Crystal structure, Hirshfeld surface analysis and DFT study of 2,2''-({[(1E,1'E)-(diselanediyl)bis(2,1phenylene)]bis(methaneylylidene)}bis(azaneylylidene))bis[3',6'-bis(diethylamino)-4a',9a'-dihydrospiro[isoindoline-1,9'-xanthen]-3-one]

Manzoor Ahmad Malla,^a Ravi Bansal,^a Ray J. Butcher^b and Sushil K. Gupta^a*

^aSchool of Studies in Chemistry, Jiwaji University, Gwalior 474011, India, and ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA. *Correspondence e-mail: skggwr@gmail.com

The title compound, C₇₀H₇₀N₈O₄Se₂, is a spiro bicyclic diselenide, made up of two $[SeC_6H_4CH=N-N(CO)C_6H_4(C)C_6H_3NEt_2(O)C_6H_3NEt_2]$ units related by a twofold crystallographic symmetry element bisecting the diselenide bond. The compound crystallizes in a non-centrosymmetric polar space group (tetragonal, $P\overline{4}b2$) and the structure was refined as an inversion twin. The two diethyl amine groups and their attached phenyl groups of the xanthene ring are disordered over two orientations, with occupancies of 0.664 (19)/0.336 (19) and 0.665 (11)/0.335 (11), respectively. The dihedral angles between the mean planes of the central isoindoline and the phenyl rings are 26.8 (2) and 2.5 (4) $^{\circ}$, respectively. The mean plane of the central xanthene ring forms dihedral angles of 2.0 (5), 8.8 (5), 1.7 (5) and 7.9 (6) $^{\circ}$ with the peripheral phenyl rings. The isoindoline and xanthene rings subtend a dihedral angle of $89.8(2)^{\circ}$. The molecular conformation is stabilized by an intramolecular $C-H\cdots O$ hydrogen bond generating an S(6) ring motif. In the crystal, molecules are linked by C-H···O hydrogen bonds together with $C-H \cdots \pi$ (ring) interactions, forming a threedimensional network. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from $H \cdots H$ (68.1%), $C \cdots H/H \cdots C$ (21.2%) and $O \cdots H/H \cdots O$ (8.7%) contacts. The optimized structure calculated using density functional theory (DFT) at the B3LYP/6 – 31 G(d) level is compared with the experimentally determined molecular structure in the solid state. The HOMO-LUMO behaviour was used to determine the energy gap and the molecular electrostatic potential (MEP) of the compound was investigated.

1. Chemical context

Diaryl diselenides and aryl selenolates have been previously used as ligand precursors for the synthesis of transition-metal complexes (Khandelwal & Gupta, 1989; Gupta & Parihar, 1995, 1998; Gupta et al., 1998). Selenospirocyclic compounds are a class of heterocyclic compounds with a wide variety of uses in organic synthesis (Aho et al., 2005; Kotha et al., 2009; James et al., 1991), biological activities (Mugesh et al., 2001; Nogueira et al., 2004; Press et al., 2008; Alberto et al., 2009) and photoluminescence properties (Singh et al., 2011; Shi et al., 2010). However, the formation of spirobicyclic diselenides is rare and to the best of our knowledge, not reported in the literature. There are very few reports of the formation of selenospirocyclic derivatives which have been structurally characterized (Singh et al., 2011; Shi et al., 2010). Very recently, organoselenium compounds containing both N and Se have

-4.5 номс номо-61

ACCESS

CRYSTALLOGRAPHIC

COMMUNICATIONS

ISSN 2056-9890

Received 17 July 2021 Accepted 11 December 2021

fingerprint plots.

CCDC reference: 2127961

Edited by M. Zeller, Purdue University, USA

Keywords: Spirobicyclic diselenide: crystal

structure; density functional theory (DFT); Hirshfeld surface analysis; two-dimensional

Supporting information: this article has

supporting information at journals.iucr.org/e

1.5

OPEN

 \mathbf{O}

Jerry P. Jasinski tribute

been reported with interesting intra- and intermolecular interactions (Saravanan *et al.*, 2021). Although the synthetic and structural studies of various diselenides (see section 4, *Database survey*) are known in the literature, to the best of our knowledge, a synthesis and structural data have not yet been published for the title compound. Herein we report the crystal structure, DFT and Hirshfeld surface analysis of 2,2''-({[(1E,1'E)-(diselanediyl)bis(2,1-phenylene)]bis(methaneylyl-idene)}bis(azaneylylidene))bis[3',6'-bis(diethylamino)-4a',9a'-dihydrospiro[isoindoline-1,9'-xanthen]-3-one], isolated from the condensation of rhodamine B hydrazide with bis(*o*-form-ylphenyl)diselenide.

2. Structural commentary

The title compound (Fig. 1), a rare example of spiro bicyclic diselenide, crystallizes in the non-centrosymmetric polar tetragonal space group, $P\overline{4}b2$, as a racemic mixture. There is a half-molecule in the asymmetric unit (Z = 4), and the structure was refined as an inversion twin [Flack parameter 0.05 (2); Parsons et al., 2013]. The Se-Se unit is coplanar with both phenyl rings but the Se-aryl planes are essentially perpendicular to each other [C-Se-Se-C torsion angle of $-88.9(3)^{\circ}$]. The diethyl amine groups and their attached phenvl groups (C16-C21, N3/C18-C20/C22-C25 and C26-C31, N4/C32-C35) of the xanthene rings are disordered over two conformations with occupancies of 0.664(19)/0.336(19)and 0.665 (11)/0.335 (11), respectively. In both major and minor components, the diethyl amine nitrogens are planar with the sum of the bond angles at N3/N3A being 358.5 and 359.5° and at N4/N4A being 357.5 and 357.4°, respectively. In order to investigate the pyramidal nature of the amine N atoms, the dihedral angles between the respective $N-C_2$ groups and the attached phenyl rings were calculated and found to be 14.3 (7) and 14.8 (5) for N3 and N4, respectively. The Se–Se bond length of 2.3517 (17) Å and Se–C bond length of 1.939 (7) Å fall within the literature ranges of 2.287 to 3.051 Å and 1.91–1.97 Å, respectively (see CSD survey). The C-Se-Se-C torsion angle typically falls in the range of ca 73–128° (Dickson et al., 1999). The observed C-Se-Se-C torsion angle, -88.9 (3) °, results from the syn conformation around the Se-Se bridge. This conformation can be rationalized in terms of repulsion of the 4p lone pairs at the Se centres. The dihedral angles between the mean planes of the central isoindoline (N2/C8/C9/C14/C15) and the phenyl rings (C1-C6 and C9–C14), are 26.8 (2) and 2.5 (4) $^{\circ}$, respectively. The mean plane of the central xanthene ring (O2/C21/C16/C15/C31/C26) forms dihedral angles of 2.0 (5), 8.8 (9) and 1.7 (5), 7.9 (6) $^{\circ}$ with the peripheral phenyl rings (C16-C21, C16A-C21A and C26–C31, C26A–C31A, respectively). The isoindoline (N2/C8/C9/C14/C15) and xanthene (O2/C21/C16/C15/C31/C26) rings are essentially perpendicular to each other [dihedral angle of $89.8 (6)^{\circ}$].

3. Supramolecular features

The crystal packing of the title compound viewed along the *c* axis is presented in Fig. 2. The title compound packs in a way that allows close contacts between the oxygen atoms and hydrogen atoms of adjacent molecules, leading to a network of C-H···O interactions involving donor atoms C7 (azomethine carbon) and C12 (aromatic carbon) with carbonyl oxygen O1 as acceptor with $D \cdots A$ distances of 3.391 (10) and 3.447 (10) Å, respectively (symmetry codes: $y + \frac{1}{2}, x - \frac{1}{2}, -z + 2;$ 1 + y, 1 - x, 2 - z) between neighbouring molecules (Table 1). An intramolecular C-H···O hydrogen bond involving carbonyl oxygen, O1 and methine hydrogen, H7 with $D \cdots A$

Figure 1

Diagram showing: (a) a half molecule showing the disorder, (b) the major component of the title compound [symmetry operation: $\frac{1}{2} + y$, $-\frac{1}{2} + x$, 1 - z]. Displacement ellipsoids are shown at the 30% probability level.

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2A\cdots$ Se1 ⁱ	0.95	2.82	3.436 (8)	124
$C7-H7A\cdots O1$	0.95	2.43	2.940 (9)	114
$C7-H7A\cdots O1^{ii}$	0.95	2.63	3.391 (10)	137
$C12-H12A\cdots O1^{iii}$	0.95	2.56	3.447 (10)	156
$C33A - H33E \cdots Se1^{i}$	0.98	3.04	4.00 (3)	168

Symmetry codes: (i) $y + \frac{1}{2}, x - \frac{1}{2}, -z + 1$; (ii) $y + \frac{1}{2}, x - \frac{1}{2}, -z + 2$; (iii) y + 1, -x + 1, -z + 2.

distance of 2.940 (9) Å leading to an S(6) ring motif (Bernstein *et al.*, 1995) is also present. Furthermore, there exists a C-H··· π interaction between the H25*C* atom of the methyl carbon C25 and the centroid of the C16–C21 phenyl ring; symmetry code 1 - y, -1 + x, 1 - z. These interactions play a vital role in stabilizing the crystal packing within the crystal structure.

Figure 2 (b) Packing diagram of (a) the title compound viewed along c axis and (b) partial packing showing the formation of $C-H\cdots\pi$ interactions (symmetry code: 1 - y, -1 + x, 1 - z).

Tal	hl	0	2
- C I I			_

Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound.

Contact	Percentage contribution
$H\!\cdot\!\cdot\!\cdot\!H$	68.1
$C \cdots H/H \cdots C$	21.2
$O \cdot \cdot \cdot H/H \cdot \cdot \cdot O$	8.7
$N \cdots H/H \cdots N$	1.6
Se···H/H···Se	0.4

4. Hirshfeld surface analysis

Hirshfeld surface (HS) calculations (Spackman & Jayatilaka, 2009) were performed on the title compound to further investigate the intermolecular interactions. The Hirshfeld surface plotted over d_{norm} in the range -1.0432 to +2.0960 a.u. generated using *CrystalExplorer 21.5* (Spackman *et al.*, 2021) is shown in Fig. 3. The red spots that appear around O1 are caused by the intermolecular C7-H7···O1 and C12-H12···O1 interactions, which are important in the packing of the title molecule. An intramolecular C-H···O hydrogen bond is also indicated by the red spots near the hydrogen and oxygen atoms (Fig. 3b). Bright-red spots on top and bottom of the HS near N3 indicate an intermolecular C-H··· π (ring) interaction involving H25*B* of the C25 methyl group and a benzene ring (Fig. 3*c*).

The two-dimensional fingerprint plots (McKinnon *et al.*, 2007) were generated using *CrystalExplorer 21.5* encompassing all intermolecular contacts, as well as the delineated specific contacts (Fig. 4). More significant contacts and their percentage contributions to the Hirshfeld surface are given in Table 2. The most important interaction is $H \cdot \cdot \cdot H$, contributing 68.1% to the overall crystal packing. The presence of C- $H \cdot \cdot \cdot \pi$ interactions is indicated by pairs of characteristic wings in the finger print plot representing $C \cdot \cdot \cdot H/H \cdot \cdot \cdot C$ contacts

Figure 3

(a) A view of the three-dimensional Hirshfeld surface mapped over d_{norm} in the range -1.0432 to +2.0960 a.u. and views showing (b) C-H···O and (c) C-H··· π interactions.

Jerry P. Jasinski tribute

Figure 4

A view of the two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and those delineated into (b) $H \cdots H$ (c) $C \cdots H/H \cdots C$ (d) $O \cdots H/H \cdots O$ (e) $N \cdots H/H \cdots N$ and (f) $Se \cdots H/H \cdots Se$ interactions. The d_i and d_e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.

with a 21.2% contribution to the HS. Pairs of scattered points of spikes are seen in the fingerprint plot delineated into $O \cdots H/H \cdots O$ contacts (8.7% contribution to the HS). The lowest contributions are from $N \cdots H/H \cdots N$ (1.6%) and $Se \cdots H/H \cdots Se$ (0.4%) contacts. These interactions play a crucial role in the overall stabilization of the crystal packing.

5. DFT Calculations

A density functional theory (DFT) geometry-optimized molecular orbital calculation (*WebMOPro*; Polik & Schmidt, 2021) with the *GAUSSIAN 16* programme package (Frisch *et al.*, 2019) employing the B3LYP functional and 6-31 G(d) basis set (Becke, 1993) was performed on the title compound.

Comparison of selected (X-ray and DFT) bond lengths and angles (Å, $^\circ)$					
Bonds/Angles	X-ray	B3LYP/6-31G(d)			
Se1-C1	1.939 (7)	1.941			
Se1-Se1′	2.3517 (17)	2.356			
O1-C8	1.222 (9)	1.224			
O2-C21	1.315 (12)	1.374			
O2-C26	1.349 (13)	1.368			
N1-C7	1.280 (9)	1.291			
N1-N2	1.380 (8)	1.353			
N2-C8	1.378 (10)	1.392			
N2-C15	1.507 (9)	1.513			
C1-C6	1.415 (11)	1.42			
C19-N3	1.426 (7)	1.383			
C22-N3	1.446 (13)	1.464			
C24-N3	1.466 (12)	1.461			
N4-C28	1.423 (10)	1.39			
N4-C32	1.543 (14)	1.461			
N4-C34	1.481 (13)	1.462			
C1-Se1-Se1'	103.5 (2)	102.711			
C26-O2-C21	119.4 (9)	119.241			
C7-N1-N2	121.3 (6)	122.983			
N1-N2-C15	115.5 (5)	116.391			
C2-C1-Se1	122.5 (6)	121.361			
C6-C1-Se1	119.2 (5)	119.262			
O1-C8-N2	125.8 (6)	126.543			
C8-N2-C15	115.3 (5)	114.337			
O1-C8-C9	129.0 (7)	128.268			
N2-C8-C9	105.2 (6)	105.19			
C19-N3-C22	120.9 (7)	120.635			
C19-N3-C24	119.4 (7)	120.99			
C22-N3-C24	118.2 (7)	118.187			
C28-N4-C32	120.2 (7)	120.875			
C28-N4-C34	120.1 (8)	120.772			
C32-N4-C34	117.2 (9)	117.917			
C1-Se1-Se1'-C1'	-88.9 (6)	-73.195			

Starting geometries were taken from the X-ray refinement data. Theoretical and experimental results related to bond lengths and angles are in good agreement (Table 3).

Calculated molecular orbital energies (eV) for the surfaces of the frontier molecular orbitals of the title compound are shown in Fig. 5. The HOMO (highest occupied molecular orbital) acts as an electron donor and the LUMO (lowest

Figure 5

Table 3

Calculated frontier molecular orbitals of the title compound.

Table 4Calculated energies.

Property	
Total energy TE (eV)	-224397
E _{HOMO}	-5.0048
E _{LUMO}	-1.2512
Gap, ΔE (eV)	3.7536
Dipole moment, μ (Debye)	7.182
Ionization enthalpy, IE (eV)	5.0048
Electron gain enthalpy, EE (eV)	1.2512
Electronegativity, χ	3.128
Hardness, η	1.8768
Softness, σ	0.5328
Electrophilicity index, ω	2.6066

unoccupied molecular orbital) as an electron acceptor. Calculated numerical values for the title compound including, electronegativity (c), hardness (h), ionization enthalpy (*IE*), dipole moment (m), electron gain enthalpy (*EE*), electrophilicity (ω) and softness (s), are collated in Table 4. The significance of h and s is to evaluate both the reactivity and stability.

As shown in Fig. 5, the HOMO is mainly located on the xanthene phenyl ring and diethyl amine groups whereas the LUMO is distributed on the phenyl ring attached to selenium, azomethine and carbonyl group. In HOMO – 1, electron clouds are distributed on the azomethine group, the phenyl ring attached to selenium and the diethyl amine groups on the other side of the molecule. In LUMO + 1, electron clouds are located on the isoindoline and azomethine groups of both sides of the molecule whereas in LUMO + 2, it involves the selenium atom, phenyl ring, azomethine and isoindoline groups on one side of the molecule. The energy band gap [$\Delta E = E_{\rm LUMO} - E_{\rm HOMO}$] of the molecule is 3.7536 eV, and the frontier molecular orbital energies, $E_{\rm HOMO}$ and $E_{\rm LUMO}$, are -5.0048 and -1.2512 eV, respectively.

Figure 6

A view of the MEP plot of the title compound made using the 6–31 G(d) basis set at the B3LYP level of theory in the range -0.0833 to 0.0321.

The molecular electrostatic potential (MEP) map (Fig. 6) was calculated at the B3LYP/6–31G(d) level of theory. In the MEP diagram, the molecular electrostatic potential is in the range -0.0833 to 0.0321 a.u. and the different electrostatic potentials at the surface of the molecule are represented by different colours. Electrostatic potentials increase in the order red < yellow < green < blue, and red indicates the electron rich region and blue indicates the electron-deficient region. As shown in Fig. 6, the carbonyl groups are surrounded by negative charges, indicating some possible nucleophilic sites, whereas the positive charge regions are located on the H atoms indicating possible electrophilic sites.

6. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update May 2021; Groom *et al.*, 2016) for the basic skeleton of this compound gave no hits. However, a CSD search on phenyl–Se–Se–phenyl compounds gave 152 hits and 199 observations with the Se–Se distance ranging from 2.287 to 3.051 Å (with a mean value of 2.393 Å and a standard deviation 0.162). In the structures of CATWEB01, REDGAK, REDGEO and REDGUE (Panda *et al.*, 2012), the typical torsional angles of the selenium-attached phenyl ring (C–Se–Se–C) are *ca* 81° and those of CIDXET and CIDXUJ (Kulcsar *et al.*, 2007) are 80.9 and 114.0°, respectively.

7. Synthesis and crystallization

The title compound was obtained by the condensation of rhodamine B hydrazide (Leite et al., 2013) and bis(o-formylphenyl)diselenide (Panda et al., 2005) (see Fig. 7). In a typical experiment, a solution of rhodamine B hydrazide (0.228 g, 0.5 mmol) in ethanol (30 mL) was added dropwise to a solution of bis(o-formylphenyl)diselenide (0.184 g, 0.5 mmol) in ethanol (30 mL) over approximately 45 minutes in a dropping funnel. The solution mixture was stirred further for 4 h at room temperature. After cooling, the solid was filtered and washed three times with cold ethanol. Pale-yellow crystals of the title compound suitable for single-crystal X-ray diffraction study were obtained from chloroform/pentane (1:1 mixture), vield 0.461 g, 81%, m.p. 519 K (Fig. 7). FT-IR (ATR): (v, cm^{-1}) = 3387, 2967, 1613, 1514, 1218, 1117, 753. ¹H NMR $[300 \text{ MHz}, \text{ CDCl}_3, \delta \text{ (ppm)}]: 1.15 \text{ (24H, } t, J = 7.2 \text{ Hz},$ NCH₂CH₃), 3.33 (16H, q, J = 7.2 Hz, NCH₂CH₃), 6.29 (4H, s, H-Ar), 6.43 (4H, d, J = 2.7 Hz, H-Ar), 6.46 (4H, d, J = 2.7 Hz, H-Ar), 7.09 (2H, m, H-Ar), 7.19 (4H, m, H-Ar), 7.43 (4H, m, H-Ar), 7.92 (4H, *m*, H-Ar), 8.60 (2H, *s*, N=C-H). ¹³C NMR [75 MHz, CDCl₃, δ (ppm)]: 12.7 (NCH₂CH₃), 44.5 (NCH₂CH₃), 66.1 (spiro carbon), 98.2, 104.7, 108.2, 123.1, 123.9, 130.9, 132.6, 149.1, 151.7, 154.0, 166.3 (C=O).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. All H atoms were positioned geometrically with C-H bond distances of 0.95 Å (aromatic

Jerry P. Jasinski tribute

H), 0.99 Å (methylene H), 0.98 Å (methyl H) and were refined as riding with isotropic displacement parameters 1.2 and 1.5 times that of the adjacent carbon atoms. The title compound crystallized with disorder in the two diethyl amine groups attached to the xanthene ring. The disorder model included the phenyl rings to which these amine groups were attached. For these groups, the occupancy factors are 0.664 (19)/ 0.336 (19) and 0.665 (11)/0.335 (11). All atoms in the diethyl amine groups (N3/C18/C19/C20/C22/C23/C24/C25 and N4/ C32/C33/C34/C35) were subject to displacement and positional restraints using SIMU and SAME instructions. For the SIMU command the esd's used were 0.005 while for the SAME command the esd's used were 0.003.

Acknowledgements

SKG remembers the long-time association and research collaboration of the late Professor Jerry P. Jasinski, Keene State College, New Hampshire. RB and MAM thank JUG and DST for the award of a Post-doctoral Fellowship and an INSPIRE Fellowship, respectively.

Funding information

Funding for this research was provided by: Jiwaji University, Gwalior, India (grant No. F/Dev/2019/612).

Figure 7

Scheme showing the reaction sequence for the synthesis of the title compound.

1	
Crystal data	
Chemical formula	$C_{70}H_{70}N_8O_4Se_2$
M _r	1245.26
Crystal system, space group	Tetragonal, P4b2
Temperature (K)	100
a, c (Å)	21.507 (4), 13.434 (4)
$V(Å^3)$	6214 (3)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.25
Crystal size (mm)	$0.27 \times 0.23 \times 0.08$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.566, 0.746
No. of measured, independent and	7696, 7696, 6090
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.119
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.666
Pafinament	
$P[F^2 > 2\sigma(F^2)] = wP(F^2)$ S	0.070 0.142 1.08
R[T > 20(T)], WR(T), S	7606
No. of renemators	540
No. of parameters	540
NO. OI restraints	090
A a $(a \stackrel{\text{A}}{a}^{-3})$	n-atom parameters constrained
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (c A)$	Defined as an invession twin
Absolute structure renewator	Remieu as an inversion twin $0.05(2)$
Absolute structure parameter	0.03 (2)

Computer programs: *APEX2* and *SAINT* (Bruker 2005), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2018/3* (Sheldrick, 2015*b*), *SHELXTL* (Sheldrick, 2008) and *publCIF* (Westrip (2010).

References

- Aho, J. E., Pihko, P. M. & Rissa, T. K. (2005). *Chem. Rev.* **105**, 4406–4440.
- Alberto, E. E., Soares, L. C., Sudati, J. H., Borges, A. C. A., Rocha, J. B. T. & Braga, A. L. (2009). *Eur. J. Org. Chem.* **2009**, 4211–4214.
- Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dickson, P. M., McGowan, M. A. D., Yearwood, B., Heeg, M. J. & Oliver, J. P. (1999). J. Organomet. Chem. 588, 42–50.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2019). GAUSSIAN16, Revision C.01, Gaussian, Inc., Wallingford CT, USA.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

Gupta, S. K. & Parihar, J. (1995). J. Coord. Chem. 35, 307-311.

- Gupta, S. K. & Parihar, J. (1998). Transition Met. Chem. 23, 117-120.
- Gupta, S. K., Parihar, J. & Tripathi, S. K. (1998). *Transition Met. Chem.* 23, 253–256.
- James, D. M., Kunze, H. B. & Faulkner, D. J. (1991). J. Nat. Prod. 54, 1137–1140.
- Khandelwal, B. L. & Gupta, S. K. (1989). Inorg. Chim. Acta, 166, 199– 204.
- Kotha, S., Deb, A. C., Lahiri, K. & Manivannan, E. (2009). *Synthesis*, pp. 165–193.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Kulcsar, M., Beleaga, A., Silvestru, C., Nicolescu, A., Deleanu, C., Todasca, C. & Silvestru, A. (2007). *Dalton Trans.* pp. 2187–2196.
- Leite, A., Silva, A. M. G., Cunha-Silva, L., de Castro, B., Gameiro, P. & Rangel, M. (2013). *Dalton Trans.* 42, 6110–6118.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Mugesh, G., du Mont, W. W. & Sies, H. (2001). Chem. Rev. 101, 2125–2179.
- Nogueira, C. W., Zeni, G. & Rocha, J. B. T. (2004). Chem. Rev. 104, 6255–6286.

- Panda, S., Dutta, P. K., Ramakrishna, G., Reddy, C. M. & Zade, S. S. (2012). J. Organomet. Chem. 717, 45–51.
- Panda, S., Zade, S. S., Singh, H. B. & Wolmershäuser, G. (2005). J. Organomet. Chem. 690, 3142–3148.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Polik, W. F. & Schmidt, J. R. (2021). WIREs Comput. Mol. Sci. e1554. https://doi.org/10.1002/wcms.1554
- Press, D. J., Mercier, E. A., Kuzma, D. & Back, T. G. (2008). J. Org. Chem. 73, 4252–4255.
- Saravanan, R., Singh, H. B. & Butcher, R. J. (2021). Acta Cryst. C77, 271–280.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shi, W., Sun, S., Li, X. & Ma, H. (2010). Inorg. Chem. 49, 1206-1210.
- Singh, V. P., Singh, H. B. & Butcher, R. J. (2011). Chem. Commun. 47, 7221–7223.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2022). E78, 1-7 [https://doi.org/10.1107/S2056989021013189]

Crystal structure, Hirshfeld surface analysis and DFT study of 2,2''-({[(1*E*,1'*E*)-(diselanediyl)bis(2,1-phenylene)]bis(methaneylylidene)}bis(aza-neylylidene))bis[3',6'-bis(diethylamino)-4a',9a'-dihydrospiro[isoindoline-1,9'-xanthen]-3-one]

Manzoor Ahmad Malla, Ravi Bansal, Ray J. Butcher and Sushil K. Gupta

Computing details

Data collection: *APEX2* (Bruker 2005); cell refinement: *SAINT* (Bruker 2005); data reduction: *SAINT* (Bruker 2005); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008), *publCIF* (Westrip (2010).

2,2''-({[(1*E*,1'*E*)-(Diselanediyl)bis(2,1-phenylene)]bis(methaneylylidene)}bis(azaneylylidene))bis[3',6'bis(diethylamino)-4a',9a'-dihydrospiro[isoindoline-1,9'-xanthen]-3-one]

Crystal data

 $C_{70}H_{70}N_8O_4Se_2$ $M_r = 1245.26$ Tetragonal, P4b2 a = 21.507 (4) Å c = 13.434 (4) Å V = 6214 (3) Å³ Z = 4F(000) = 2584

Data collection

Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.566$, $T_{\max} = 0.746$ 7696 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.070$ $wR(F^2) = 0.142$ S = 1.087696 reflections 540 parameters $D_x = 1.331 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7629 reflections $\theta = 2.4-30.1^{\circ}$ $\mu = 1.25 \text{ mm}^{-1}$ T = 100 KPlate, pale yellow $0.27 \times 0.23 \times 0.08 \text{ mm}$

7696 independent reflections 6090 reflections with $I > 2\sigma(I)$ $R_{int} = 0.119$ $\theta_{max} = 28.3^\circ, \ \theta_{min} = 2.0^\circ$ $h = -24 \rightarrow 25$ $k = -25 \rightarrow 25$ $l = -16 \rightarrow 16$

696 restraints
Primary atom site location: dual
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.040P)^2 + 13.6633P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.52 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.96 \ {\rm e} \ {\rm \AA}^{-3}$ Absolute structure: Refined as an inversion twin Absolute structure parameter: 0.05 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Se1	0.70568 (3)	0.18183 (3)	0.58326 (6)	0.01973 (16)	
01	0.7532 (2)	0.1249 (2)	0.9772 (4)	0.0257 (12)	
O2	0.8536 (3)	0.2775 (2)	0.6006 (4)	0.0307 (13)	
N1	0.7287 (3)	0.1778 (3)	0.7778 (5)	0.0218 (13)	
N2	0.7820 (3)	0.1786 (3)	0.8351 (5)	0.0215 (13)	
C1	0.6247 (3)	0.1743 (3)	0.6457 (6)	0.0209 (15)	
C2	0.5709 (3)	0.1704 (3)	0.5920 (7)	0.0269 (17)	
H2A	0.573364	0.172617	0.521440	0.032*	
C3	0.5136 (4)	0.1636 (4)	0.6348 (6)	0.0305 (19)	
H3A	0.477457	0.160360	0.594590	0.037*	
C4	0.5089 (3)	0.1615 (4)	0.7383 (7)	0.0303 (19)	
H4A	0.469386	0.156737	0.768954	0.036*	
C5	0.5619 (3)	0.1662 (4)	0.7962 (6)	0.0253 (17)	
H5A	0.558725	0.165049	0.866677	0.030*	
C6	0.6207 (3)	0.1729 (3)	0.7508 (6)	0.0215 (16)	
C7	0.6747 (3)	0.1760 (3)	0.8178 (6)	0.0222 (16)	
H7A	0.669701	0.176542	0.888011	0.027*	
C8	0.7925 (3)	0.1505 (3)	0.9257 (6)	0.0232 (15)	
C9	0.8604 (3)	0.1565 (3)	0.9431 (5)	0.0228 (17)	
C10	0.8957 (4)	0.1375 (4)	1.0242 (6)	0.0306 (19)	
H10A	0.877362	0.115811	1.078296	0.037*	
C11	0.9584 (4)	0.1513 (4)	1.0233 (7)	0.037 (2)	
H11A	0.983691	0.137835	1.077174	0.044*	
C12	0.9853 (4)	0.1842 (4)	0.9463 (6)	0.037 (2)	
H12A	1.028150	0.194827	0.949810	0.045*	
C13	0.9506 (4)	0.2021 (4)	0.8633 (7)	0.0317 (19)	
H13A	0.969281	0.223137	0.808773	0.038*	
C14	0.8875 (3)	0.1879 (3)	0.8636 (6)	0.0251 (17)	
C15	0.8387 (3)	0.2057 (3)	0.7855 (6)	0.0221 (16)	
C16	0.8320 (7)	0.2769 (4)	0.7760 (12)	0.0246 (13)	0.664 (19)
C17	0.8171 (5)	0.3120 (4)	0.8595 (9)	0.0261 (14)	0.664 (19)
H17A	0.810023	0.292093	0.921568	0.031*	0.664 (19)
C18	0.8125 (5)	0.3763 (4)	0.8522 (7)	0.0276 (14)	0.664 (19)
H18A	0.802296	0.400347	0.909233	0.033*	0.664 (19)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C19	0.8228 (6)	0.4055 (4)	0.7613 (7)	0.0267 (12)	0.664 (19)
C20	0.8377 (8)	0.3704 (5)	0.6778 (8)	0.0253 (12)	0.664 (19)
H20A	0.844811	0.390334	0.615758	0.030*	0.664 (19)
C21	0.8423 (9)	0.3061 (5)	0.6852 (10)	0.0245 (12)	0.664 (19)
N3	0.8171 (5)	0.4714 (4)	0.7532 (8)	0.0295 (13)	0.664 (19)
C22	0.8049 (7)	0.5092 (5)	0.8399 (10)	0.0306 (16)	0.664 (19)
H22A	0.772449	0.488677	0.880586	0.037*	0.664 (19)
H22B	0.788165	0.549841	0.817849	0.037*	0.664 (19)
C23	0.8617 (8)	0.5205 (6)	0.9047 (11)	0.037 (3)	0.664 (19)
H23A	0.852407	0.553040	0.953573	0.056*	0.664 (19)
H23B	0.896586	0.533822	0.862790	0.056*	0.664 (19)
H23C	0.872832	0.482036	0.939413	0.056*	0.664 (19)
C24	0.8381(7)	0 5024 (6)	0.6620 (9)	0.0298(15)	0.664 (19)
H24A	0.822744	0.545818	0.662541	0.036*	0.664 (19)
H24B	0.819286	0.481215	0.604023	0.036*	0.664(19)
C25	0.9087(8)	0.5033(12)	0.6489 (16)	0.031(3)	0.664(19)
H25A	0.919134	0.524192	0.586220	0.047*	0.664(19)
H25R	0.924392	0.460560	0.647392	0.047*	0.664(19)
H25C	0.927740	0.525770	0.704517	0.047*	0.664(19)
C16A	0.927740 0.8351 (14)	0.323770 0.2773(7)	0.780(2)	0.047 0.0248 (14)	0.336(19)
	0.8331(14) 0.8317(11)	0.2775(7)	0.760(2) 0.8683(10)	0.0248(14)	0.336(19)
U17D	0.830645	0.3109 (8)	0.8085(19)	0.0201 (15)	0.336(19)
	0.830043	0.289780 0.3755(8)	0.930371 0.8657 (14)	0.031°	0.336(19)
U10A	0.8300 (11)	0.3735(8) 0.308511	0.0057 (14)	0.0200 (15)	0.330(19)
	0.827001	0.398311	0.923919	0.032°	0.330(19)
CI9A	0.8310(11)	0.4064(7)	0.7749(13)	0.0270(12)	0.330(19)
C20A	0.8350 (10)	0.3728 (9)	0.6867 (14)	0.0254 (15)	0.336(19)
H20B	0.8360/8	0.393930	0.624620	0.030^{*}	0.336(19)
C2IA	0.8367(18)	0.3082 (9)	0.689 (2)	0.0246 (13)	0.336(19)
N3A	0.8297 (10)	0.4726 (8)	0.7720 (13)	0.0291 (13)	0.336 (19)
C22A	0.8308 (12)	0.5089 (9)	0.8626 (17)	0.0309 (17)	0.336 (19)
H22C	0.800367	0.491063	0.910067	0.037*	0.336 (19)
H22D	0.817367	0.551850	0.847216	0.037*	0.336 (19)
C23A	0.8943 (14)	0.5112 (12)	0.9123 (19)	0.038 (3)	0.336 (19)
H23D	0.889360	0.523101	0.982309	0.057*	0.336 (19)
H23E	0.920456	0.541792	0.878306	0.057*	0.336 (19)
H23F	0.913845	0.470107	0.908442	0.057*	0.336 (19)
C24A	0.8356 (12)	0.5051 (11)	0.6767 (15)	0.0298 (16)	0.336 (19)
H24C	0.819079	0.547850	0.684418	0.036*	0.336 (19)
H24D	0.809503	0.483585	0.626721	0.036*	0.336 (19)
C25A	0.9021 (15)	0.509 (3)	0.637 (3)	0.031 (3)	0.336 (19)
H25D	0.901289	0.520804	0.566831	0.047*	0.336 (19)
H25E	0.922335	0.468488	0.644552	0.047*	0.336 (19)
H25F	0.925212	0.540334	0.675210	0.047*	0.336 (19)
C26	0.8598 (9)	0.2150 (6)	0.5998 (10)	0.0279 (16)	0.665 (11)
C27	0.8741 (5)	0.1898 (4)	0.5073 (8)	0.0299 (16)	0.665 (11)
H27A	0.880123	0.216328	0.451607	0.036*	0.665 (11)
C28	0.8797 (5)	0.1258 (4)	0.4964 (6)	0.0323 (14)	0.665 (11)
C29	0.8709 (5)	0.0870 (5)	0.5780 (7)	0.0310 (16)	0.665 (11)

H29A	0.874735	0.043210	0.570492	0.037*	0.665 (11)
C30	0.8566 (9)	0.1122 (8)	0.6704 (7)	0.0298 (15)	0.665 (11)
H30A	0.850618	0.085668	0.726146	0.036*	0.665 (11)
C31	0.8510 (12)	0.1762 (8)	0.6813 (8)	0.0272 (14)	0.665 (11)
N4	0.8992 (5)	0.1018 (4)	0.4027 (9)	0.0376 (14)	0.665 (11)
C32	0.9076 (6)	0.1459 (6)	0.3131 (10)	0.0414 (18)	0.665 (11)
H32A	0.931083	0.183592	0.332541	0.050*	0.665 (11)
H32B	0.929969	0.124816	0.258215	0.050*	0.665 (11)
C33	0.8448 (7)	0.1617 (8)	0.2835 (13)	0.049 (3)	0.665 (11)
H33A	0.846143	0.191657	0.228587	0.074*	0.665 (11)
H33B	0.822739	0.180067	0.340131	0.074*	0.665 (11)
H33C	0.823053	0.124025	0.261767	0.074*	0.665 (11)
C34	0.8932 (6)	0.0346 (5)	0.3811 (11)	0.0411 (18)	0.665 (11)
H34A	0.915231	0.009836	0.432176	0.049*	0.665 (11)
H34B	0.911327	0.024895	0.315153	0.049*	0.665 (11)
C35	0.8198 (7)	0.0183 (7)	0.3820 (13)	0.054 (3)	0.665 (11)
H35A	0.814274	-0.026890	0.382246	0.081*	0.665 (11)
H35B	0.800074	0.035921	0.322558	0.081*	0.665 (11)
H35C	0.800606	0.036133	0.441678	0.081*	0.665 (11)
C26A	0.8526 (18)	0.2148 (12)	0.5986 (19)	0.0283 (16)	0.335 (11)
C27A	0.8569 (11)	0.1885 (8)	0.5044 (16)	0.0305 (16)	0.335 (11)
H27B	0.859045	0.214396	0.447248	0.037*	0.335 (11)
C28A	0.8579 (10)	0.1242 (8)	0.4938 (12)	0.0332 (15)	0.335 (11)
C29A	0.8547 (11)	0.0862 (11)	0.5774 (13)	0.0312 (16)	0.335 (11)
H29B	0.855455	0.042316	0.570102	0.037*	0.335 (11)
C30A	0.8504 (19)	0.1126 (15)	0.6716 (13)	0.0296 (16)	0.335 (11)
H30B	0.848250	0.086658	0.728742	0.036*	0.335 (11)
C31A	0.849 (2)	0.1769 (16)	0.6822 (15)	0.0278 (15)	0.335 (11)
N4A	0.8663 (9)	0.0987 (8)	0.3969 (14)	0.0386 (15)	0.335 (11)
C32A	0.8874 (11)	0.1405 (10)	0.3100 (16)	0.0406 (19)	0.335 (11)
H32C	0.907631	0.178796	0.335110	0.049*	0.335 (11)
H32D	0.916908	0.118233	0.266124	0.049*	0.335 (11)
C33A	0.8305 (13)	0.1553 (15)	0.257 (2)	0.045 (3)	0.335 (11)
H33D	0.837508	0.191426	0.214184	0.067*	0.335 (11)
H33E	0.797618	0.164806	0.305268	0.067*	0.335 (11)
H33F	0.818059	0.119616	0.216466	0.067*	0.335 (11)
C34A	0.8740 (11)	0.0307 (8)	0.3843 (19)	0.0410 (19)	0.335 (11)
H34C	0.840464	0.013913	0.341508	0.049*	0.335 (11)
H34D	0.871955	0.009659	0.449758	0.049*	0.335 (11)
C35A	0.9409 (11)	0.0191 (12)	0.333 (2)	0.051 (4)	0.335 (11)
H35D	0.937979	-0.015795	0.286465	0.076*	0.335 (11)
H35E	0.971630	0.009329	0.384804	0.076*	0.335 (11)
H35F	0.953808	0.056594	0.297335	0.076*	0.335 (11)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
Se1	0.0141 (3)	0.0190 (3)	0.0260 (3)	-0.0019 (3)	-0.0068 (3)	0.0070 (3)

01	0.023 (3)	0.022 (3)	0.031 (3)	-0.001(2)	-0.005(2)	0.010(2)
O2	0.046 (3)	0.019 (3)	0.027 (3)	-0.009(2)	-0.002(3)	0.006 (2)
N1	0.017 (3)	0.022 (3)	0.027 (3)	0.000 (2)	-0.008(2)	0.007 (3)
N2	0.018 (3)	0.020 (3)	0.027 (3)	-0.003 (2)	-0.007 (2)	0.012 (3)
C1	0.017 (3)	0.013 (3)	0.033 (4)	0.003 (3)	-0.006 (3)	0.002 (3)
C2	0.017 (3)	0.037 (4)	0.027 (4)	0.004 (3)	-0.003(3)	-0.003(4)
C3	0.019 (4)	0.037 (5)	0.036 (5)	0.005 (3)	-0.008(3)	-0.006(4)
C4	0.012 (3)	0.036 (5)	0.043 (5)	0.000 (3)	0.001 (4)	-0.004(4)
C5	0.016 (4)	0.029 (4)	0.031 (4)	0.005 (3)	-0.002(3)	-0.002(3)
C6	0.019 (3)	0.013 (3)	0.032 (4)	0.000 (3)	-0.002(3)	0.002 (3)
C7	0.022(4)	0.018(3)	0.026(4)	0.000(3)	-0.003(3)	0.004(3)
C8	0.026(3)	0.012(3)	0.032(4)	-0.002(2)	-0.009(4)	0.005(3)
C9	0.027(4)	0.012(3)	0.022(4)	-0.001(3)	-0.011(3)	0.002(3)
C10	0.027(1)	0.019(3) 0.028(4)	0.022(1) 0.027(4)	-0.003(3)	-0.016(4)	0.005(3)
C11	0.037(5)	0.020(1)	0.027(1)	0.003(3)	-0.018(4)	0.005(4)
C12	0.033(3)	0.046(5)	0.030(5)	-0.004(4)	-0.014(4)	0.003(4)
C13	0.025(4)	0.010(3) 0.024(4)	0.030(5)	-0.003(3)	-0.012(4)	0.003(1)
C14	0.023(4)	0.024(4)	0.040(5)	-0.003(3)	-0.009(3)	0.001(4)
C14	0.021(4)	0.018(4)	0.030(3)	-0.003(3)	-0.010(3)	0.003(3)
C16	0.013(3)	0.014(3)	0.037(4)	-0.002(3)	-0.004(2)	0.011(3)
C10	0.022(3)	0.020(2)	0.032(3)	-0.002(2)	-0.004(2)	0.008(2)
C17	0.023(3)	0.022(2)	0.032(3)	0.001(2)	-0.003(3)	0.008(2)
C10	0.028(3)	0.023(2)	0.033(3)	0.000(2)	-0.002(3)	0.000(2)
C19 C20	0.027(2)	0.021(2)	0.032(3)	-0.002(2)	-0.001(2)	0.007(2)
C20	0.023(3)	0.020(2)	0.031(3)	-0.002(2)	-0.003(2)	0.009(2)
U21 N2	0.022(3)	0.020(2)	0.031(3)	-0.002(2)	-0.004(2)	0.008(2)
N3 C22	0.033(3)	0.021(2)	0.034(3)	0.000(2)	0.001(2)	0.005(2)
C22	0.034(3)	0.023(3)	0.035(3)	0.000(3)	-0.006(5)	0.003(3)
C23	0.045(3)	0.033(4)	0.030(3)	0.004(4)	-0.000(3)	0.003(4)
C24 C25	0.035(3)	0.020(3)	0.035(3)	0.000(2)	-0.001(3)	0.007(3)
C_{23}	0.038(3)	0.019(3)	0.037(3)	-0.003(4)	-0.003(4)	0.003(4)
CIOA	0.022(3)	0.020(2)	0.032(3)	-0.001(2)	-0.004(2)	0.008(2)
CI/A	0.024(3)	0.022 (2)	0.032(3)	-0.001(3)	-0.003(3)	0.007(2)
CI8A	0.026 (3)	0.022 (2)	0.032(3)	0.000(3)	-0.003(3)	0.007(2)
CI9A	0.028 (3)	0.021 (2)	0.032 (3)	-0.001(2)	-0.001(2)	0.007(2)
C20A	0.025 (3)	0.020 (2)	0.031 (3)	-0.002(2)	-0.003(2)	0.008 (2)
C21A	0.023 (3)	0.020 (2)	0.031 (3)	-0.001(2)	-0.004(2)	0.008 (2)
N3A	0.033 (3)	0.021 (2)	0.034 (3)	0.000 (2)	-0.001 (2)	0.006 (2)
C22A	0.035 (3)	0.023 (3)	0.034 (3)	0.000 (3)	-0.001 (3)	0.005 (3)
C23A	0.043 (7)	0.032 (6)	0.039 (6)	-0.006 (6)	-0.004 (7)	0.000 (6)
C24A	0.035 (3)	0.020 (3)	0.035 (3)	0.000 (3)	-0.001(3)	0.006 (3)
C25A	0.039 (5)	0.019 (5)	0.036 (5)	-0.001(5)	-0.005(5)	0.006 (5)
C26	0.026 (4)	0.021 (2)	0.037 (3)	-0.001(3)	-0.009(3)	0.004 (2)
C27	0.027 (4)	0.024 (2)	0.039 (3)	-0.002(3)	-0.010 (3)	0.004 (2)
C28	0.029 (3)	0.026 (2)	0.042 (2)	-0.001 (3)	-0.009(3)	0.002 (2)
C29	0.028 (4)	0.025 (2)	0.040 (3)	-0.001 (3)	-0.008(3)	0.004 (2)
C30	0.027 (4)	0.024 (2)	0.039 (3)	-0.001 (3)	-0.008(3)	0.005 (2)
C31	0.024 (3)	0.021 (2)	0.037 (3)	-0.002 (2)	-0.009 (2)	0.005 (2)
N4	0.033 (3)	0.033 (2)	0.047 (3)	-0.001 (3)	-0.007(3)	-0.003 (2)

C32	0.036 (4)	0.038 (3)	0.050 (3)	0.001 (3)	-0.008 (3)	-0.007 (3)	
C33	0.041 (6)	0.051 (5)	0.056 (5)	-0.004 (5)	-0.005 (5)	-0.015 (5)	
C34	0.038 (4)	0.036 (3)	0.050 (3)	-0.001 (3)	-0.008 (3)	-0.002 (3)	
C35	0.050 (6)	0.050 (5)	0.063 (6)	0.003 (5)	-0.009 (5)	-0.003 (5)	
C26A	0.026 (4)	0.022 (3)	0.038 (3)	-0.002 (3)	-0.009 (3)	0.004 (2)	
C27A	0.028 (4)	0.024 (3)	0.039 (3)	-0.002 (3)	-0.009 (3)	0.003 (2)	
C28A	0.030 (4)	0.027 (2)	0.042 (2)	-0.001 (3)	-0.009 (3)	0.002 (2)	
C29A	0.028 (4)	0.025 (2)	0.040 (3)	-0.001 (3)	-0.008 (3)	0.004 (2)	
C30A	0.026 (4)	0.024 (2)	0.039 (3)	-0.001 (3)	-0.008 (3)	0.005 (2)	
C31A	0.025 (4)	0.022 (2)	0.037 (3)	-0.002 (3)	-0.009 (3)	0.005 (2)	
N4A	0.035 (4)	0.034 (2)	0.047 (3)	-0.001 (3)	-0.008 (3)	-0.003 (2)	
C32A	0.036 (4)	0.037 (3)	0.049 (3)	-0.001 (3)	-0.008 (4)	-0.006 (3)	
C33A	0.038 (6)	0.045 (5)	0.051 (6)	0.000 (5)	-0.007 (6)	-0.010 (5)	
C34A	0.037 (4)	0.035 (3)	0.050 (3)	-0.001 (3)	-0.008 (4)	-0.003 (3)	
C35A	0.049 (7)	0.040 (6)	0.063 (7)	-0.002 (6)	-0.006 (6)	-0.002 (6)	

Geometric parameters (Å, °)

Sel—Cl	1.939 (7)	C18A—H18B	0.9500
Se1—Se1 ⁱ	2.3517 (17)	C19A—C20A	1.3900
O1—C8	1.222 (9)	C19A—N3A	1.425 (8)
O2—C21	1.315 (12)	C20A—C21A	1.3900
O2—C26A	1.35 (3)	C20A—H20B	0.9500
O2—C26	1.349 (13)	N3A—C22A	1.446 (13)
O2—C21A	1.41 (2)	N3A—C24A	1.465 (12)
N1—C7	1.280 (9)	C22A—C23A	1.521 (17)
N1—N2	1.380 (8)	C22A—H22C	0.9900
N2—C8	1.378 (10)	C22A—H22D	0.9900
N2—C15	1.507 (9)	C23A—H23D	0.9800
C1—C2	1.367 (10)	С23А—Н23Е	0.9800
C1—C6	1.415 (11)	C23A—H23F	0.9800
C2—C3	1.368 (11)	C24A—C25A	1.527 (12)
C2—H2A	0.9500	C24A—H24C	0.9900
C3—C4	1.394 (12)	C24A—H24D	0.9900
С3—НЗА	0.9500	C25A—H25D	0.9800
C4—C5	1.384 (11)	С25А—Н25Е	0.9800
C4—H4A	0.9500	C25A—H25F	0.9800
C5—C6	1.411 (10)	C26—C27	1.3900
С5—Н5А	0.9500	C26—C31	1.3900
C6—C7	1.471 (10)	C27—C28	1.3900
С7—Н7А	0.9500	С27—Н27А	0.9500
C8—C9	1.484 (10)	C28—C29	1.3900
C9—C10	1.389 (10)	C28—N4	1.423 (10)
C9—C14	1.392 (11)	C29—C30	1.3900
C10—C11	1.381 (12)	С29—Н29А	0.9500
C10—H10A	0.9500	C30—C31	1.3900
C11—C12	1.381 (12)	С30—Н30А	0.9500
C11—H11A	0.9500	N4—C34	1.481 (13)

C12—C13	1.397 (11)	N4—C32	1.543 (14)
C12—H12A	0.9500	C32—C33	1.448 (16)
C13—C14	1.391 (11)	C32—H32A	0.9900
C13—H13A	0.9500	С32—Н32В	0.9900
C14—C15	1.534 (10)	С33—Н33А	0.9800
C15—C31A	1.537 (18)	С33—Н33В	0.9800
C15—C16A	1.542 (17)	С33—Н33С	0.9800
C15—C16	1.543 (10)	C34—C35	1.616 (19)
C15—C31	1.559 (11)	C34—H34A	0.9900
C16—C17	1.3900	C34—H34B	0.9900
C16—C21	1.3900	С35—Н35А	0.9800
C17—C18	1.3900	С35—Н35В	0.9800
C17—H17A	0.9500	С35—Н35С	0.9800
C18—C19	1.3900	C26A—C27A	1.3900
C18—H18A	0.9500	C26A—C31A	1.3900
C19—C20	1.3900	C27A—C28A	1.3900
C19—N3	1.426 (7)	C27A—H27B	0.9500
C20—C21	1.3900	C28A—C29A	1.3900
C20—H20A	0.9500	C28A—N4A	1.424 (11)
N3—C22	1.446 (13)	C29A—C30A	1.3900
N3—C24	1.466 (12)	C29A—H29B	0.9500
C22—C23	1.520 (17)	C30A—C31A	1.3900
C22—H22A	0.9900	C30A—H30B	0.9500
C22—H22B	0.9900	N4A—C34A	1.481 (13)
С23—Н23А	0.9800	N4A—C32A	1.543 (15)
С23—Н23В	0.9800	C32A—C33A	1.448 (17)
C23—H23C	0.9800	C32A—H32C	0.9900
C24—C25	1.528 (12)	C32A—H32D	0.9900
C24—H24A	0.9900	C33A—H33D	0.9800
C24—H24B	0.9900	С33А—Н33Е	0.9800
C25—H25A	0.9800	C33A—H33F	0.9800
C25—H25B	0.9800	C34A—C35A	1.615 (19)
C25—H25C	0.9800	C34A—H34C	0.9900
C16A—C17A	1.3900	C34A—H34D	0.9900
C16A—C21A	1.3900	C35A—H35D	0.9800
C17A—C18A	1.3900	С35А—Н35Е	0.9800
C17A—H17B	0.9500	C35A—H35F	0.9800
C18A—C19A	1.3900		
C1—Se1—Se1 ⁱ	103.5 (2)	C20A—C21A—C16A	120.0
C21—O2—C26	119.4 (9)	C20A—C21A—O2	117.0 (15)
C26A—O2—C21A	118.8 (16)	C16A—C21A—O2	121.6 (15)
C7—N1—N2	121.3 (6)	C19A—N3A—C22A	121.1 (8)
C8—N2—N1	128.5 (6)	C19A—N3A—C24A	119.9 (8)
C8—N2—C15	115.3 (5)	C22A—N3A—C24A	118.5 (8)
N1—N2—C15	115.5 (5)	N3A—C22A—C23A	113.7 (11)
C2—C1—C6	118.3 (7)	N3A—C22A—H22C	108.8
C2—C1—Se1	122.5 (6)	C23A—C22A—H22C	108.8

C6-C1-Se1	119.2 (5)	N3A—C22A—H22D	108.8
C1—C2—C3	123.2 (8)	C23A—C22A—H22D	108.8
C1—C2—H2A	118.4	H22C—C22A—H22D	107.7
C3—C2—H2A	118.4	C22A—C23A—H23D	109.5
C2—C3—C4	119.3 (7)	С22А—С23А—Н23Е	109.5
С2—С3—НЗА	120.4	H23D—C23A—H23E	109.5
С4—С3—Н3А	120.4	C22A—C23A—H23F	109.5
C5—C4—C3	119.8 (7)	H23D—C23A—H23F	109.5
C5—C4—H4A	120.1	H23E—C23A—H23F	109.5
C3—C4—H4A	120.1	N3A—C24A—C25A	114.2 (9)
C4-C5-C6	120.2 (8)	N3A—C24A—H24C	108.7
C4—C5—H5A	119.9	C25A—C24A—H24C	108.7
C6—C5—H5A	119.9	N3A—C24A—H24D	108.7
C5-C6-C1	119.2 (7)	C_{25A} C_{24A} H_{24D}	108.7
C5—C6—C7	116.6 (7)	H24C—C24A—H24D	107.6
C1—C6—C7	124.1 (7)	C24A - C25A - H25D	109.5
N1-C7-C6	117.5 (7)	C_{24A} C_{25A} H_{25E}	109.5
N1-C7-H7A	121.3	H_{25D} C_{25A} H_{25E}	109.5
C6-C7-H7A	121.3	C24A - C25A - H25E	109.5
01-C8-N2	125.8 (6)	H_{25D} C_{25A} H_{25F}	109.5
01 - C8 - C9	129.0(7)	H25E = C25A = H25E	109.5
N2-C8-C9	105 2 (6)	$02-C^{2}6-C^{2}7$	114 7 (9)
C10-C9-C14	121.0(7)	$02 - C_{26} - C_{31}$	125.3 (9)
C10-C9-C8	129.5 (7)	C_{27} C_{26} C_{31}	120.0
C14 - C9 - C8	109 5 (6)	$C_{26} = C_{27} = C_{28}$	120.0
C11—C10—C9	117.7 (8)	С26—С27—Н27А	120.0
C11—C10—H10A	121.1	C28—C27—H27A	120.0
C9-C10-H10A	121.1	$C_{29} - C_{28} - C_{27}$	120.0
C12—C11—C10	121.7 (8)	C29—C28—N4	121.3 (5)
C12—C11—H11A	119.2	C27—C28—N4	118.5 (5)
C10—C11—H11A	119.2	C28—C29—C30	120.0
$C_{11} - C_{12} - C_{13}$	121.0 (8)	C28—C29—H29A	120.0
C11—C12—H12A	119.5	C30—C29—H29A	120.0
C13—C12—H12A	119.5	C_{29} C_{30} C_{31}	120.0
C14-C13-C12	117.3 (8)	C29—C30—H30A	120.0
C14—C13—H13A	121.3	C31—C30—H30A	120.0
C12—C13—H13A	121.3	C_{30} C_{31} C_{26}	120.0
C_{13} C_{14} C_{9}	121.2 (7)	C_{30} C_{31} C_{15}	120.8 (10)
C13—C14—C15	127.6 (7)	$C_{26} = C_{31} = C_{15}$	119.1 (10)
C9-C14-C15	111 1 (6)	$C_{28} = N_{4} = C_{34}$	120 1 (8)
N2-C15-C14	98.9 (6)	$C_{28} = N_{4} = C_{32}$	120.1(0) 120.2(7)
N2-C15-C31A	111 4 (18)	C_{34} N4 C_{32}	1172(9)
C_{14} C_{15} C_{31A}	114 5 (18)	C_{33} C_{32} N4	1044(10)
N_2 —C15—C16A	111.5(12)	C_{33} C_{32} H_{32A}	110.9
C14-C15-C16A	108 3 (13)	N4—C32—H32A	110.9
C_{31A} $-C_{15}$ $-C_{16A}$	111.6 (18)	C33—C32—H32B	110.9
N_{2} C15 C16	110 2 (7)	N4—C32—H32B	110.9
C_{14} C_{15} C_{16}	111.6 (8)	$H_{32}A = C_{32} = H_{32}B$	108.9
	111.0 (0)	11 <i>321</i> 1 —0 <i>32</i> —11 <i>32</i> D	100.9

N2 C15 C21	112 2 (10)	C22 C22 U22A	100 5
$N_2 = C_{13} = C_{31}$	112.2(10) 112.2(10)	С32—С33—П35А	109.5
C14 - C15 - C31	113.3 (10)	С32—С33—Н33В	109.5
C16 - C15 - C31	110.2 (10)	H33A—C33—H33B	109.5
C17 - C16 - C21	120.0	С32—С33—Н33С	109.5
C17—C16—C15	119.6 (9)	Н33А—С33—Н33С	109.5
C21—C16—C15	120.4 (9)	H33B—C33—H33C	109.5
C16—C17—C18	120.0	N4—C34—C35	107.2 (9)
C16—C17—H17A	120.0	N4—C34—H34A	110.3
C18—C17—H17A	120.0	C35—C34—H34A	110.3
C19—C18—C17	120.0	N4—C34—H34B	110.3
C19—C18—H18A	120.0	C35—C34—H34B	110.3
C17—C18—H18A	120.0	H34A—C34—H34B	108.5
C18—C19—C20	120.0	С34—С35—Н35А	109.5
C18—C19—N3	120.2 (5)	С34—С35—Н35В	109.5
C20-C19-N3	119.8 (5)	H35A—C35—H35B	109.5
C21—C20—C19	120.0	С34—С35—Н35С	109.5
С21—С20—Н20А	120.0	H35A—C35—H35C	109.5
C19—C20—H20A	120.0	H35B—C35—H35C	109.5
02-C21-C20	114.7 (8)	Ω^2 — C^26A — C^27A	115.1 (16)
02-C21-C16	125 2 (8)	Ω^2 — C^26A — $C^{31}A$	124 9 (16)
C_{20} C_{21} C_{16}	120.0	C27A - C26A - C31A	120.0
C19 N3 C22	120.0 120.9(7)	C_{26A} C_{27A} C_{28A}	120.0
C19 - N3 - C24	120.9(7) 119.4(7)	$C_{26A} = C_{27A} = H_{27B}$	120.0
$C_{1}^{2} = N_{3}^{2} = C_{2}^{2}$	119.4(7) 118.2(7)	$C_{20}A = C_{27}A = H_{27}B$	120.0
$N_{2} = C_{2} = C_{2}$	110.2(7) 112.0(10)	$C_{20A} = C_{27A} = H_{27B}$	120.0
N3-C22-C23	113.9 (10)	$C_{29}A = C_{20}A = C_{27}A$	120.0
N_{3} C_{22} T_{22} T_{22} T_{22}	108.8	C29A - C28A - N4A	121.5 (6)
C25—C22—H22A	108.8	$C_2/A = C_{28}A = N_{4}A$	118.0 (0)
N3—C22—H22B	108.8	C_{28A} C_{29A} C_{30A}	120.0
С23—С22—Н22В	108.8	C28A—C29A—H29B	120.0
H22A—C22—H22B	107.7	С30А—С29А—Н29В	120.0
С22—С23—Н23А	109.5	C31A—C30A—C29A	120.0
С22—С23—Н23В	109.5	C31A—C30A—H30B	120.0
H23A—C23—H23B	109.5	C29A—C30A—H30B	120.0
С22—С23—Н23С	109.5	C30A—C31A—C26A	120.0
H23A—C23—H23C	109.5	C30A—C31A—C15	119.8 (19)
H23B—C23—H23C	109.5	C26A—C31A—C15	120.0 (19)
N3—C24—C25	114.1 (8)	C28A—N4A—C34A	119.9 (9)
N3—C24—H24A	108.7	C28A—N4A—C32A	120.3 (9)
C25—C24—H24A	108.7	C34A—N4A—C32A	117.2 (9)
N3—C24—H24B	108.7	C33A—C32A—N4A	104.5 (11)
C25—C24—H24B	108.7	C33A—C32A—H32C	110.9
H24A—C24—H24B	107.6	N4A—C32A—H32C	110.9
С24—С25—Н25А	109.5	C33A—C32A—H32D	110.9
C24—C25—H25B	109.5	N4A—C32A—H32D	110.9
H25A—C25—H25B	109.5	H32C—C32A—H32D	108.9
C_{24} C_{25} H_{25} H_{25} C_{25} H_{25} H	109.5	C32A - C33A - H33D	109.5
$H_{25A} - C_{25} - H_{25C}$	109 5	C_{32A} C_{33A} H33F	109.5
H25B_C25_H25C	109.5	H33D_C33A_H33E	109.5
11250-025-11250	107.5		109.5

C17A—C16A—C21A	120.0	C32A—C33A—H33F	109.5
C17A—C16A—C15	118.9 (16)	H33D—C33A—H33F	109.5
C21A—C16A—C15	121.1 (16)	H33E—C33A—H33F	109.5
C16A—C17A—C18A	120.0	N4A—C34A—C35A	107.5 (10)
C16A—C17A—H17B	120.0	N4A—C34A—H34C	110.2
C18A—C17A—H17B	120.0	C35A—C34A—H34C	110.2
C19A—C18A—C17A	120.0	N4A—C34A—H34D	110.2
C19A—C18A—H18B	120.0	C35A—C34A—H34D	110.2
C17A—C18A—H18B	120.0	H34C—C34A—H34D	108.5
C18A—C19A—C20A	120.0	C34A—C35A—H35D	109.5
C18A - C19A - N3A	120.1 (6)	C34A - C35A - H35E	109.5
C20A - C19A - N3A	119 9 (6)	H35D-C35A-H35E	109.5
C_{21A} C_{20A} C_{19A}	120.0	C34A - C35A - H35F	109.5
$C_{21A} = C_{20A} = H_{20B}$	120.0	H_{35D} C_{35A} H_{35F}	109.5
C19A - C20A - H20B	120.0	H35E = C35A = H35E	109.5
	120.0		109.5
C7—N1—N2—C8	33.2 (11)	C31A—C15—C16A—C17A	-174 (2)
C7—N1—N2—C15	-156.7 (7)	N2-C15-C16A-C21A	-120.5 (13)
C6—C1—C2—C3	-1.9 (11)	C14—C15—C16A—C21A	131.7 (12)
Se1—C1—C2—C3	178.4 (6)	C31A—C15—C16A—C21A	5 (3)
C1—C2—C3—C4	1.2 (12)	C21A—C16A—C17A—C18A	0.0
C2—C3—C4—C5	0.0 (12)	C15—C16A—C17A—C18A	179 (2)
C3—C4—C5—C6	-0.4 (12)	C16A—C17A—C18A—C19A	0.0
C4—C5—C6—C1	-0.3 (11)	C17A—C18A—C19A—C20A	0.0
C4—C5—C6—C7	-178.4 (7)	C17A—C18A—C19A—N3A	180 (2)
C2-C1-C6-C5	1.4 (10)	C18A—C19A—C20A—C21A	0.0
Se1-C1-C6-C5	-178.8 (5)	N3A—C19A—C20A—C21A	-180 (2)
C2-C1-C6-C7	179.4 (6)	C19A—C20A—C21A—C16A	0.0
Se1-C1-C6-C7	-0.9 (9)	C19A—C20A—C21A—O2	-167 (3)
N2—N1—C7—C6	-177.8 (6)	C17A—C16A—C21A—C20A	0.0
C5—C6—C7—N1	175.5 (7)	C15—C16A—C21A—C20A	-178 (2)
C1-C6-C7-N1	-2.5 (10)	C17A—C16A—C21A—O2	166 (3)
N1—N2—C8—O1	-8.7 (12)	C15—C16A—C21A—O2	-13 (2)
C15—N2—C8—O1	-178.8 (7)	C26A—O2—C21A—C20A	-176 (2)
N1—N2—C8—C9	169.5 (7)	C26A—O2—C21A—C16A	17 (3)
C15—N2—C8—C9	-0.6 (8)	C18A—C19A—N3A—C22A	5 (3)
O1-C8-C9-C10	-3.6 (14)	C20A—C19A—N3A—C22A	-175.4 (17)
N2-C8-C9-C10	178.3 (8)	C18A—C19A—N3A—C24A	175.9 (17)
O1—C8—C9—C14	178.3 (8)	C20A—C19A—N3A—C24A	-4 (2)
N2-C8-C9-C14	0.3 (8)	C19A—N3A—C22A—C23A	74 (2)
C14—C9—C10—C11	0.5 (12)	C24A—N3A—C22A—C23A	-97 (2)
C8—C9—C10—C11	-177.3(8)	C19A—N3A—C24A—C25A	-78(3)
C9—C10—C11—C12	1.6 (13)	C22A—N3A—C24A—C25A	94 (3)
C10-C11-C12-C13	-3.4 (15)	C21—O2—C26—C27	-177.5 (12)
C11—C12—C13—C14	2.8 (13)	C21—O2—C26—C31	4.7 (15)
C12—C13—C14—C9	-0.7 (12)	O2—C26—C27—C28	-177.9 (13)
C12—C13—C14—C15	175.9 (8)	C31—C26—C27—C28	0.0
C10-C9-C14-C13	-1.0 (12)	C26—C27—C28—C29	0.0
	× /		

C8—C9—C14—C13	177.2 (7)	C26—C27—C28—N4	-175.1 (11)
C10—C9—C14—C15	-178.1 (7)	C27—C28—C29—C30	0.0
C8—C9—C14—C15	0.1 (9)	N4-C28-C29-C30	175.0 (11)
C8—N2—C15—C14	0.7 (8)	C28—C29—C30—C31	0.0
N1—N2—C15—C14	-170.8 (6)	C29—C30—C31—C26	0.0
C8—N2—C15—C31A	121.4 (18)	C29—C30—C31—C15	-176.6 (18)
N1—N2—C15—C31A	-50.0 (18)	O2—C26—C31—C30	177.7 (14)
C8—N2—C15—C16A	-113.1 (14)	C27—C26—C31—C30	0.0
N1—N2—C15—C16A	75.4 (14)	O2—C26—C31—C15	-5.7(10)
C8—N2—C15—C16	-116.3 (9)	C27—C26—C31—C15	176.6 (17)
N1—N2—C15—C16	72.2 (9)	N2-C15-C31-C30	-54.6 (13)
C8—N2—C15—C31	120.4 (10)	C14—C15—C31—C30	56.3 (13)
N1—N2—C15—C31	-51.0 (11)	C16—C15—C31—C30	-177.8(9)
C13—C14—C15—N2	-177.3(8)	N2—C15—C31—C26	128.8 (8)
C9-C14-C15-N2	-0.5(8)	C14—C15—C31—C26	-120.3(9)
C13—C14—C15—C31A	64 (2)	C16—C15—C31—C26	5.6 (15)
C9-C14-C15-C31A	-118.9 (18)	C29—C28—N4—C34	17.8 (13)
C13—C14—C15—C16A	-61.1 (15)	C27—C28—N4—C34	-167.2(9)
C9-C14-C15-C16A	115.8 (13)	C29—C28—N4—C32	179.1 (9)
C13—C14—C15—C16	-61.4 (12)	C27—C28—N4—C32	-5.9(12)
C9—C14—C15—C16	115.5 (9)	C28—N4—C32—C33	-73.2 (14)
C13—C14—C15—C31	63.7 (13)	C34—N4—C32—C33	88.6 (12)
C9—C14—C15—C31	-119.4 (11)	C28—N4—C34—C35	63.9 (14)
N2-C15-C16-C17	51.8 (11)	C32—N4—C34—C35	-98.0 (12)
C14—C15—C16—C17	-57.0 (11)	C21A—O2—C26A—C27A	167 (2)
C31—C15—C16—C17	176.2 (12)	C21A—O2—C26A—C31A	-15 (3)
N2-C15-C16-C21	-129.8 (7)	O2—C26A—C27A—C28A	178 (3)
C14—C15—C16—C21	121.4 (8)	C31A—C26A—C27A—C28A	0.0
C31—C15—C16—C21	-5.4 (13)	C26A—C27A—C28A—C29A	0.0
C21—C16—C17—C18	0.0	C26A—C27A—C28A—N4A	-176 (2)
C15—C16—C17—C18	178.4 (11)	C27A—C28A—C29A—C30A	0.0
C16—C17—C18—C19	0.0	N4A—C28A—C29A—C30A	176 (2)
C17—C18—C19—C20	0.0	C28A—C29A—C30A—C31A	0.0
C17—C18—C19—N3	178.9 (10)	C29A—C30A—C31A—C26A	0.0
C18—C19—C20—C21	0.0	C29A—C30A—C31A—C15	174 (4)
N3—C19—C20—C21	-178.9 (10)	O2—C26A—C31A—C30A	-178 (3)
C26—O2—C21—C20	179.1 (11)	C27A—C26A—C31A—C30A	0.0
C26—O2—C21—C16	-4.4 (18)	O2—C26A—C31A—C15	7 (2)
C19—C20—C21—O2	176.8 (15)	C27A—C26A—C31A—C15	-174 (4)
C19—C20—C21—C16	0.0	N2-C15-C31A-C30A	-51 (2)
C17—C16—C21—O2	-176.4 (16)	C14—C15—C31A—C30A	60 (2)
C15—C16—C21—O2	5.2 (13)	C16A—C15—C31A—C30A	-176.5 (17)
C17—C16—C21—C20	0.0	N2-C15-C31A-C26A	123.3 (17)
C15—C16—C21—C20	-178.4 (11)	C14—C15—C31A—C26A	-125.6 (16)
C18—C19—N3—C22	4.3 (15)	C16A—C15—C31A—C26A	-2 (3)
C20—C19—N3—C22	-176.7 (9)	C29A—C28A—N4A—C34A	-2 (2)
C18—C19—N3—C24	169.8 (9)	C27A—C28A—N4A—C34A	173.9 (16)
C20-C19-N3-C24	-11.2 (13)	C29A—C28A—N4A—C32A	-163.3 (16)

C19—N3—C22—C23	78.1 (13)	C27A—C28A—N4A—C32A	13 (2)
C24—N3—C22—C23	-87.6 (13)	C28A—N4A—C32A—C33A	-99 (2)
C19—N3—C24—C25	-70.6 (18)	C34A—N4A—C32A—C33A	99 (2)
C22—N3—C24—C25	95.3 (17)	C28A—N4A—C34A—C35A	-120 (2)
N2-C15-C16A-C17A	61 (2)	C32A—N4A—C34A—C35A	42 (3)
C14—C15—C16A—C17A	-47 (2)		

Symmetry code: (i) y+1/2, x-1/2, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A	
C2—H2A····Se1 ⁱ	0.95	2.82	3.436 (8)	124	
С7—Н7А…О1	0.95	2.43	2.940 (9)	114	
C7—H7A···O1 ⁱⁱ	0.95	2.63	3.391 (10)	137	
C12—H12A…O1 ⁱⁱⁱ	0.95	2.56	3.447 (10)	156	
C33A—H33E…Sel ⁱ	0.98	3.04	4.00 (3)	168	

Symmetry codes: (i) *y*+1/2, *x*-1/2, -*z*+1; (ii) *y*+1/2, *x*-1/2, -*z*+2; (iii) *y*+1, -*x*+1, -*z*+2.

Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound

Contact	Percentage contribution	
Н…Н	68.1	
C…H/H…C	21.2	
O…H/H…O	8.7	
N…H/H…N	1.6	
Se…H/H…Se	0.4	

Comparison of selected (X-ray and DFT) bond lengths and angles $(Å, \circ)$

	X-ray	B3LYP/6-31G(d)	
Se1—C1	1.939 (7)	1.941	
Se1—Se1′	2.3517 (17)	2.356	
O1—C8	1.222 (9)	1.224	
O2—C21	1.315 (12)	1.374	
O2—C26	1.349 (13)	1.368	
N1—C7	1.280 (9)	1.291	
N1—N2	1.380 (8)	1.353	
N2—C8	1.378 (10)	1.392	
N2-C15	1.507 (9)	1.513	
C1—C6	1.415 (11)	1.42	
C19—N3	1.426 (7)	1.383	
C22—N3	1.446 (13)	1.464	
C24—N3	1.466 (12)	1.461	
N4C28	1.423 (10)	1.39	
N4—C32	1.543 (14)	1.461	
N4—C34	1.481 (13)	1.462	
C1—Se1—Se1'	103.5 (2)	102.711	
C26—O2—C21	119.4 (9)	119.241	

C7—N1—N2	121.3 (6)	122.983
N1—N2—C15	115.5 (5)	116.391
C2-C1-Se1	122.5 (6)	121.361
C6—C1—Se1	119.2 (5)	119.262
O1—C8—N2	125.8 (6)	126.543
C8—N2—C15	115.3 (5)	114.337
01—C8—C9	129.0 (7)	128.268
N2—C8—C9	105.2 (6)	105.19
C19—N3—C22	120.9 (7)	120.635
C19—N3—C24	119.4 (7)	120.99
C22—N3—C24	118.2 (7)	118.187
C28—N4—C32	120.2 (7)	120.875
C28—N4—C34	120.1 (8)	120.772
C32—N4—C34	117.2 (9)	117.917
C1—Se1—Se1′—C1′	-88.9 (6)	-73.195

Symmetry code: (i) 1/2 + y, x - 1/2, 1 - z.