# research communications



Received 29 November 2021 Accepted 7 December 2021

Edited by A. V. Yatsenko, Moscow State University, Russia

Keywords: lanthanide; terbium; bis(cyclopentadienyl); (methoxyphenyliminomethyl)phenolate; salicylimino; crystal structure.

CCDC reference: 2127087

Supporting information: this article has supporting information at journals.iucr.org/e

# Bis( $\eta^5$ -cyclopentadienyl)(2-{[(2-methoxyphenyl)imino]methyl}phenolato- $\kappa^3O, N, O'$ )terbium

Mikhail E. Minyaev,<sup>a,b</sup>\* Konstantin A. Lyssenko,<sup>c</sup> Dmitrii M. Roitershtein<sup>a,b</sup> and Ilya E. Nifant'ev<sup>c,b</sup>

<sup>a</sup>N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow, 119991, Russian Federation, <sup>b</sup>A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky prospect, Moscow, 119991, Russian Federation, and <sup>c</sup>Chemistry Department, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, Str., Building 3, Moscow, 119991, Russian Federation. \*Correspondence e-mail: mminyaev@ioc.ac.ru

The air- and moisture-sensitive title compound,  $[Tb(C_5H_5)_2(C_{14}H_{12}NO_2)]$ , was synthesized from tris(cyclopentadienyl)(tetrahydrofuran)terbium and 2-{[(2-methoxyphenyl)imino]methyl}phenol. Each Tb atom is coordinated by two cyclopentadienyl ligands in an  $\eta^5$ -coordination mode and by one N and two O atoms of the organic ligand in a tridentate  $\kappa^3 O, N, O'$ -mode.

## 1. Chemical context

Bis(cyclopentadienyl) complexes of rare-earth metals attract significant attention because of their important role in the development of organometallic chemistry of 4f elements (Schumann *et al.*, 1995; Wedal & Evans, 2021; Evans, 2016). This type of complex is one of the first discovered organo-lanthanide classes (Maginn *et al.*, 1963).



The vigorous interest in cyclopentadienyl complexes for the chemistry of rare-earth elements is mainly due to the simplicity of cyclopentadienyl ligand modification by replacing the hydrogen atoms of the five-membered ring with various organic fragments (Harder et al., 2013; Roitershtein, Puntus et al., 2018; Hou & Wakatsuki, 2002). Moreover, in the case of bis(cyclopentadienyl) derivatives such as  $(C_5H_5)_2LnX$ , the additional anionic ligand  $X^-$  can be coordinated in a mono-, bi- or, as in the present case, a tridentate mode. Such a combination of ligands provides an extremely broad structural diversity for cyclopentadienyl derivatives (Edelmann & Poremba, 1997; Goodwin et al., 2018). This report describes the synthesis and crystal structure of  $bis(\eta^5$ -cyclopentadienyl)(2-{[(2-methoxyphenyl)imino]methyl}phenolato)terbium, which is a product of the partial protonation of the tris-(cyclopentadienyl)terbium complex with 2-{[(2-methoxyphenyl)imino]methyl]phenol (Fig. 1).







**Figure 1** Synthesis of the title compound.

#### 2. Structural commentary

The title compound (Fig. 2) crystallizes in the orthorhombic *Pbcn* space group (Z' = 1). Assuming that each cyclopentadienvl ligand donates three electron pairs, the terbium atom may be considered to be ennea-coordinated. Both cyclopentadienyl ligands are nearly symmetrically  $\eta^5$ -coordinated to the  $Tb^{3+}$  cation. Thus, the  $Cp_{(centroid)}$ -Tb distances [2.4207 (11) Å for the C1-C5 Cp ring and 2.4062 (10) Å for the C6–C10 Cp ring] are almost equal to the  $Cp_{(plane)}$ –Tb distances [2.4196 (11) Å for C1-C5 Cp ring and 2.4054 (10) for C6-C10 Cp ring], and the C<sub>Cp</sub>-Tb bond lengths are similar within each ring (Table 1). At the same time, the average  $C_{C_p}$ -Tb distance to the C1-C5 ring is longer by 0.011 Å than to the second Cp ligand. Such a slight asymmetry is caused by the presence of the tridentate asymmetric 2-{[(2-methoxyphenyl)imino]methyl}phenolate  $(L^{-})$  ligand. Atoms of the ligand are situated in two planes formed by the following sets of atoms: O1, C11–C16, N1, C24 (r.m.s. deviation = 0.0167 Å) and O2, C17-C23, N1 (r.m.s. deviation = 0.0333 Å). The dihedral angle between these planes of 44.58 (5)° indicates a perceptible loss of conjugation between two parts of the ligand due to the tridentate  $\kappa^3 N, O, O'$ -coordination mode. The bond redistribution within the ligand (see table in the supporting



Figure 2 The title compound with displacement ellipsoids drawn at the 50% probability level.

 Table 1

 Selected bond lengths (Å).

| Servere a cond | iengens (i i): |         |             |
|----------------|----------------|---------|-------------|
| Tb1-C1         | 2.721 (3)      | Tb1-C8  | 2.662 (2)   |
| Tb1-C2         | 2.678 (3)      | Tb1-C9  | 2.691 (2)   |
| Tb1-C3         | 2.670 (2)      | Tb1-C10 | 2.717 (2)   |
| Tb1-C4         | 2.704 (2)      | Tb1-O1  | 2.5468 (15) |
| Tb1-C5         | 2.726 (3)      | Tb1-O2  | 2.2034 (16) |
| Tb1-C6         | 2.700 (2)      | Tb1-N1  | 2.4748 (18) |
| Tb1-C7         | 2.675 (2)      |         |             |

information) and the Tb-O and Tb-N bond distances (Table 1) are in good agreement with the expected predominant resonance form (see scheme) and with a significant localization of the negative charge on the O2 atom.

It should be noted that analogous compounds with the same  $L^{-}$  ligand  $[(C_5H_5)_2Ln(O_2NC_{14}H_{12})]$  (Ln = Sm, Er, Dy, Y) were previously synthesized in low yields (Yousaf *et al.*, 2000), and the determined crystal structure of the Sm complex is isostructural with that of the title compound.

Non-covalent interactions are negligible in the title compund.

#### 3. Database survey

At first glance, it looks quite puzzling that according to the Cambridge Structural Database (CSD Version 5.42, update of September 2021; Groom et al., 2016), structures of rare-earth metal complexes with the monoanionic phenolate  $L^{-}$  ligand and its substituted (L') or protonated (LH) derivatives have been poorly studied, whereas the structures of complexes bearing their closest analogs - doubly charged 2-{[(2oxidophenyl)imino]methyl}phenolate and its various derivatives - have been studied moderately. This is, likely, due to the higher stability of the latter complexes, which is presumably caused, in short, by a higher degree of the optimization of electrostatic interactions (Evans, 1987). Thus, only 15 complexes bearing  $L^-$ ,  $L'^-$ , LH and L'H ligands have been studied structurally; the corresponding CSD codes are KESHOH (Li & Yuan, 2012), KINHUN, KINJAV, KINJEZ, KINJID, KINJOJ (Roitershtein, Minashina et al., 2018), MIQTAH01 (Yousaf et al., 2000), RAPTUA (Li & Cui, 2017), RUQQEC (Pikoli et al., 2020), VUVMUX, VUVNAE (Long et al., 2020) and the heterometallic Zn/Dy complexes TUQWAG, TUQWEK, TUQWIO, TUQWOU (Shukla et al., 2020). Careful analysis reveals the structural diversity of the coordination modes for  $L^-$ ,  $L'^-$ , LH and L'H ligands in the above-mentioned complexes. Even the sole ligand  $L^{-}$  itself can demonstrate different coordination modes in mononuclear rare-earth complexes (Roitershtein, Minashina et al., 2018). Amazingly, only one structure (MIQTAH01) among the 15 corresponds to the organolanthanide bis(cyclopentadienyl) type.

#### 4. Synthesis and crystallization

Synthetic operations were carried out in a glovebox under a purified argon atmosphere. THF was distilled from sodium/

# research communications

Table 2Experimental details.

| Crystal data                                                               |                                           |
|----------------------------------------------------------------------------|-------------------------------------------|
| Chemical formula                                                           | $[Tb(C_5H_5)_2(C_{14}H_{12}NO_2)]$        |
| M <sub>r</sub>                                                             | 515.34                                    |
| Crystal system, space group                                                | Orthorhombic, Pbcn                        |
| Temperature (K)                                                            | 120                                       |
| a, b, c (Å)                                                                | 21.6309 (12), 14.4923 (8),<br>12 6471 (7) |
| $V(Å^3)$                                                                   | 3964 6 (4)                                |
| Z                                                                          | 8                                         |
| Radiation type                                                             | Μο Κα                                     |
| $\mu (\text{mm}^{-1})$                                                     | 3.59                                      |
| Crystal size (mm)                                                          | $0.32 \times 0.21 \times 0.19$            |
|                                                                            |                                           |
| Data collection                                                            |                                           |
| Diffractometer                                                             | Bruker APEXII CCD area<br>detector        |
| Absorption correction                                                      | Multi-scan (SADABS; Krause et al., 2015)  |
| T                                                                          | 0.333, 0.569                              |
| No. of measured, independent and                                           | 60268, 7485, 5865                         |
| observed $[I > 2\sigma(I)]$ reflections                                    | , ,                                       |
| R <sub>int</sub>                                                           | 0.062                                     |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                       | 0.766                                     |
|                                                                            |                                           |
| Refinement                                                                 |                                           |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                        | 0.025, 0.060, 1.03                        |
| No. of reflections                                                         | 7485                                      |
| No. of parameters                                                          | 319                                       |
| H-atom treatment                                                           | Only H-atom coordinates refined           |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$ | 1.14, -0.71                               |
|                                                                            |                                           |

Computer programs: *APEX2* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2018* (Sheldrick, 2015*b*), *Mercury* (Macrae *et al.*, 2020) and *publCIF* (Westrip, 2010).

benzophenone ketyl, hexane was distilled from Na/K alloy.  $Tb(C_5H_5)_3(thf)$  was obtained according to a literature procedure (Wilkinson & Birmingham, 1954).

A solution of 2-{[(2-methoxyphenyl)imino]methyl}phenol (0.230 g, 1.01mmol) in 5 ml of THF was added slowly to a solution of Tb( $C_5H_5$ )<sub>3</sub>(thf) (0.426g, 1.0 mmol) in 15 ml of THF. The reaction mixture was stirred for 24 h. The solution was concentrated under vacuum to a volume of *ca* 8–10 ml, and hexane (10 ml) was carefully layered on top of the resulting solution to initiate crystallization. Crystals obtained after several days were dried under dynamic vacuum for 1 h, yielding 0.315 g (0.61 mmol, 61%). The terbium content was determined by direct complexometric titration with the disodium salt of EDTA, using xylenol orange indicator (Vogel, 1966). Calculated for  $C_{24}H_{22}NO_2$ Tb: Tb, 30.84%. Found Tb, 30.45%.

Single crystals suitable for X-ray diffraction study were taken from a vial with a crude product before drying under vacuum.

## 5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The structure was in general solved by dual methods (*SHELXT*; Sheldrick, 2015*a*). Positions of remaining non-H atoms were found from the difference electron density maps. All non-H atoms were refined anisotropically. The positions of hydrogen atoms were refined with  $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm C})$  for methyl group and  $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$  for others.

**Funding information** 

Funding for this research was provided by: Russian Science Foundation (grant No. 17-13-01357).

#### References

- Bruker (2016). *APEX2* and *SAINT*. Bruker Analytical X-Ray Systems, Madison, Wisconsin, USA.
- Edelmann, F. T. & Poremba, P. (1997). Synthetic Methods of Organometallic and Inorganic Chemistry (Herrman/Brauer), vol.
  6, Lanthanides and Actinides, edited by F. T. Edelmann & W. A. Herrmann, pp. 34–35. Stuttgart, Germany: Georg Thieme Verlag. Evans, W. J. (1987). Polyhedron, 6, 803–835.
- Evans, W. J. (2016). Organometallics, 35, 3088-3100.
- Goodwin, C. A. P., Reta, D., Ortu, F., Liu, J., Chilton, N. F. & Mills, D. P. (2018). Chem. Commun. 54, 9182–9185.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Harder, S., Naglav, D., Ruspic, C., Wickleder, C., Adlung, M., Hermes, W., Eul, M., Pöttgen, R., Rego, D. B., Poineau, F., Czerwinski, K. R., Herber, R. H. & Nowik, I. (2013). *Chem. Eur. J.* 19, 12272–12280.
- Hou, Z. & Wakatsuki, Y. (2002). Coord. Chem. Rev. 231, 1-22.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Li, L. & Yuan, F. (2012). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 42, 994–998.
- Li, S. & Cui, D. (2017). CSD Communication (refcode RAPTUA ). CCDC, Cambridge, England.
- Long, J., Basalov, I. V., Lyssenko, K. A., Cherkasov, A. V., Mamontova, E., Guari, Y., Larionova, J. & Trifonov, A. A. (2020). *Chem. Asian J.* 15, 2706–2715.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Maginn, R. E., Manastyrskyj, S. & Dubeck, M. (1963). J. Am. Chem. Soc. 85, 672–676.
- Pikoli, S., Hosten, E. & Abrahams, A. (2020). J. Coord. Chem. 73, 1055–1076.
- Roitershtein, D. M., Minashina, K. I., Minyaev, M. E., Ananyev, I. V., Lyssenko, K. A., Tavtorkin, A. N. & Nifant'ev, I. E. (2018). Acta Cryst. C74, 1105–1115.
- Roitershtein, D. M., Puntus, L. N., Vinogradov, A. A., Lyssenko, K. A., Minyaev, M. E., Dobrokhodov, M. D., Taidakov, I. V., Varaksina, E. A., Churakov, A. V. & Nifant'ev, I. E. (2018). *Inorg. Chem.* 57, 10199–10213.
- Schumann, H., Meese-Marktscheffel, J. A. & Esser, L. (1995). Chem. Rev. 95, 865–986.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shukla, P., Ansari, K. U., Gao, C., Vaidya, S., Tripathi, S., Kumar, P., Butcher, R. J., Overgaard, J. & Shanmugam, M. (2020). *Dalton Trans.* 49, 10580–10593.
- Vogel, A. I. (1966). A text-book of quantitative inorganic analysis including elementary instrumental analysis. London: Longmans.
- Wedal, J. C. & Evans, W. J. (2021). J. Am. Chem. Soc. 143, 18354– 18367.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wilkinson, G. & Birmingham, J. M. (1954). J. Am. Chem. Soc. 76, 6210–6210.
- Yousaf, M., Liu, Q., Huang, J., Qian, Y. & Chan, A. S. (2000). Inorg. Chem. Commun. 3, 105–106.

# supporting information

Acta Cryst. (2022). E78, 44-46 [https://doi.org/10.1107/S2056989021013025]

Bis( $\eta^5$ -cyclopentadienyl)(2-{[(2-methoxyphenyl)imino]methyl}phenolato- $\kappa^3O, N, O'$ )terbium

# Mikhail E. Minyaev, Konstantin A. Lyssenko, Dmitrii M. Roitershtein and Ilya E. Nifant'ev

**Computing details** 

Data collection: *APEX2* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015b); molecular graphics: *Mercury* (Macrae *et al.*, 2020); software used to prepare material for publication: *publCIF* (Westrip, 2010).

 $Bis(\eta^5$ -cyclopentadienyl)(2-{[(2-methoxyphenyl)imino]methyl}phenolato- $\kappa^3O, N, O'$ )terbium

| Crystal data                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $[Tb(C_{5}H_{5})_{2}(C_{14}H_{12}NO_{2})]$<br>$M_{r} = 515.34$<br>Orthorhombic, <i>Pbcn</i><br>a = 21.6309 (12) Å<br>b = 14.4923 (8) Å<br>c = 12.6471 (7) Å<br>$V = 3964.6 (4) Å^{3}$<br>Z = 8<br>F(000) = 2032                                                                                                  | $D_x = 1.727 \text{ Mg m}^{-3}$<br>Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 5648 reflections<br>$\theta = 2.2-30.2^{\circ}$<br>$\mu = 3.59 \text{ mm}^{-1}$<br>T = 120  K<br>Block, yellow<br>$0.32 \times 0.21 \times 0.19 \text{ mm}$                                                                                          |
| Data collection                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                       |
| Bruker APEXII CCD area detector<br>diffractometer<br>Radiation source: sealed X-ray tube<br>Graphite monochromator<br>Detector resolution: 7.31 pixels mm <sup>-1</sup><br>$\omega$ scans<br>Absorption correction: multi-scan<br>(SADABS; Krause <i>et al.</i> , 2015)<br>$T_{min} = 0.333$ , $T_{max} = 0.569$ | 60268 measured reflections<br>7485 independent reflections<br>5865 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.062$<br>$\theta_{max} = 33.0^{\circ}, \theta_{min} = 1.7^{\circ}$<br>$h = -33 \rightarrow 33$<br>$k = -22 \rightarrow 21$<br>$l = -19 \rightarrow 19$                                                                                            |
| Refinement                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                       |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.025$<br>$wR(F^2) = 0.060$<br>S = 1.03<br>7485 reflections<br>319 parameters<br>0 restraints<br>Primary atom site location: dual                                                                                                  | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: difference Fourier map<br>Only H-atom coordinates refined<br>$w = 1/[\sigma^2(F_o^2) + (0.0212P)^2 + 3.2936P]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} = 0.004$<br>$\Delta\rho_{max} = 1.14$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.71$ e Å <sup>-3</sup> |

# Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \text{sigma}(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

|     | x            | У            | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|--------------|--------------|--------------|-------------------------------|
| Tb1 | 0.65689 (2)  | 0.77625 (2)  | 0.32099 (2)  | 0.01273 (3)                   |
| 01  | 0.61771 (7)  | 0.82735 (11) | 0.50164 (12) | 0.0193 (3)                    |
| O2  | 0.63302 (8)  | 0.67000 (11) | 0.20325 (12) | 0.0190 (3)                    |
| N1  | 0.56840 (8)  | 0.68915 (12) | 0.39465 (14) | 0.0144 (3)                    |
| C1  | 0.74352 (13) | 0.7329 (2)   | 0.4689 (2)   | 0.0378 (7)                    |
| H1  | 0.7343 (16)  | 0.741 (2)    | 0.539 (3)    | 0.045*                        |
| C2  | 0.77065 (12) | 0.7984 (2)   | 0.4006 (2)   | 0.0328 (6)                    |
| H2  | 0.7832 (15)  | 0.859 (2)    | 0.415 (3)    | 0.039*                        |
| C3  | 0.77899 (11) | 0.75538 (19) | 0.3010 (2)   | 0.0259 (5)                    |
| Н3  | 0.7968 (14)  | 0.786 (2)    | 0.242 (3)    | 0.031*                        |
| C4  | 0.75698 (12) | 0.66501 (19) | 0.3091 (2)   | 0.0263 (5)                    |
| H4  | 0.7546 (14)  | 0.620 (2)    | 0.256 (2)    | 0.032*                        |
| C5  | 0.73448 (13) | 0.6512 (2)   | 0.4122 (2)   | 0.0337 (6)                    |
| Н5  | 0.7166 (15)  | 0.594 (2)    | 0.432 (3)    | 0.040*                        |
| C6  | 0.65210 (11) | 0.96160 (15) | 0.3007 (2)   | 0.0225 (5)                    |
| H6  | 0.6687 (13)  | 0.996 (2)    | 0.354 (2)    | 0.027*                        |
| C7  | 0.68593 (11) | 0.92900 (15) | 0.2132 (2)   | 0.0223 (5)                    |
| H7  | 0.7266 (14)  | 0.941 (2)    | 0.203 (2)    | 0.027*                        |
| C8  | 0.64535 (11) | 0.87859 (16) | 0.1473 (2)   | 0.0209 (4)                    |
| H8  | 0.6550 (12)  | 0.851 (2)    | 0.083 (2)    | 0.025*                        |
| С9  | 0.58601 (11) | 0.88127 (15) | 0.19414 (19) | 0.0201 (4)                    |
| H9  | 0.5500 (14)  | 0.850 (2)    | 0.168 (2)    | 0.024*                        |
| C10 | 0.59022 (11) | 0.93258 (15) | 0.2884 (2)   | 0.0208 (4)                    |
| H10 | 0.5580 (14)  | 0.943 (2)    | 0.334 (2)    | 0.025*                        |
| C11 | 0.55636 (10) | 0.80986 (14) | 0.52484 (17) | 0.0157 (4)                    |
| C12 | 0.53032 (10) | 0.73486 (13) | 0.47039 (16) | 0.0141 (4)                    |
| C13 | 0.46845 (10) | 0.71343 (15) | 0.48786 (17) | 0.0180 (4)                    |
| H13 | 0.4491 (12)  | 0.6662 (19)  | 0.448 (2)    | 0.022*                        |
| C14 | 0.43354 (11) | 0.76366 (17) | 0.55984 (19) | 0.0224 (5)                    |
| H14 | 0.3905 (14)  | 0.750 (2)    | 0.569 (2)    | 0.027*                        |
| C15 | 0.46002 (11) | 0.83688 (17) | 0.61333 (19) | 0.0227 (5)                    |
| H15 | 0.4355 (14)  | 0.875 (2)    | 0.657 (2)    | 0.027*                        |
| C16 | 0.52167 (11) | 0.86056 (16) | 0.59584 (18) | 0.0209 (4)                    |
| H16 | 0.5394 (13)  | 0.907 (2)    | 0.632 (2)    | 0.025*                        |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| C17  | 0.55750 (10) | 0.60229 (15) | 0.37651 (17) | 0.0165 (4) |  |
|------|--------------|--------------|--------------|------------|--|
| H17  | 0.5284 (12)  | 0.5710 (19)  | 0.420 (2)    | 0.020*     |  |
| C18  | 0.58451 (10) | 0.54572 (14) | 0.29562 (16) | 0.0158 (4) |  |
| C19  | 0.61933 (10) | 0.58261 (14) | 0.20989 (17) | 0.0157 (4) |  |
| C20  | 0.63711 (12) | 0.52071 (16) | 0.12895 (18) | 0.0204 (4) |  |
| H20  | 0.6584 (12)  | 0.547 (2)    | 0.071 (2)    | 0.025*     |  |
| C21  | 0.62280 (12) | 0.42804 (16) | 0.1339 (2)   | 0.0221 (5) |  |
| H21  | 0.6372 (14)  | 0.391 (2)    | 0.081 (2)    | 0.027*     |  |
| C22  | 0.58962 (12) | 0.39198 (16) | 0.2186 (2)   | 0.0235 (5) |  |
| H22  | 0.5803 (13)  | 0.332 (2)    | 0.222 (2)    | 0.028*     |  |
| C23  | 0.57048 (12) | 0.45061 (15) | 0.29754 (19) | 0.0213 (4) |  |
| H23  | 0.5481 (13)  | 0.431 (2)    | 0.356 (2)    | 0.026*     |  |
| C24  | 0.64613 (13) | 0.9021 (2)   | 0.5605 (2)   | 0.0310 (6) |  |
| H24A | 0.6895 (17)  | 0.903 (2)    | 0.538 (3)    | 0.046*     |  |
| H24B | 0.6416 (16)  | 0.886 (3)    | 0.632 (3)    | 0.046*     |  |
| H24C | 0.6246 (16)  | 0.961 (3)    | 0.547 (3)    | 0.046*     |  |
|      |              |              |              |            |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Tb1 | 0.01162 (5) | 0.01062 (4) | 0.01596 (5) | 0.00074 (3)  | -0.00014 (3) | 0.00054 (3)  |
| O1  | 0.0168 (7)  | 0.0194 (7)  | 0.0216 (8)  | -0.0033 (6)  | 0.0009 (6)   | -0.0079 (6)  |
| O2  | 0.0274 (8)  | 0.0121 (6)  | 0.0176 (7)  | -0.0002 (6)  | 0.0015 (6)   | 0.0001 (6)   |
| N1  | 0.0164 (8)  | 0.0135 (8)  | 0.0135 (8)  | 0.0009 (6)   | -0.0009 (6)  | -0.0010 (6)  |
| C1  | 0.0269 (13) | 0.065 (2)   | 0.0213 (12) | 0.0232 (14)  | -0.0049 (10) | 0.0018 (13)  |
| C2  | 0.0179 (11) | 0.0381 (15) | 0.0423 (16) | 0.0055 (10)  | -0.0116 (11) | -0.0095 (12) |
| C3  | 0.0139 (10) | 0.0319 (12) | 0.0319 (14) | 0.0049 (9)   | 0.0009 (9)   | 0.0066 (10)  |
| C4  | 0.0198 (11) | 0.0269 (12) | 0.0320 (13) | 0.0116 (9)   | 0.0036 (10)  | 0.0012 (10)  |
| C5  | 0.0260 (13) | 0.0354 (15) | 0.0397 (15) | 0.0159 (11)  | 0.0072 (11)  | 0.0163 (12)  |
| C6  | 0.0237 (11) | 0.0112 (9)  | 0.0325 (13) | -0.0014 (8)  | -0.0047 (9)  | -0.0005 (8)  |
| C7  | 0.0174 (10) | 0.0147 (9)  | 0.0346 (13) | -0.0013 (8)  | 0.0004 (9)   | 0.0095 (9)   |
| C8  | 0.0255 (12) | 0.0155 (10) | 0.0216 (10) | 0.0045 (8)   | 0.0013 (9)   | 0.0045 (8)   |
| C9  | 0.0192 (10) | 0.0136 (9)  | 0.0273 (12) | 0.0011 (8)   | -0.0046 (9)  | 0.0015 (8)   |
| C10 | 0.0203 (11) | 0.0142 (9)  | 0.0280 (11) | 0.0036 (8)   | 0.0018 (9)   | 0.0000 (8)   |
| C11 | 0.0167 (9)  | 0.0151 (9)  | 0.0153 (9)  | 0.0001 (7)   | -0.0011 (7)  | -0.0015 (7)  |
| C12 | 0.0162 (9)  | 0.0141 (9)  | 0.0119 (8)  | 0.0002 (7)   | 0.0006 (7)   | 0.0016 (7)   |
| C13 | 0.0161 (9)  | 0.0200 (10) | 0.0179 (10) | -0.0028 (8)  | -0.0008 (8)  | 0.0028 (8)   |
| C14 | 0.0176 (10) | 0.0267 (12) | 0.0229 (11) | 0.0015 (9)   | 0.0031 (8)   | 0.0054 (9)   |
| C15 | 0.0248 (12) | 0.0221 (11) | 0.0213 (11) | 0.0041 (9)   | 0.0067 (9)   | -0.0007 (9)  |
| C16 | 0.0258 (12) | 0.0193 (10) | 0.0175 (10) | 0.0017 (9)   | 0.0010 (9)   | -0.0039 (8)  |
| C17 | 0.0182 (10) | 0.0154 (9)  | 0.0160 (9)  | -0.0015 (8)  | 0.0002 (8)   | -0.0006 (7)  |
| C18 | 0.0189 (10) | 0.0131 (9)  | 0.0155 (9)  | 0.0000 (7)   | -0.0015 (7)  | -0.0006(7)   |
| C19 | 0.0191 (10) | 0.0127 (9)  | 0.0153 (9)  | 0.0014 (7)   | -0.0027 (8)  | -0.0003 (7)  |
| C20 | 0.0265 (11) | 0.0183 (10) | 0.0165 (10) | 0.0033 (9)   | 0.0004 (9)   | -0.0024 (8)  |
| C21 | 0.0260 (12) | 0.0173 (10) | 0.0230 (11) | 0.0048 (9)   | -0.0029 (9)  | -0.0071 (9)  |
| C22 | 0.0285 (12) | 0.0136 (10) | 0.0286 (12) | -0.0002 (9)  | -0.0041 (10) | -0.0042 (9)  |
| C23 | 0.0265 (12) | 0.0136 (9)  | 0.0237 (11) | -0.0020 (8)  | 0.0012 (9)   | -0.0005 (8)  |
| C24 | 0.0270 (13) | 0.0335 (14) | 0.0324 (14) | -0.0105 (11) | 0.0005 (11)  | -0.0180 (11) |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| Tb1—C1    | 2.721 (3)   | С7—Н7     | 0.91 (3)   |
|-----------|-------------|-----------|------------|
| Tb1—C2    | 2.678 (3)   | C8—C9     | 1.414 (3)  |
| Tb1—C3    | 2.670 (2)   | C8—H8     | 0.93 (3)   |
| Tb1—C4    | 2.704 (2)   | C9—C10    | 1.408 (3)  |
| Tb1—C5    | 2.726 (3)   | С9—Н9     | 0.96 (3)   |
| Tb1—C6    | 2.700 (2)   | C10—H10   | 0.91 (3)   |
| Tb1—C7    | 2.675 (2)   | C11—C16   | 1.382 (3)  |
| Tb1—C8    | 2.662 (2)   | C11—C12   | 1.405 (3)  |
| Tb1—C9    | 2.691 (2)   | C12—C13   | 1.392 (3)  |
| Tb1—C10   | 2.717 (2)   | C13—C14   | 1.389 (3)  |
| Tb1—O1    | 2.5468 (15) | С13—Н13   | 0.95 (3)   |
| Tb1—O2    | 2.2034 (16) | C14—C15   | 1.383 (4)  |
| Tb1—N1    | 2.4748 (18) | C14—H14   | 0.96 (3)   |
| O1—C11    | 1.383 (3)   | C15—C16   | 1.395 (3)  |
| O1—C24    | 1.451 (3)   | C15—H15   | 0.95 (3)   |
| O2—C19    | 1.303 (3)   | C16—H16   | 0.90 (3)   |
| N1—C17    | 1.301 (3)   | C17—C18   | 1.435 (3)  |
| N1—C12    | 1.427 (3)   | С17—Н17   | 0.95 (3)   |
| C1—C5     | 1.398 (5)   | C18—C23   | 1.412 (3)  |
| C1—C2     | 1.411 (5)   | C18—C19   | 1.424 (3)  |
| C1—H1     | 0.91 (4)    | C19—C20   | 1.414 (3)  |
| C2—C3     | 1.417 (4)   | C20—C21   | 1.380 (3)  |
| C2—H2     | 0.94 (3)    | C20—H20   | 0.95 (3)   |
| C3—C4     | 1.397 (4)   | C21—C22   | 1.392 (4)  |
| С3—Н3     | 0.94 (3)    | C21—H21   | 0.91 (3)   |
| C4—C5     | 1.406 (4)   | C22—C23   | 1.375 (3)  |
| C4—H4     | 0.93 (3)    | C22—H22   | 0.90 (3)   |
| С5—Н5     | 0.95 (3)    | C23—H23   | 0.92 (3)   |
| C6—C7     | 1.408 (4)   | C24—H24A  | 0.98 (4)   |
| C6—C10    | 1.412 (3)   | C24—H24B  | 0.94 (4)   |
| С6—Н6     | 0.92 (3)    | C24—H24C  | 0.98 (4)   |
| C7—C8     | 1.413 (4)   |           |            |
| O2—Tb1—N1 | 73.54 (6)   | С3—С2—Н2  | 123 (2)    |
| O2—Tb1—O1 | 137.01 (6)  | Тb1—С2—Н2 | 117 (2)    |
| N1—Tb1—O1 | 63.47 (5)   | C4—C3—C2  | 107.7 (2)  |
| O2—Tb1—C8 | 79.04 (7)   | C4—C3—Tb1 | 76.25 (14) |
| N1—Tb1—C8 | 121.49 (7)  | C2—C3—Tb1 | 74.94 (14) |
| O1—Tb1—C8 | 123.16 (6)  | С4—С3—Н3  | 129.4 (19) |
| O2—Tb1—C3 | 95.09 (8)   | С2—С3—Н3  | 122.9 (19) |
| N1—Tb1—C3 | 137.96 (7)  | Тb1—С3—Н3 | 115.1 (19) |
| O1—Tb1—C3 | 116.54 (7)  | C3—C4—C5  | 108.6 (3)  |
| C8—Tb1—C3 | 94.46 (8)   | C3—C4—Tb1 | 73.62 (14) |
| O2—Tb1—C7 | 106.80 (7)  | C5—C4—Tb1 | 75.87 (14) |
| N1—Tb1—C7 | 142.72 (7)  | C3—C4—H4  | 128.1 (19) |
| O1—Tb1—C7 | 107.14 (7)  | C5—C4—H4  | 123.2 (19) |

| C8—Tb1—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30.72 (8)              | Tb1—C4—H4                                            | 114.2 (19)             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------|------------------------|
| C3—Tb1—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 79.24 (8)              | C1—C5—C4                                             | 107.9 (3)              |
| O2—Tb1—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 123.58 (8)             | C1—C5—Tb1                                            | 74.94 (15)             |
| N1—Tb1—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 129.07 (8)             | C4—C5—Tb1                                            | 74.11 (14)             |
| O1—Tb1—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86.20 (8)              | С1—С5—Н5                                             | 131 (2)                |
| C8—Tb1—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.23 (9)             | С4—С5—Н5                                             | 121 (2)                |
| C3—Tb1—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30.71 (9)              | Тb1—С5—Н5                                            | 116 (2)                |
| C7—Tb1—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 82.91 (9)              | C7—C6—C10                                            | 107.9 (2)              |
| O2—Tb1—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.89 (6)              | C7—C6—Tb1                                            | 73.80 (13)             |
| N1—Tb1—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 94.15 (6)              | C10—C6—Tb1                                           | 75.54 (13)             |
| 01—Tb1—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100.42 (6)             | С7—С6—Н6                                             | 124.0 (18)             |
| C8—Tb1—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30.63 (7)              | C10—C6—H6                                            | 128.1 (18)             |
| C3-Tb1-C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 124 84 (8)             | Tb1—C6—H6                                            | 1175(19)               |
| C7—Tb1—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50.34 (7)              | C6-C7-C8                                             | 108.3 (2)              |
| $C_2$ —Tb1—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 132,83 (9)             | C6-C7-Tb1                                            | 75 84 (13)             |
| $\Omega^2$ —Tb1—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 128.45(7)              | C8-C7-Tb1                                            | 74 15 (13)             |
| N1—Tb1—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.13(7)<br>120.91(7) | C6-C7-H7                                             | 1239(18)               |
| $\Omega_1$ —Tb1—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 77 49 (7)              | C8-C7-H7                                             | 123.9(10)<br>127.8(18) |
| C8—Tb1—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50 48 (8)              | Th1 $-C7$ $-H7$                                      | 127.0(10)<br>1174(19)  |
| $C_3$ —Tb1—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 98 14 (8)              | C7 - C8 - C9                                         | 107.6(2)               |
| C7—Tb1—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30 36 (8)              | C7 - C8 - Tb1                                        | 75 14 (13)             |
| $C_2$ —Tb1—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 87 23 (8)              | C9-C8-Tb1                                            | 75.82 (13)             |
| $C_{2}$ Tb1 $-C_{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50 12 (7)              | C7 - C8 - H8                                         | 126.8(17)              |
| $C_{2}$ Tb1 $C_{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74.52(7)               | $C_{1} = C_{2} = H_{2}$                              | 120.0(17)<br>125.6(17) |
| N1 Tb1 $C4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100.64.(7)             | Th 1  C8  H8                                         | 123.0(17)<br>117.0(18) |
| $\Omega_1 = 101 = C4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.04(7)<br>110.34(7) | 101 - 0.000 = 0.0000                                 | 1081(2)                |
| $C_8$ Tb1 $C_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 117.34(7)<br>111.18(8) | $C_{10} = C_{9} = C_{0}$                             | 75.03(13)              |
| $C_{3}$ Tb1 C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30.13 (8)              | $C_{8}$ $C_{9}$ Tb1                                  | 73.55 (13)             |
| $C_{7}$ Tb1 C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 106.08 (8)             | $C_{10} = C_{20} = 101$                              | 13.55(15)              |
| $C_{1} = 101 = C_{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100.08 (8)             |                                                      | 120.0(17)<br>125.3(17) |
| $C_2 = 101 = C_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 49.90(9)<br>120.40(8)  | $C_0 - C_2 - 11_2$                                   | 123.3(17)              |
| $C_{9} = 101 = C_{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 139.49(0)<br>129.21(0) | 101 - C9 - H9                                        | 113.0(17)              |
| $C_0 = 101 = C_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120.21(0)<br>110.95(7) | $C_{9} = C_{10} = C_{0}$                             | 108.1(2)               |
| 02 - 101 - 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110.03(7)              | $C_{9} = C_{10} = 101$                               | 73.89 (13)             |
| N1 = 101 = C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 94.15 (7)<br>72.55 (6) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 124.23(13)             |
| $C^{8}$ Th1 C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75.55 (0)<br>50.25 (7) | $C_{9}$                                              | 124.7(18)              |
| $C_{0} = 101 = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50.25(7)               | $C_0 - C_{10} - H_{10}$                              | 127.2(18)              |
| $C_{3} = 101 = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 127.23(6)              |                                                      | 110.7(18)              |
| $C_{1} = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50.00(7)               | C16 - C11 - C12                                      | 124.17(19)             |
| $C_2$ — $I_0$ $C_1$ $C_1$ $C_1$ $C_1$ $C_1$ $C_2$ $C_2$ $C_2$ $C_1$ $C_1$ $C_2$ | 110.40(8)              | C10 - C11 - C12                                      | 120.8(2)               |
| $C_{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.19(7)               | 01-01-012                                            | 115.01 (18)            |
| C6 - IbI - CI0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30.20(7)               | C13 - C12 - C11                                      | 118.72 (19)            |
| C4 - 101 - C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 150.04 (ð)             | C13 - C12 - N1                                       | 125.94 (19)            |
| $U_2$ —101—U1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11/.0/(8)              | C14 - C12 - C12                                      | 117.20 (19)            |
| NI - IbI - CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 98.98 (8)              | C14 - C13 - C12                                      | 120.7 (2)              |
| $\begin{array}{c} UI - IbI - UI \\ C2 & TLI & C1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /1.32 (/)              | C12 C12 H12                                          | 119.3 (16)             |
| $C_{0} = 101 - C_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 139.49 (9)             | C12-C13-H13                                          | 120.0 (16)             |
| C3—1b1—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50.03 (9)              | C15—C14—C13                                          | 119.8 (2)              |
| C/—Ibl—Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 112.31 (9)             | C15—C14—H14                                          | 120.3 (18)             |

| C2—Tb1—C1    | 30.29 (10)  | C13—C14—H14     | 119.8 (18)   |
|--------------|-------------|-----------------|--------------|
| C9—Tb1—C1    | 158.87 (9)  | C14—C15—C16     | 120.5 (2)    |
| C6—Tb1—C1    | 108.76 (9)  | C14—C15—H15     | 120.2 (19)   |
| C4—Tb1—C1    | 49.39 (9)   | C16—C15—H15     | 119.0 (19)   |
| C10—Tb1—C1   | 131.47 (9)  | C11—C16—C15     | 119.4 (2)    |
| O2—Tb1—C5    | 88.02 (8)   | C11—C16—H16     | 119.8 (19)   |
| N1—Tb1—C5    | 88.73 (7)   | C15—C16—H16     | 120.8 (18)   |
| O1—Tb1—C5    | 91.07 (7)   | N1—C17—C18      | 127.2 (2)    |
| C8—Tb1—C5    | 141.00 (8)  | N1—C17—H17      | 118.6 (16)   |
| C3—Tb1—C5    | 49.89 (8)   | С18—С17—Н17     | 114.2 (16)   |
| C7—Tb1—C5    | 128.41 (8)  | C23—C18—C19     | 119.6 (2)    |
| C2—Tb1—C5    | 49.83 (10)  | C23—C18—C17     | 117.3 (2)    |
| C9—Tb1—C5    | 168.24 (8)  | C19—C18—C17     | 122.92 (19)  |
| C6—Tb1—C5    | 136.49 (9)  | O2—C19—C20      | 120.5 (2)    |
| C4—Tb1—C5    | 30.02 (8)   | O2—C19—C18      | 122.27 (19)  |
| C10—Tb1—C5   | 160.96 (9)  | C20—C19—C18     | 117.18 (19)  |
| C1—Tb1—C5    | 29.74 (10)  | C21—C20—C19     | 121.6 (2)    |
| C11—O1—C24   | 115.77 (18) | C21—C20—H20     | 122.1 (19)   |
| С11—О1—Тb1   | 117.16 (12) | С19—С20—Н20     | 116.3 (19)   |
| C24—O1—Tb1   | 122.42 (15) | C20—C21—C22     | 121.1 (2)    |
| С19—О2—Тb1   | 133.53 (14) | C20—C21—H21     | 117.7 (19)   |
| C17—N1—C12   | 117.59 (18) | C22—C21—H21     | 121.1 (19)   |
| C17—N1—Tb1   | 124.56 (15) | C23—C22—C21     | 118.8 (2)    |
| C12—N1—Tb1   | 117.54 (12) | С23—С22—Н22     | 120.3 (19)   |
| C5—C1—C2     | 108.3 (3)   | C21—C22—H22     | 120.9 (19)   |
| C5—C1—Tb1    | 75.32 (16)  | C22—C23—C18     | 121.8 (2)    |
| C2—C1—Tb1    | 73.17 (15)  | С22—С23—Н23     | 123.1 (18)   |
| C5—C1—H1     | 125 (2)     | C18—C23—H23     | 115.1 (18)   |
| C2—C1—H1     | 127 (2)     | O1—C24—H24A     | 105 (2)      |
| Tb1—C1—H1    | 119 (2)     | O1—C24—H24B     | 105 (2)      |
| C1—C2—C3     | 107.5 (3)   | H24A—C24—H24B   | 113 (3)      |
| C1—C2—Tb1    | 76.54 (16)  | O1—C24—H24C     | 111 (2)      |
| C3—C2—Tb1    | 74.34 (14)  | H24A—C24—H24C   | 113 (3)      |
| C1—C2—H2     | 129 (2)     | H24B—C24—H24C   | 110 (3)      |
|              |             |                 |              |
| C5—C1—C2—C3  | -0.8 (3)    | Tb1-01-C11-C12  | 26.1 (2)     |
| Tb1—C1—C2—C3 | -68.51 (18) | C16—C11—C12—C13 | 1.1 (3)      |
| C5—C1—C2—Tb1 | 67.73 (19)  | O1—C11—C12—C13  | -178.98 (18) |
| C1—C2—C3—C4  | 0.2 (3)     | C16—C11—C12—N1  | 176.94 (19)  |
| Tb1—C2—C3—C4 | -69.85 (18) | 01—C11—C12—N1   | -3.2 (3)     |
| C1—C2—C3—Tb1 | 70.01 (18)  | C17—N1—C12—C13  | -32.4(3)     |
| C2—C3—C4—C5  | 0.5 (3)     | Tb1—N1—C12—C13  | 153.66 (16)  |
| Tb1—C3—C4—C5 | -68.45 (18) | C17—N1—C12—C11  | 152.0 (2)    |
| C2—C3—C4—Tb1 | 68.95 (17)  | Tb1—N1—C12—C11  | -21.9 (2)    |
| C2-C1-C5-C4  | 1.1 (3)     | C11—C12—C13—C14 | -1.7 (3)     |
| Tb1—C1—C5—C4 | 67.38 (18)  | N1—C12—C13—C14  | -177.2 (2)   |
| C2-C1-C5-Tb1 | -66.30 (19) | C12—C13—C14—C15 | 1.3 (3)      |
| C3—C4—C5—C1  | -1.0 (3)    | C13—C14—C15—C16 | -0.2 (4)     |
|              | · ·         |                 | . /          |

| The $CA$ $C5$ $C1$ | -67.04(10)   | 01 C11 C16 C15  | 180.0(2)     |
|--------------------|--------------|-----------------|--------------|
|                    | 07.74(17)    |                 | 100.0(2)     |
| C3—C4—C5—Tb1       | 66.96 (18)   | C12—C11—C16—C15 | -0.1(3)      |
| C10—C6—C7—C8       | -0.8 (3)     | C14—C15—C16—C11 | -0.3 (4)     |
| Tb1—C6—C7—C8       | 67.66 (16)   | C12—N1—C17—C18  | 171.9 (2)    |
| C10—C6—C7—Tb1      | -68.48 (16)  | Tb1—N1—C17—C18  | -14.6 (3)    |
| C6—C7—C8—C9        | 0.7 (3)      | N1-C17-C18-C23  | 173.7 (2)    |
| Tb1—C7—C8—C9       | 69.50 (16)   | N1-C17-C18-C19  | -12.3 (4)    |
| C6—C7—C8—Tb1       | -68.79 (16)  | Tb1             | -146.18 (18) |
| C7—C8—C9—C10       | -0.3 (3)     | Tb1             | 36.0 (3)     |
| Tb1—C8—C9—C10      | 68.71 (16)   | C23—C18—C19—O2  | 179.2 (2)    |
| C7—C8—C9—Tb1       | -69.03 (16)  | C17—C18—C19—O2  | 5.2 (3)      |
| C8—C9—C10—C6       | -0.2 (3)     | C23-C18-C19-C20 | 1.3 (3)      |
| Tb1—C9—C10—C6      | 66.92 (16)   | C17—C18—C19—C20 | -172.6 (2)   |
| C8—C9—C10—Tb1      | -67.12 (16)  | O2-C19-C20-C21  | -179.6 (2)   |
| C7—C6—C10—C9       | 0.6 (3)      | C18—C19—C20—C21 | -1.6 (3)     |
| Tb1—C6—C10—C9      | -66.68 (16)  | C19—C20—C21—C22 | 0.7 (4)      |
| C7—C6—C10—Tb1      | 67.31 (16)   | C20—C21—C22—C23 | 0.7 (4)      |
| C24—O1—C11—C16     | 2.4 (3)      | C21—C22—C23—C18 | -1.1 (4)     |
| Tb1—O1—C11—C16     | -154.05 (18) | C19—C18—C23—C22 | 0.1 (4)      |
| C24—O1—C11—C12     | -177.5 (2)   | C17—C18—C23—C22 | 174.3 (2)    |
|                    |              |                 |              |