline{1}$
<i>a</i> = 10.3211 (7) Å
<i>b</i> = 13.9316 (11) Å
c = 15.0269 (10) Å
$\alpha = 107.179 \ (6)^{\circ}$
$\beta = 100.769 \ (6)^{\circ}$
$\gamma = 109.649 \ (7)^{\circ}$
V = 1843.2 (2) Å ³

Data collection

Rigaku Xcalibur, Sapphire3	12120 measured reflection
diffractometer	6484 independent reflect
Radiation source: fine-focus sealed X-ray tube	3993 reflections with $I >$
Detector resolution: 16.1827 pixels mm ⁻¹	$R_{\rm int} = 0.062$
ω scans	$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 3.0^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(CrysAlisPro; Rigaku OD, 2018)	$k = -16 \rightarrow 16$
$T_{\min} = 0.718, \ T_{\max} = 1.000$	$l = -17 \rightarrow 17$

Z = 2F(000) = 744 $D_{\rm x} = 1.271 {\rm ~Mg} {\rm ~m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 2243 reflections $\theta = 3.6 - 24.8^{\circ}$ $\mu = 0.16 \text{ mm}^{-1}$ T = 293 KPlate, colourless $0.12\times0.08\times0.04~mm$

ons tions $2\sigma(I)$

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.063$	and constrained refinement
$wR(F^2) = 0.180$	$w = 1/[\sigma^2(F_o^2) + (0.0804P)^2]$
S = 0.98	where $P = (F_o^2 + 2F_c^2)/3$
6484 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
488 parameters	$\Delta \rho_{\rm max} = 0.37 \text{ e } \text{\AA}^{-3}$
14 restraints	$\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C11	0.18482 (10)	0.27201 (7)	0.45318 (8)	0.0879 (4)	
01	0.1363 (2)	0.78835 (18)	0.78187 (15)	0.0656 (6)	
O2	0.6392 (2)	0.97400 (15)	0.79614 (13)	0.0527 (5)	
O3	0.7446 (2)	0.94517 (18)	0.63187 (18)	0.0595 (6)	
Н3	0.741 (4)	0.957 (3)	0.586 (3)	0.083 (15)*	
O4	0.3890 (3)	0.87873 (18)	0.40675 (14)	0.0708 (7)	
O5	0.3359 (3)	0.30481 (19)	0.15424 (18)	0.0802 (8)	
O6	0.0559 (2)	0.67660 (18)	0.23246 (16)	0.0630 (6)	
O7	0.3038 (2)	0.61623 (18)	-0.17618 (14)	0.0609 (6)	
N1	0.1951 (3)	0.7675 (2)	0.70394 (18)	0.0612 (7)	
N2	0.4227 (2)	0.83021 (18)	0.68609 (15)	0.0460 (6)	
N3	0.3530 (2)	0.72925 (16)	0.27770 (14)	0.0392 (5)	
N4	0.0835 (3)	0.8240 (2)	0.19070 (17)	0.0490 (6)	
H4	0.152 (4)	0.884 (3)	0.195 (2)	0.074 (11)*	
C1	0.2010 (4)	0.8940 (3)	0.9544 (2)	0.0736 (10)	
H1A	0.128840	0.922066	0.943675	0.110*	
H1B	0.284465	0.949601	1.008583	0.110*	
H1C	0.161991	0.829562	0.968871	0.110*	
C2	0.2440 (3)	0.8644 (3)	0.8645 (2)	0.0546 (8)	
C3	0.3694 (3)	0.8946 (2)	0.8449 (2)	0.0531 (8)	
H3A	0.460502	0.945953	0.888417	0.064*	
C4	0.3337 (3)	0.8316 (2)	0.74402 (19)	0.0434 (7)	
C5	0.5651 (3)	0.9051 (2)	0.71337 (19)	0.0436 (7)	
C6	0.6065 (3)	0.8850 (2)	0.62320 (19)	0.0438 (7)	
C7	0.4959 (3)	0.8067 (2)	0.54664 (19)	0.0432 (7)	
C8	0.3665 (3)	0.7620 (2)	0.57990 (18)	0.0442 (7)	
H8	0.286697	0.776140	0.548349	0.053*	
C9	0.3169 (3)	0.6397 (2)	0.55535 (18)	0.0416 (7)	
C10	0.4071 (3)	0.5977 (2)	0.5935 (2)	0.0537 (8)	
H10	0.496737	0.646313	0.640469	0.064*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C11	0.3678 (3)	0.4858 (2)	0.5639 (2)	0.0560 (8)
H11	0.429826	0.458959	0.590555	0.067*
C12	0.2347 (3)	0.4139 (2)	0.4940 (2)	0.0496 (7)
C13	0.1416 (3)	0.4526 (2)	0.4563 (2)	0.0562 (8)
H13	0.051140	0.403604	0.410486	0.067*
C14	0.1827 (3)	0.5653 (2)	0.4868(2)	0.0513 (7)
H14	0.119336	0.591657	0.460966	0.062*
C15	0.4877(3)	0.7567 (2)	0.44215 (18)	0.0467 (7)
H15A	0.441428	0.676778	0.419640	0.056*
H15B	0.585368	0.777049	0.438053	0.056*
C16	0.4042(3)	0.7932 (2)	0.37513 (19)	0.0450 (7)
C17	0.3430(3)	0.6180 (2)	0.24142 (18)	0.0396 (6)
C18	0.2315(3)	0.5338(2)	0.2456(2)	0.0530(8)
H18	0 1 5 9 4 0 8	0.548169	0.268223	0.064*
C19	0 2238 (3)	0.4270(2)	0.2165(2)	0.0587 (8)
H19	0.147233	0 370399	0.219647	0.070*
C20	0.3309(3)	0.4061(2)	0.1831(2)	0.0555 (8)
C21	0.3309(3) 0.4416(4)	0.4902(3)	0.1051(2) 0.1765(2)	0.0555(0)
H21	0.512658	0.475722	0.152511	0.077*
C22	0.342030 0.4478(3)	0.5952(2)	0.192311 0.2053(2)	0.077
H22	0.522867	0.651377	0.200380	0.0545 (0)
C23	0.2286 (4)	0.031577 0.2176(3)	0.200300 0.1641(3)	0.000
H23A	0.135048	0.201790	0.122460	0.137*
H23R	0.135040	0.238635	0.231160	0.137*
H23C	0.227730	0.152986	0.145215	0.137*
C24	0.247922 0.2850(3)	0.132900 0.7726(2)	0.145215 0.21251(18)	0.137
H24	0.2030 (5)	0.852694	0.238280	0.0404 (0)
C25	0.2869 (3)	0.052074 0.7253 (2)	0.10845 (19)	0.043
C26	0.2007(3)	0.7233(2) 0.7724(2)	0.10843(17)	0.0421(0)
U20	0.4104 (5)	0.7724(2) 0.831257	0.0842(2) 0.132620	0.0512 (8)
C27	0.491803	0.031237 0.7330 (3)	-0.0107(2)	0.001
U27	0.4130 (3)	0.7550 (5)	-0.025541	0.0504 (8)
П27 С28	0.497132 0.2027 (2)	0.704909	-0.023341 -0.0838(2)	0.008°
C20	0.2927(3)	0.0400(2)	-0.0638(2)	0.0473(7)
C29	0.1700(3)	0.5974 (2)	-0.0012(2) -0.100724	0.0333 (8)
П29 С20	0.069433	0.538224	-0.109724	0.004°
C30 H20	0.1092(3)	0.0372(2)	0.03492 (19)	0.0494 (7)
П30 С21	0.000404	0.003300	0.049932	0.039°
	0.1770(4)	0.5554 (5)	-0.2340(2)	0.0748 (11)
IJ21D	0.190300	0.524810	-0.313984	0.112*
HJIG	0.098515	0.554956	-0.254578	0.112*
H3IC	0.152642	0.464518	-0.246083	0.112^{*}
C32	0.1300(3)	0.7536(2)	0.21472 (19)	0.0434 (7)
C33	-0.0649(3)	0.81//(3)	0.1/62(3)	0.0637 (9)
U34	-0.1035(4)	0.8284 (4)	0.2694 (3)	0.0987 (14)
H34A	-0.104076	0.767117	0.286450	0.148*
H34B	-0.19/859	0.828863	0.259680	U.148* 0.140*
H34C	-0.033068	0.896180	0.321512	0.148*
C35	-0.1715 (4)	0.7095 (3)	0.0922 (3)	0.1000 (14)

H35A	-0.140232	0.702183	0.035187	0.150*	
H35B	-0.266155	0.709336	0.077334	0.150*	
H35C	-0.175204	0.648757	0.111037	0.150*	
C36	-0.0624 (5)	0.9159 (4)	0.1482 (4)	0.1060 (15)	
H36A	0.007832	0.983643	0.200456	0.159*	
H36B	-0.156610	0.916650	0.137701	0.159*	
H36C	-0.036727	0.908644	0.089156	0.159*	
O8A	0.754 (3)	1.031 (2)	0.4990 (12)	0.127 (8)	0.303 (10)
H8A	0.682895	1.041989	0.506038	0.191*	0.303 (10)
C37A	0.744 (3)	0.9975 (16)	0.3987 (13)	0.117 (6)	0.303 (10)
H37A	0.802378	1.059842	0.387193	0.175*	0.303 (10)
H37B	0.644924	0.969545	0.359214	0.175*	0.303 (10)
H37C	0.778623	0.940725	0.381619	0.175*	0.303 (10)
O8B	0.7271 (8)	0.9964 (6)	0.4729 (6)	0.084 (2)	0.697 (10)
H8B	0.655470	1.005555	0.450322	0.127*	0.697 (10)
C37B	0.8511 (8)	1.0727 (6)	0.4653 (7)	0.101 (3)	0.697 (10)
H37D	0.926332	1.046763	0.469376	0.151*	0.697 (10)
H37E	0.884329	1.143282	0.517811	0.151*	0.697 (10)
H37F	0.826852	1.079852	0.403396	0.151*	0.697 (10)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0789 (6)	0.0378 (5)	0.1184 (8)	0.0190 (4)	0.0063 (6)	0.0136 (5)
O1	0.0552 (13)	0.0732 (16)	0.0524 (13)	0.0196 (12)	0.0169 (11)	0.0114 (11)
O2	0.0585 (12)	0.0386 (11)	0.0372 (11)	0.0093 (10)	0.0026 (10)	0.0033 (9)
O3	0.0551 (14)	0.0508 (14)	0.0535 (14)	0.0101 (11)	0.0117 (12)	0.0120 (11)
O4	0.1146 (19)	0.0506 (14)	0.0430 (12)	0.0494 (14)	0.0060 (12)	0.0071 (10)
05	0.0854 (17)	0.0464 (15)	0.0958 (18)	0.0347 (13)	0.0134 (14)	0.0115 (13)
O6	0.0582 (13)	0.0572 (14)	0.0817 (16)	0.0205 (11)	0.0289 (12)	0.0376 (12)
07	0.0605 (13)	0.0701 (15)	0.0466 (12)	0.0214 (11)	0.0230 (11)	0.0184 (10)
N1	0.0548 (16)	0.0588 (17)	0.0458 (14)	0.0111 (13)	0.0117 (13)	0.0052 (12)
N2	0.0468 (13)	0.0391 (14)	0.0361 (12)	0.0111 (11)	0.0070 (11)	0.0050 (10)
N3	0.0475 (13)	0.0298 (12)	0.0326 (11)	0.0155 (10)	0.0055 (10)	0.0070 (9)
N4	0.0488 (15)	0.0428 (15)	0.0511 (15)	0.0198 (13)	0.0066 (12)	0.0172 (12)
C1	0.073 (2)	0.087 (3)	0.054 (2)	0.032 (2)	0.0218 (18)	0.0199 (18)
C2	0.0558 (19)	0.053 (2)	0.0407 (16)	0.0199 (16)	0.0050 (15)	0.0088 (14)
C3	0.0506 (18)	0.0526 (19)	0.0384 (16)	0.0162 (15)	0.0043 (14)	0.0063 (13)
C4	0.0489 (17)	0.0353 (16)	0.0370 (14)	0.0144 (13)	0.0064 (13)	0.0099 (12)
C5	0.0529 (17)	0.0263 (14)	0.0381 (15)	0.0125 (13)	0.0017 (14)	0.0070 (12)
C6	0.0486 (17)	0.0333 (15)	0.0397 (15)	0.0123 (13)	0.0084 (13)	0.0102 (12)
C7	0.0485 (16)	0.0356 (15)	0.0371 (14)	0.0159 (13)	0.0032 (13)	0.0113 (12)
C8	0.0476 (16)	0.0343 (15)	0.0335 (14)	0.0125 (13)	-0.0001 (13)	0.0036 (11)
С9	0.0414 (15)	0.0370 (16)	0.0358 (14)	0.0112 (13)	0.0064 (12)	0.0093 (12)
C10	0.0450 (17)	0.0417 (18)	0.0537 (17)	0.0112 (14)	-0.0023 (14)	0.0102 (14)
C11	0.0502 (18)	0.047 (2)	0.065 (2)	0.0211 (15)	0.0082 (16)	0.0205 (15)
C12	0.0516 (17)	0.0326 (16)	0.0550 (17)	0.0135 (14)	0.0154 (15)	0.0097 (13)
C13	0.0469 (17)	0.0413 (18)	0.0533 (18)	0.0102 (14)	-0.0001 (14)	0.0015 (14)

C14	0.0445 (16)	0.0437 (18)	0.0499 (17)	0.0165 (14)	-0.0004 (14)	0.0089 (13)
C15	0.0612 (18)	0.0397 (16)	0.0347 (14)	0.0241 (14)	0.0075 (14)	0.0094 (12)
C16	0.0551 (17)	0.0311 (15)	0.0381 (15)	0.0162 (13)	0.0063 (13)	0.0065 (12)
C17	0.0427 (15)	0.0375 (16)	0.0327 (14)	0.0177 (13)	0.0058 (12)	0.0084 (11)
C18	0.0536 (18)	0.0432 (18)	0.0590 (19)	0.0194 (15)	0.0188 (15)	0.0159 (14)
C19	0.0585 (19)	0.0346 (18)	0.068 (2)	0.0119 (15)	0.0101 (17)	0.0143 (15)
C20	0.062 (2)	0.0386 (18)	0.0523 (18)	0.0274 (16)	0.0026 (16)	0.0020 (14)
C21	0.067 (2)	0.056 (2)	0.075 (2)	0.0359 (18)	0.0266 (19)	0.0170 (17)
C22	0.0540 (18)	0.0471 (19)	0.0589 (19)	0.0210 (15)	0.0161 (16)	0.0174 (14)
C23	0.097 (3)	0.043 (2)	0.113 (3)	0.028 (2)	0.004 (3)	0.020 (2)
C24	0.0437 (15)	0.0331 (15)	0.0366 (14)	0.0128 (12)	0.0044 (12)	0.0121 (11)
C25	0.0468 (16)	0.0378 (16)	0.0384 (14)	0.0150 (13)	0.0099 (13)	0.0154 (12)
C26	0.0442 (17)	0.0541 (19)	0.0468 (17)	0.0149 (14)	0.0071 (14)	0.0189 (14)
C27	0.0449 (17)	0.068 (2)	0.0549 (19)	0.0178 (16)	0.0179 (15)	0.0269 (16)
C28	0.0540 (18)	0.0513 (18)	0.0412 (16)	0.0246 (15)	0.0173 (14)	0.0188 (14)
C29	0.0538 (18)	0.0444 (18)	0.0424 (16)	0.0069 (14)	0.0121 (14)	0.0089 (13)
C30	0.0496 (17)	0.0475 (18)	0.0383 (15)	0.0087 (14)	0.0160 (14)	0.0116 (13)
C31	0.087 (3)	0.071 (2)	0.0449 (18)	0.013 (2)	0.0268 (19)	0.0129 (17)
C32	0.0462 (16)	0.0418 (17)	0.0360 (14)	0.0166 (14)	0.0091 (13)	0.0111 (12)
C33	0.0533 (19)	0.059 (2)	0.071 (2)	0.0274 (17)	0.0067 (17)	0.0194 (17)
C34	0.074 (3)	0.119 (4)	0.106 (3)	0.051 (3)	0.038 (2)	0.030 (3)
C35	0.066 (2)	0.088 (3)	0.099 (3)	0.023 (2)	-0.017 (2)	0.011 (2)
C36	0.092 (3)	0.101 (3)	0.153 (4)	0.061 (3)	0.020 (3)	0.074 (3)
08A	0.140 (12)	0.122 (14)	0.101 (11)	0.012 (11)	0.040 (9)	0.065 (10)
C37A	0.178 (15)	0.106 (12)	0.098 (11)	0.062 (11)	0.086 (10)	0.050 (9)
O8B	0.088 (4)	0.073 (4)	0.096 (6)	0.033 (3)	0.032 (3)	0.036 (3)
C37B	0.107 (6)	0.111 (6)	0.137 (7)	0.060 (5)	0.068 (5)	0.081 (5)

Geometric parameters (Å, °)

Cl1—C12	1.741 (3)	C18—H18	0.9300
O1—N1	1.417 (3)	C18—C19	1.391 (4)
O1—C2	1.348 (3)	C19—H19	0.9300
O2—C5	1.224 (3)	C19—C20	1.377 (4)
O3—H3	0.75 (4)	C20—C21	1.377 (5)
O3—C6	1.346 (3)	C21—H21	0.9300
O4—C16	1.221 (3)	C21—C22	1.373 (4)
O5—C20	1.371 (3)	C22—H22	0.9300
O5—C23	1.409 (4)	C23—H23A	0.9600
O6—C32	1.225 (3)	C23—H23B	0.9600
O7—C28	1.365 (3)	C23—H23C	0.9600
O7—C31	1.425 (4)	C24—H24	0.9800
N1-C4	1.307 (3)	C24—C25	1.514 (4)
N2-C4	1.380 (3)	C24—C32	1.540 (4)
N2-C5	1.381 (3)	C25—C26	1.393 (4)
N2	1.474 (3)	C25—C30	1.377 (4)
N3—C16	1.357 (3)	C26—H26	0.9300
N3—C17	1.443 (3)	C26—C27	1.378 (4)

N3—C24	1.482 (3)	С27—Н27	0.9300
N4—H4	0.87 (3)	C27—C28	1.384 (4)
N4—C32	1.335 (4)	C28—C29	1.373 (4)
N4—C33	1.475 (4)	С29—Н29	0.9300
C1—H1A	0.9600	C29—C30	1.390 (4)
C1—H1B	0.9600	С30—Н30	0.9300
C1—H1C	0.9600	C31—H31A	0.9600
C1—C2	1.486 (4)	C31—H31B	0.9600
C2—C3	1.337 (4)	C31—H31C	0.9600
С3—НЗА	0.9300	C33—C34	1.505 (5)
C3—C4	1.412 (4)	C33—C35	1.522 (5)
C5—C6	1.473 (4)	C33—C36	1.539 (5)
C6—C7	1.322 (4)	C34—H34A	0.9600
C7—C8	1.515 (4)	C34—H34B	0.9600
C7—C15	1 491 (4)	C34—H34C	0.9600
C8—H8	0.9800	C35—H35A	0.9600
C8-C9	1 507 (4)	C35—H35B	0.9600
C_{9} C_{10}	1.307(4) 1 379(4)	C35_H35C	0.9600
C9-C14	1.379(4) 1 388(4)	C36_H36A	0.9600
C_{10} H_{10}	0.0300	C36 H36B	0.9600
C_{10} C_{11}	1,375(A)	C36 H36C	0.9600
	0.0300		0.2000
C_{11} C_{12}	1.381(4)	O8A C37A	1.412(5)
C12 - C12	1.361(4)	C_{27A} H_{27A}	1.412(3)
C_{12} C_{13} C_{12} C_{13} C	1.304 (4)	$C_{3/A}$ H_{27}	0.9000
	0.9300	$C_{3/A}$ H_{27C}	0.9600
C14_U14	1.381(4)	$C_3/A = \Pi_3/C$	0.9600
C14—H14	0.9300		0.8200
CI5—HI5A	0.9700		1.412 (5)
CI5—HI5B	0.9700	$C_3/B = H_3/D$	0.9600
	1.513 (4)	$C_3/B = H_3/E$	0.9600
C17—C18	1.366 (4)	C37B—H37F	0.9600
C17—C22	1.383 (4)		
C2—O1—N1	108.9 (2)	C20—C21—H21	119.7
С6—О3—Н3	106 (3)	C22—C21—C20	120.5 (3)
C20—O5—C23	117.9 (3)	C22—C21—H21	119.7
C28—O7—C31	117.5 (2)	C17—C22—H22	119.8
C4—N1—O1	104.6 (2)	C21—C22—C17	120.4 (3)
C4—N2—C5	125.3 (2)	C21—C22—H22	119.8
C4—N2—C8	122.4 (2)	O5—C23—H23A	109.5
C5—N2—C8	111.2 (2)	O5—C23—H23B	109.5
C16—N3—C17	121.8 (2)	O5—C23—H23C	109.5
C16—N3—C24	115.9 (2)	H23A—C23—H23B	109.5
C17—N3—C24	121.48 (19)	H23A—C23—H23C	109.5
C32—N4—H4	114 (2)	H23B—C23—H23C	109.5
C32—N4—C33	125.7 (3)	N3—C24—H24	107.3
C33—N4—H4	119 (2)	N3—C24—C25	112.2 (2)
H1A—C1—H1B	109.5	N3—C24—C32	111.1 (2)
			\ /

H1A—C1—H1C	109.5	C25—C24—H24	107.3
H1B—C1—H1C	109.5	C25—C24—C32	111.3 (2)
C2—C1—H1A	109.5	C32—C24—H24	107.3
C2—C1—H1B	109.5	C26—C25—C24	119.8 (2)
C2—C1—H1C	109.5	C30—C25—C24	122.5 (2)
O1—C2—C1	115.8 (3)	C30—C25—C26	117.8 (3)
C3—C2—O1	109.4 (3)	С25—С26—Н26	119.5
C3—C2—C1	134.7 (3)	C27—C26—C25	121.0 (3)
С2—С3—НЗА	127.4	С27—С26—Н26	119.5
C2—C3—C4	105.1 (3)	С26—С27—Н27	119.9
С4—С3—НЗА	127.4	C26—C27—C28	120.2 (3)
N1—C4—N2	118.8 (2)	С28—С27—Н27	119.9
N1—C4—C3	111.9 (3)	O7—C28—C27	115.9 (3)
N2—C4—C3	129.3 (3)	07—C28—C29	124.3 (3)
O2—C5—N2	126.0 (3)	C29—C28—C27	119.8 (3)
O2—C5—C6	128.1 (3)	С28—С29—Н29	120.3
N2—C5—C6	106.0 (2)	C28—C29—C30	119.5 (3)
03—C6—C5	117.3 (2)	С30—С29—Н29	120.3
C7—C6—O3	131.8 (3)	C_{25} C_{30} C_{29}	121.8 (3)
C7—C6—C5	110.9 (2)	C25—C30—H30	119.1
C6-C7-C8	109.5 (2)	C29—C30—H30	119.1
C6-C7-C15	130.0 (3)	07—C31—H31A	109.5
C15—C7—C8	120.3 (2)	07—C31—H31B	109.5
N2-C8-C7	102.3(2)	07—C31—H31C	109.5
N2-C8-H8	109.6	H31A-C31-H31B	109.5
N2-C8-C9	114.2 (2)	H31A-C31-H31C	109.5
C7-C8-H8	109.6	H31B-C31-H31C	109.5
C9—C8—C7	111.2 (2)	06—C32—N4	124.3 (3)
C9—C8—H8	109.6	06-C32-C24	121.5(3)
C10—C9—C8	121.5 (2)	N4—C32—C24	114.0(3)
C10 - C9 - C14	1179(3)	N4-C33-C34	110.8(3)
C14 - C9 - C8	1204(2)	N4-C33-C35	109.5(3)
C9-C10-H10	119.2	N4-C33-C36	105.1(3)
C_{11} C_{10} C_{9}	121.7 (3)	C_{34} C_{33} C_{35}	102.1(3) 111.2(3)
C11—C10—H10	119.2	C_{34} C_{33} C_{36}	110.1(3)
C10—C11—H11	120.5	$C_{35} = C_{33} = C_{36}$	109.9(3)
C10-C11-C12	119.0 (3)	C33—C34—H34A	109.5
C12—C11—H11	120 5	C33—C34—H34B	109.5
C11-C12-C11	119.7 (2)	C33—C34—H34C	109.5
C_{13} C_{12} C_{11}	119.4 (2)	H34A_C34_H34B	109.5
C_{13} C_{12} C_{11}	120.9(3)	H34A - C34 - H34C	109.5
C12 - C13 - H13	120.3	H34B - C34 - H34C	109.5
C12 - C13 - C14	119 4 (3)	C_{33} C_{35} H_{35A}	109.5
C14—C13—H13	120.3	C33—C35—H35B	109.5
C9-C14-H14	119.4	C33—C35—H35C	109.5
C13 - C14 - C9	121 1 (3)	H35A—C35—H35B	109.5
C13—C14—H14	119.4	H35A - C35 - H35C	109.5
C7—C15—H15A	109.0	H35B-C35-H35C	109.5
		11000 000 11000	- V / IV

C7—C15—H15B	109.0	C33—C36—H36A	109.5
C7—C15—C16	112.7 (2)	C33—C36—H36B	109.5
H15A—C15—H15B	107.8	C33—C36—H36C	109.5
C_{16} C_{15} H_{15A}	109.0	H36A—C36—H36B	109.5
C_{16} C_{15} H_{15B}	109.0	$H_{36A} - C_{36} - H_{36C}$	109.5
04-C16-N3	109.0 121.5(2)	H36B_C36_H36C	109.5
04 - C16 - C15	121.5(2) 121.5(2)	$C_{37} = 0.84 = H_{8A}$	109.5
N3_C16_C15	121.3(2) 1169(2)	O84 - C374 - H374	109.5
C18 - C17 - N3	110.9(2) 120.0(2)	O8A - C37A - H37B	109.5
$C_{18} = C_{17} = C_{22}$	120.0(2) 118.0(3)	O8A C37A H37C	109.5
$C_{10} = C_{17} = C_{22}$	110.9(3)	$H_{27A} = C_{27A} = H_{27B}$	109.5
$C_{22} = C_{17} = N_{3}$	121.0 (5)	$H_{27A} = C_{27A} = H_{27C}$	109.5
C17 - C18 - C10	117.4 121.2(2)	H27P C27A H27C	109.5
C10 C18 U18	121.5 (5)	$H_3/B = C_3/A = H_3/C$	109.5
C19-C10-H10	119.4	$C_3/D = C_0 C_0 C_0 C_0 C_0 C_0 C_0 C_0 C_0 C_0$	109.5
C18—C19—H19	120.4	O8B - C37B - H37D	109.5
$C_{20} = C_{19} = C_{18}$	119.2 (3)	O8B - C3/B - H3/E	109.5
C20—C19—H19	120.4	O8B-C3/B-H3/F	109.5
05-020-019	124.3 (3)	H37D—C37B—H37E	109.5
05-C20-C21	116.0 (3)	H37D—C37B—H37F	109.5
C19—C20—C21	119.7 (3)	H37E—C37B—H37F	109.5
C11 C12 C13 C14	-1783(2)	C9 C10 C11 C12	0.2(5)
O1 N1 C4 N2	170.3(2)	$C_{10} = C_{10} = C_{14} = C_{12}$	-1.2(3)
O1 N1 C4 C3	-0.2(2)	$C_{10} = C_{11} = C_{12} = C_{13}$	1.2(+) 178A(2)
01 - 01 - 02 - 03 - 04	-0.4(3)	$C_{10} = C_{11} = C_{12} = C_{13}$	-1.6(5)
01 - 02 - 03 - 04	-0.4(3)	$C_{10} - C_{11} - C_{12} - C_{13}$	-1.0(3)
02 - 03 - 00 - 03	5.0(4)	C12 - C12 - C13 - C14	1.7(3)
02 - 03 - 06 - 07	-1/7.3(3)	C12 - C13 - C14 - C9	-0.2(5)
03 - 06 - 07 - 08	1/6./(3)	C14 - C9 - C10 - C11	1.2 (4)
03 - C6 - C7 - C15	1.0 (5)	C15 - C7 - C8 - N2	1//.6(2)
05-020-021-022	-1/8.9(3)	C15-C7-C8-C9	55.3 (3)
07-028-029-030	-177.4 (3)	C16—N3—C17—C18	78.2 (3)
N1	-178.7 (3)	C16—N3—C17—C22	-99.5 (3)
N1—O1—C2—C3	0.2 (3)	C16—N3—C24—C25	156.7 (2)
N2—C5—C6—O3	-176.9 (2)	C16—N3—C24—C32	-78.1 (3)
N2—C5—C6—C7	2.2 (3)	C17—N3—C16—O4	-166.9 (3)
N2—C8—C9—C10	-54.2 (4)	C17—N3—C16—C15	16.2 (4)
N2—C8—C9—C14	131.3 (3)	C17—N3—C24—C25	-33.4 (3)
N3—C17—C18—C19	-176.2 (2)	C17—N3—C24—C32	91.9 (3)
N3—C17—C22—C21	176.0 (3)	C17—C18—C19—C20	0.1 (5)
N3—C24—C25—C26	-83.4 (3)	C18—C17—C22—C21	-1.7 (4)
N3—C24—C25—C30	97.7 (3)	C18—C19—C20—O5	178.8 (3)
N3—C24—C32—O6	-27.8 (3)	C18—C19—C20—C21	-1.6 (5)
N3—C24—C32—N4	155.6 (2)	C19—C20—C21—C22	1.5 (5)
C1—C2—C3—C4	178.2 (4)	C20-C21-C22-C17	0.2 (5)
C2-01-N1-C4	0.1 (3)	C22-C17-C18-C19	1.6 (4)
C2-C3-C4-N1	0.5 (4)	C23—O5—C20—C19	-3.3 (5)
C2—C3—C4—N2	-179.8 (3)	C23—O5—C20—C21	177.1 (3)
C4—N2—C5—O2	10.4 (5)	C24—N3—C16—O4	3.0 (4)

C4—N2—C5—C6	-169.1 (2)	C24—N3—C16—C15	-173.9 (2)
C4—N2—C8—C7	168.3 (2)	C24—N3—C17—C18	-91.1 (3)
C4—N2—C8—C9	-71.4 (3)	C24—N3—C17—C22	91.1 (3)
C5—N2—C4—N1	168.8 (3)	C24—C25—C26—C27	-178.1 (3)
C5—N2—C4—C3	-10.9 (5)	C24—C25—C30—C29	177.5 (2)
C5—N2—C8—C7	-0.1 (3)	C25—C24—C32—O6	97.9 (3)
C5—N2—C8—C9	120.2 (3)	C25—C24—C32—N4	-78.7 (3)
C5—C6—C7—C8	-2.2 (3)	C25—C26—C27—C28	0.5 (5)
C5-C6-C7-C15	-177.9 (3)	C26—C25—C30—C29	-1.5 (4)
C6—C7—C8—N2	1.4 (3)	C26—C27—C28—O7	177.0 (3)
C6—C7—C8—C9	-120.9 (3)	C26—C27—C28—C29	-1.4 (5)
C6—C7—C15—C16	-107.2 (3)	C27—C28—C29—C30	0.9 (4)
C7—C8—C9—C10	60.9 (3)	C28—C29—C30—C25	0.6 (5)
C7—C8—C9—C14	-113.6 (3)	C30—C25—C26—C27	0.9 (4)
C7—C15—C16—O4	22.5 (4)	C31—O7—C28—C27	-174.8 (3)
C7-C15-C16-N3	-160.6 (2)	C31—O7—C28—C29	3.6 (4)
C8—N2—C4—N1	2.2 (4)	C32—N4—C33—C34	61.9 (4)
C8—N2—C4—C3	-177.5 (3)	C32—N4—C33—C35	-61.1 (4)
C8—N2—C5—O2	178.3 (3)	C32—N4—C33—C36	-179.1 (3)
C8—N2—C5—C6	-1.2 (3)	C32—C24—C25—C26	151.4 (2)
C8—C7—C15—C16	77.5 (3)	C32—C24—C25—C30	-27.5 (4)
C8—C9—C10—C11	-173.5 (3)	C33—N4—C32—O6	-3.6 (4)
C8—C9—C14—C13	173.5 (3)	C33—N4—C32—C24	172.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O3—H3…O8A	0.75 (4)	1.88 (5)	2.61 (3)	162 (4)
O3—H3…O8 <i>B</i>	0.75 (4)	1.93 (4)	2.680 (10)	175 (4)
N4—H4···O2 ⁱ	0.87 (3)	2.33 (3)	3.193 (3)	170 (3)
O8A—H8A····O4 ⁱ	0.82	1.88	2.60 (3)	145
O8 <i>B</i> —H8 <i>B</i> ····O4 ⁱ	0.82	2.50	2.843 (8)	107

Symmetry code: (i) -x+1, -y+2, -z+1.