



Received 5 November 2021 Accepted 14 December 2021

Edited by O. Blacque, University of Zürich, Switzerland

**Keywords:** crystal structure; cobalt(II)thiocyanate; 1,3-dicyclohexylthiourea; thermal properties.

CCDC reference: 2128608

**Supporting information**: this article has supporting information at journals.iucr.org/e





# Synthesis, crystal structure and thermal properties of $bis(1,3-dicyclohexylthiourea-\kappa S)bis(isothio-cyanato-\kappa N)cobalt(II)$

#### Christoph Krebs,\* Inke Jess and Christian Näther

Institute of Inorganic Chemistry, University of Kiel, Max-Eyth.-Str. 2, 24118 Kiel, Germany. \*Correspondence e-mail: ckrebs@ac.uni-kiel.de

Crystals of the title compound,  $[Co(NCS)_2(C_{13}H_{24}N_2S)_2]$ , were obtained by the reaction of  $Co(NCS)_2$  with 1,3-dicyclohexylthiourea in ethanol. Its crystal structure consists of discrete complexes that are located on twofold rotation axes, in which the Co<sup>II</sup> cations are tetrahedrally coordinated by two terminal N-bonded thiocyanate anions and two 1,3-dicyclohexylthiourea ligands. These complexes are linked *via* intermolecular N–H···S and C–H···S hydrogen bonding into chains, which elongate in the *b*-axis direction. These chains are closely packed in a pseudo-hexagonal manner. The CN stretching vibration of the thiocyanate anions located at 2038 cm<sup>-1</sup> is in agreement with only terminal bonded anionic ligands linked to metal cations in a tetrahedral coordination. TG–DTA measurements prove the decomposition of the compound at about 227°C. DSC measurements reveal a small endothermic signal before decomposition at about 174°C, which might correspond to melting.

#### 1. Chemical context

Coordination polymers based on Co(NCS)<sub>2</sub> have been investigated for several years because they can show interesting magnetic properties due to the large magnetic anisotropy of Co<sup>II</sup>. This is the reason why we and others are especially interested in this class of compounds. In most cases, the Co<sup>II</sup> cations are octahedrally coordinated and linked by pairs of thiocyanate anions into chains, even if a few compounds with single thiocyanate bridges have been reported (Palion-Gazda et al., 2015). If the Co cations are alltrans or cis-cis-trans coordinated with the thiocyanate anions in the trans-position, the chains are linear and frequently show antiferromagnetic or ferromagnetic behavior or a slow relaxation of the magnetization indicative of single-chain magnetism (Wang et al., 2005; Shurda et al., 2013; Wöhlert et al., 2014; Jin et al., 2007; Prananto et al., 2017; Mautner et al., 2018; Rams et al., 2020; Jochim et al., 2020a). In the case where the Co centers are cis-cis-trans coordinated with the thiocyanate anions in the cis-position, the chains are corrugated and the magnetic exchange is suppressed (Shi et al., 2007; Böhme et al., 2020). In some cases Co(NCS)<sub>2</sub> layers are observed, in which the Co cations are linked by single and double thiocyanate bridges or by single anionic ligands exclusively (Suckert et al., 2016; Werner et al., 2015a). These compounds usually show ferromagnetic behavior with low critical temperatures, which can be tuned by mixed crystal formation with Ni<sup>II</sup> cations (Wellm et al., 2018, 2020; Neumann et al., 2018a).

# research communications

In the case where monocoordinating co-ligands are used and the chains are linear, these compounds have the general composition  $Co(NCS)_2(L)_2$  (L = co-ligand) but for this composition a second structure exists, in which the Co cations are tetrahedrally coordinated and in this case, no cooperative magnetic exchange interactions can be observed. The reason why, dependent on the nature of the co-ligand, chains or complexes are formed is not clear. First of all, one can assume that the cobalt cations would prefer a tetrahedral coordination with bulky co-ligands because of steric crowding. On the other hand, we observed that strong N-donor co-ligands such as, for example, 4-(dimethylamino)pyridine would lead to the formation of tetrahedral complexes (Neumann et al., 2018b), whereas weaker donors such as 4-(4-chlorobenzyl)pyridine (Werner et al., 2015b) or 4-(3-phenylpropyl)pyridine (Werner et al., 2014; Ceglarska et al., 2021) lead to the formation of chains. In the case of intermediate donor ligands like 4-methoxypyridine, both isomers can be obtained, chains and discrete complexes (Mautner et al., 2018; Rams et al., 2020).



In the course of our systematic work, we became interested in S-donor co-ligands and with thiourea we obtained a compound with the desired chain structure showing antiferromagnetic ordering but no slow relaxation of the magnetization (Jochim et al., 2020a). In further work, we obtained two compounds with 1,3-dimethylthiourea (and 1,1,3,3-tetramethylthiourea) but in this case, tetrahedral discrete complexes were obtained (Jochim et al., 2020b,c). To investigate the influence of the co-ligand in more detail we used 1,3dicyclohexylthiourea as the co-ligand and we obtained crystals of the title compound, which were characterized by single crystal X-ray diffraction, which proves the formation of a discrete complex even with this ligand. Investigations using X-ray powder diffraction show that the title compound was obtained as a pure phase (Fig. 1). The CN stretching vibration is observed at 2038  $\text{cm}^{-1}$ , which is typical for thiocyanates that are only terminal bonded to metal cations in a tetrahedral coordination (Fig. S1). Measurements using simultaneously differential thermoanalysis (DTA) and thermogravimetry reveal the decomposition of the title compound starting at about 227°C, which is accompanied with an endothermic event in the DTA curve (Fig. S2). The experimental mass loss of 37.7% is in a reasonable agreement with that calculated for the removal of one 1,3-dicyclohexylthiourea ligand of 36.6%. The mass loss in the second step is higher than expected for



Experimental (top) and calculated powder pattern (bottom) of the title compound measured with Cu  $K\alpha$  radiation.

the removal of the second 1,3-dicyclohexylthiourea ligand, but in this temperature region the thiocyanate anions also decompose. Additional measurements using differential scanning calorimetry show a small endothermic event before the compound decomposes (Fig. S3). To check if this event corresponds to some transition, the residue formed after the endothermic signal (see point 'x' in Fig. S3) was isolated and investigated by XRPD measurements, which shows that the powder pattern is identical to that of the pristine material but of lower crystallinity (Fig. S4).

#### 2. Structural commentary

The asymmetric unit of the title compound consists of one Co<sup>II</sup> cation that is located on a twofold rotation axis, one thio-





Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) -x + 1,  $y, -z + \frac{3}{2}$ ]

| Table 1Selected geometric parameters (Å, $^{\circ}$ ). |             | ).      |     |
|--------------------------------------------------------|-------------|---------|-----|
| Co1-N1                                                 | 1,9516 (16) | Co1-S11 | 2.3 |

| Co1-N1                              | 1.9516 (16)               | Co1-S11    | 2.3130 (5  |
|-------------------------------------|---------------------------|------------|------------|
| $N1-Co1-N1^{i}$<br>$N1-Co1-S11^{i}$ | 113.00 (10)<br>109.67 (5) | N1-Co1-S11 | 106.00 (5) |

Symmetry code: (i)  $-x + 1, y, -z + \frac{3}{2}$ .

cyanate anion and one 1,3-dicyclohexylthiourea ligand that occupies general positions. The Co<sup>II</sup> cations are fourfold coordinated by two terminal N-bonded thiocvanate anions and two sulfur atoms of 1,3-dicyclohexylthiourea ligands each (Fig. 2). The Co-N and Co-S distances are comparable to that observed in other Co(NCS)<sub>2</sub> compounds with thiourea derivatives (Table 1, Jochim et al., 2020a,b). The bond angles deviate from the ideal values, revealing that the tetrahedra are slightly distorted (see supporting information). Both hexane rings of the 1,3-dimethylthiourea ligand are in a chair conformation (Figs. 2 and 3). There are two symmetryequivalent intramolecular N-H···N hydrogen bonds between the amino H atom of the 1,3-dicyclohexylthiourea ligand and the N atoms of the thiocyanate anions (Table 2 and Fig. 3). The  $N-H \cdots N$  angle is close to linearity, indicating that this is a relatively strong interaction (Table 2).

#### 3. Supramolecular features

In the crystal structure of the title compound the discrete complexes are linked into chains by two intermolecular N– $H \cdots S$  hydrogen bonds related by the twofold rotation axis between the N–H H atoms and the thiocyanate S atom of a neighboring complex (Fig. 4, Table 2). The discrete complexes are additionally linked by two symmetry-equivalent C– $H \cdots S$  hydrogen bonds, which might correspond to a weak interaction (Fig. 4, Table 2). These chains elongate along the *b*-axis direction and each chain is surrounded by six neighboring chains in a pseudo-hexagonal manner (Fig. 5).



Figure 3

View of the discrete complex with intramolecular  $N\!-\!H\!\cdots\!N$  hydrogen bonding shown as dashed lines.

| Table 2              |             |
|----------------------|-------------|
| Hydrogen-bond geomet | try (Å, °). |

| $D - H \cdot \cdot \cdot A$           | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|---------------------------------------|------|-------------------------|--------------|--------------------------------------|
| N11-H11···N1                          | 0.88 | 2.33                    | 3.169 (2)    | 160                                  |
| $C12-H12\cdots S1^{ii}$               | 1.00 | 2.93                    | 3.774 (2)    | 143                                  |
| N12 $-H12A \cdot \cdot \cdot S1^{ii}$ | 0.88 | 2.84                    | 3.6770 (16)  | 159                                  |
| C19−H19B···S11                        | 0.99 | 3.00                    | 3.529 (2)    | 114                                  |

Symmetry code: (ii) x, y - 1, z.

#### 4. Database survey

There are only ten crystal structures with this ligand reported in the Cambridge Structural Database (CSD version 5.42, last update November 2020; Groom *et al.*, 2016). The most important for us is bis(1,3-dicyclohexylthiourea)bis(isothiocyanato)zinc(II), which is isotypic to the title compound (refcode: TINBIC; Jia *et al.*, 2007). These authors also reported the structure of hexakis(1,3-dicyclohexylthiourea)lead(II)bis(isothiocyanate) ethanol solvate, which





Crystal structure of the title compound with a view of a chain formed by intermolecular  $N-H\cdots S$  and  $C-H\cdots S$  hydrogen bonding (dashed lines).





Crystal structure of the title compound with a view in the direction of the crystallographic *b*-axis, showing the arrangement of the chains. Intermolecular  $N-H\cdots S$  and  $C-H\cdots S$  hydrogen bonding is shown as dashed lines.

# research communications

consists of discrete complexes, in which the Pb<sup>II</sup> cations are octahedrally coordinated by six 1,3-dicyclohexylthiourea ligands (refcode: TINBUO; Jia *et al.*, 2007). In that paper, the crystal structure of bis(1,3-dicyclohexylthiourea)dichlorocobalt(II) is also reported (refcode: TINBEY). The crystal structures of chlorobis(1,3-dicyclohexylthiourea)copper(I), of bromobis(1,3-dicyclohexylthiourea)copper(I) (refcodes: WODVER and WODVIV; Jia *et al.*, 2008) and of chlorotris(1,3-dicyclohexylthiourea)tellurium(II) chloride (refcode: OCAWUK; Husebye *et al.*, 2001) also consist of discrete complexes. The crystal structure of 1,3-dicyclohexylthiourea was reported by Ramnathan *et al.* (1996) (refcode: ZIVGUG).

There are also several crystal structures with Co(NCS)<sub>2</sub> reported, in which the Co<sup>II</sup> cations are tetrahedrally coordinated by two terminal N-bonded thiocyanate anions and two N-donor co-ligands, for example two polymorphic modifications of bis(4-dimethylaminopyridine)bis(isothiocyanato)-cobalt(II) (refcode: GIQPEE; Neumann *et al.*, 2018*a*; Krebs *et al.*, 2021), bis(4-vinylpyridine)di(isothiocyanato)cobalt(II) (refcode: BOZJUW; Foxman & Mazurek, 1982), bis(2-chloropyridine)bis(isothiocyanato)cobalt(II), bis(2-bromopyridine)bis(isothiocyanato)cobalt(II), bis(2-bromopyridine)bis(isothiocyanato)cobalt(II), bis(2-bromopyridine)bis(isothiocyanato)cobalt(II), crefcode: DEYDUI, DEYFIY and DEYGAR; Wöhlert *et al.*, 2013) and bis(4-methoxypyridine)bis(isothiocyanato)cobalt(II) (refcode: KIJQAY; Mautner *et al.*, 2018).

Two structures have already been reported with thiourea derivatives and  $Co(NCS)_2$ , *viz*. bis(1,3-dimethylthiourea)-bis(isothiocyanato)cobalt(II) (refcode: QUSZAI; Jochim *et al.*, 2020*b*) and bis(1,1,3,3-tetramethylthiourea)bis(isothiocyanato)cobalt(II) (refcode: WUQTIO; Jochim *et al.*, 2020*c*).

#### 5. Synthesis and crystallization

#### Synthesis

 $Co(NCS)_2$  was purchased from Merck. 1,3-Dicyclohexylthiourea was purchased from Alfa Aesar. All chemicals were used without further purification. Blue-colored single crystals suitable for single-crystal X-ray analysis were obtained after storage of 0.25 mmol Co(NCS)<sub>2</sub> (43.8 mg) and 0.50 mmol 1,3dicyclohexylthiourea (120.2 mg) in 2.0 ml ethanol at 333 K over night.

#### **Experimental details**

The data collection for single crystal structure analysis was performed using an XtaLAB Synergy, Dualflex, HyPix diffractometer from Rigaku with Cu-K $\alpha$  radiation.

The IR spectrum was measured using an ATI Mattson Genesis Series FTIR Spectrometer, control software: *WINFIRST*, from ATI Mattson.

The PXRD measurement was performed with Cu  $K\alpha_1$  radiation ( $\lambda = 1.540598$  Å) using a Stoe Transmission Powder Diffraction System (STADI P) equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator.

Thermogravimetry and differential thermoanalysis (TG– DTA) measurements were performed in a dynamic nitrogen atmosphere in  $Al_2O_3$  crucibles using a STA-PT 1000 ther-

| Table  | 3      |          |
|--------|--------|----------|
| Experi | mental | details. |

| Crystal data                                                                |                                                     |
|-----------------------------------------------------------------------------|-----------------------------------------------------|
| Chemical formula                                                            | $[Co(NCS)_2(C_{13}H_{24}N_2S)_2]$                   |
| M <sub>r</sub>                                                              | 655.89                                              |
| Crystal system, space group                                                 | Monoclinic, C2/c                                    |
| Temperature (K)                                                             | 100                                                 |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                          | 24.0667 (4), 8.8282 (1), 18.8910 (3)                |
| $\beta$ (°)                                                                 | 125.619 (2)                                         |
| $V(Å^3)$                                                                    | 3262.76 (11)                                        |
| Z                                                                           | 4                                                   |
| Radiation type                                                              | Cu <i>Kα</i>                                        |
| $\mu \text{ (mm}^{-1})$                                                     | 6.73                                                |
| Crystal size (mm)                                                           | $0.15 \times 0.08 \times 0.03$                      |
| Data collection                                                             |                                                     |
| Diffractometer                                                              | XtaLAB Synergy, Dualflex, HyPix                     |
| Absorption correction                                                       | Multi-scan ( <i>CrysAlis PRO</i> ; Rigaku OD, 2021) |
| $T_{\min}, T_{\max}$                                                        | 0.704, 1.000                                        |
| No. of measured, independent and                                            | 20399, 3503, 3462                                   |
| observed $[I > 2\sigma(I)]$ reflections                                     |                                                     |
| R <sub>int</sub>                                                            | 0.025                                               |
| $(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$                          | 0.639                                               |
| Refinement                                                                  |                                                     |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                         | 0.035, 0.096, 1.05                                  |
| No. of reflections                                                          | 3503                                                |
| No. of parameters                                                           | 177                                                 |
| H-atom treatment                                                            | H-atom parameters constrained                       |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min}  ({\rm e} \ {\rm \AA}^{-3})$ | 0.65, -0.36                                         |

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2016/6 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 1999) and publCIF (Westrip, 2010).

mobalance from Linseis. The instrument was calibrated using standard reference materials.

The DSC experiments were performed using a DSC 1 star system with STARe Excellence software from Mettler-Toledo AG under dynamic nitrogen flow in Al pans.

#### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All non-hydrogen atoms were refined anisotropically. The C-bound H atoms were positioned with idealized geometry and were refined isotropically with  $U_{iso}(H) = 1.2 U_{eq}(C)$  using a riding model.

#### Acknowledgements

Financial support by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

#### **Funding information**

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. NA720/5-2).

#### References

Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). *Inorg. Chem.* 59, 5325–5338.

Brandenburg, K. & Putz, H. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

- Ceglarska, M., Böhme, M., Neumann, T., Plass, W., Näther, C. & Rams, M. (2021). *Phys. Chem. Chem. Phys.* **23**, 10281–10289.
- Foxman, B. M. & Mazurek, H. (1982). *Inorg. Chim. Acta*, 59, 231–235.
   Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B72, 171–179.
- Husebye, S., Törnroos, K. W. & Zhu, H.-Z. (2001). Acta Cryst. C57, 854–856
- Jia, D. X., Zhu, A. M., Deng, J. & Zhang, Y. (2007). Z. Anorg. Allg. Chem. 633, 2059–2063.
- Jia, D. X., Zhu, A. M., Ji, M. & Zhang, Y. (2008). J. Coord. Chem. 61, 2307–2314.
- Jin, Y., Che, Y. X. & Zheng, J. M. (2007). J. Coord. Chem. 60, 2067– 2074.
- Jochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. & Näther, C. (2020a). *Inorg. Chem.* 59, 8971– 8982.
- Jochim, A., Radulovic, R., Jess, I. & Näther, C. (2020b). Acta Cryst. E76, 1476–1481.
- Jochim, A., Radulovic, R., Jess, I. & Näther, C. (2020c). Acta Cryst. E76, 1373–1377.
- Krebs, C., Jess, I. & Näther, C. (2021). Acta Cryst. E77, 1120-1125.
- Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). *Polyhedron*, 154, 436–442.
- Neumann, T., Jess, I., Pielnhofer, F. & Näther, C. (2018b). Eur. J. Inorg. Chem. pp. 4972–4981.
- Neumann, T., Rams, M., Wellm, C. & Näther, C. (2018a). Cryst. Growth Des. 18, 6020–6027.
- Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.
- Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). *Aust. J. Chem.* 70, 516– 528.

- Ramnathan, A., Sivakumar, K., Subramanian, K., Meerarani, D., Ramadas, K. & Fun, H.-K. (1996). *Acta Cryst.* C**52**, 139–142.
- Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). *Chem. Eur. J.* 26, 2837–2851.
- Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shi, J. M., Chen, J. N., Wu, C. J. & Ma, J. P. (2007). J. Coord. Chem. 60, 2009–2013.
- Shurdha, E., Moore, C. E., Rheingold, A. L., Lapidus, S. H., Stephens, P. W., Arif, A. M. & Miller, J. S. (2013). *Inorg. Chem.* 52, 10583– 10594.
- Suckert, S., Rams, M., Böhme, M., Germann, L., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). *Dalton Trans.* 45, 18190– 18201.
- Wang, X. Y., Li, B. L., Zhu, X. & Gao, S. (2005). Eur. J. Inorg. Chem. pp. 3277–3286.
- Wellm, C., Majcher-Fitas, A., Rams, M. & Näther, C. (2020). Dalton Trans. 49, 16707–16714.
- Wellm, C., Rams, M., Neumann, C., Ceglarska, M. & Näther, C. (2018). Cryst. Growth Des. 18, 3117–3123.
- Werner, J., Rams, M., Tomkowicz, Z. & N\u00e4ther, C. (2014). Dalton Trans. 43, 17333–17342.
- Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015b). Dalton Trans. 44, 14149–14158.
- Werner, J., Tomkowicz, Z., Reinert, T. & Näther, C. (2015a). Eur. J. Inorg. Chem. pp. 3066–3075.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wöhlert, S., Jess, I., Englert, U. & Näther, C. (2013). CrystEngComm, 15, 5326–5336.
- Wöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014). *Inorg. Chem.* 53, 8298–8310.

Acta Cryst. (2022). E78, 71-75

## Acta Cryst. (2022). E78, 71-75 [https://doi.org/10.1107/S205698902101327X]

Synthesis, crystal structure and thermal properties of  $bis(1,3-dicyclohexylthio-urea-\kappa S)bis(isothiocyanato-\kappa N)cobalt(II)$ 

# Christoph Krebs, Inke Jess and Christian Näther

## **Computing details**

Data collection: *CrysAlis PRO* (Rigaku OD, 2021); cell refinement: *CrysAlis PRO* (Rigaku OD, 2021); data reduction: *CrysAlis PRO* (Rigaku OD, 2021); program(s) used to solve structure: *SHELXT2014/5* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2016/6* (Sheldrick, 2015b); molecular graphics: *DIAMOND* (Brandenburg & Putz, 1999); software used to prepare material for publication: *publCIF* (Westrip, 2010).

F(000) = 1396

 $\theta = 2.9 - 78.5^{\circ}$ 

 $\mu = 6.73 \text{ mm}^{-1}$ 

T = 100 K

 $D_{\rm x} = 1.335 {\rm Mg} {\rm m}^{-3}$ 

Block, intense blue

 $0.15\times0.08\times0.03~mm$ 

Cu  $K\alpha$  radiation,  $\lambda = 1.54184$  Å Cell parameters from 13904 reflections

Bis(1,3-dicyclohexylthiourea-ĸS)bis(isothiocyanato-ĸN)cobalt(II)

```
Crystal data
```

```
\begin{bmatrix} \text{Co(NCS)}_2(\text{C}_{13}\text{H}_{24}\text{N}_2\text{S})_2 \end{bmatrix} \\ M_r = 655.89 \\ \text{Monoclinic, } C2/c \\ a = 24.0667 \text{ (4) Å} \\ b = 8.8282 \text{ (1) Å} \\ c = 18.8910 \text{ (3) Å} \\ \beta = 125.619 \text{ (2)}^\circ \\ V = 3262.76 \text{ (11) Å}^3 \\ Z = 4 \end{aligned}
```

## Data collection

| XtaLAB Synergy, Dualflex, HyPix                      | $T_{\rm min} = 0.704, \ T_{\rm max} = 1.000$                   |
|------------------------------------------------------|----------------------------------------------------------------|
| diffractometer                                       | 20399 measured reflections                                     |
| Radiation source: micro-focus sealed X-ray           | 3503 independent reflection                                    |
| tube, PhotonJet (Cu) X-ray Source                    | 3462 reflections with $I > 2\sigma$                            |
| Mirror monochromator                                 | $R_{\rm int} = 0.025$                                          |
| Detector resolution: 10.0000 pixels mm <sup>-1</sup> | $\theta_{\rm max} = 80.0^\circ,  \theta_{\rm min} = 4.5^\circ$ |
| $\omega$ scans                                       | $h = -30 \rightarrow 30$                                       |
| Absorption correction: multi-scan                    | $k = -11 \rightarrow 10$                                       |
| (CrysAlisPro; Rigaku OD, 2021)                       | $l = -20 \rightarrow 24$                                       |
|                                                      |                                                                |

## Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.035$  $wR(F^2) = 0.096$ S = 1.053503 reflections 177 parameters 0 restraints Primary atom site location: dual 3503 independent reflections 3462 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.025$   $\theta_{max} = 80.0^{\circ}, \theta_{min} = 4.5^{\circ}$   $h = -30 \rightarrow 30$   $k = -11 \rightarrow 10$   $l = -20 \rightarrow 24$ Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.054P)^2 + 5.0479P]$ where  $P = (F_o^2 + 2F_c^2)/3$   $(\Delta/\sigma)_{max} = 0.001$   $\Delta\rho_{max} = 0.65$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.36$  e Å<sup>-3</sup>

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|      | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|--------------|--------------|-----------------------------|--|
| Col  | 0.500000     | 0.91248 (4)  | 0.750000     | 0.02073 (12)                |  |
| N1   | 0.57874 (8)  | 1.03449 (18) | 0.78063 (11) | 0.0283 (3)                  |  |
| C1   | 0.62890 (10) | 1.1041 (2)   | 0.82549 (13) | 0.0241 (4)                  |  |
| S1   | 0.69885 (2)  | 1.19936 (6)  | 0.88857 (3)  | 0.02946 (13)                |  |
| S11  | 0.53579 (2)  | 0.76716 (5)  | 0.87146 (3)  | 0.02478 (12)                |  |
| C11  | 0.59547 (9)  | 0.6489 (2)   | 0.87525 (12) | 0.0221 (3)                  |  |
| N11  | 0.63300 (8)  | 0.70206 (18) | 0.84996 (11) | 0.0257 (3)                  |  |
| H11  | 0.628830     | 0.799458     | 0.837934     | 0.031*                      |  |
| C12  | 0.68063 (9)  | 0.6182 (2)   | 0.83960 (13) | 0.0250 (4)                  |  |
| H12  | 0.664260     | 0.511209     | 0.823464     | 0.030*                      |  |
| C13  | 0.67862 (11) | 0.6900 (3)   | 0.76500 (14) | 0.0377 (5)                  |  |
| H13A | 0.691074     | 0.798367     | 0.777936     | 0.045*                      |  |
| H13B | 0.631610     | 0.683568     | 0.710954     | 0.045*                      |  |
| C14  | 0.72780 (12) | 0.6107 (3)   | 0.75124 (15) | 0.0433 (6)                  |  |
| H14A | 0.712524     | 0.504987     | 0.732404     | 0.052*                      |  |
| H14B | 0.727319     | 0.662885     | 0.704507     | 0.052*                      |  |
| C15  | 0.80009 (11) | 0.6105 (3)   | 0.83419 (15) | 0.0342 (5)                  |  |
| H15A | 0.817213     | 0.715832     | 0.849578     | 0.041*                      |  |
| H15B | 0.830355     | 0.553156     | 0.824289     | 0.041*                      |  |
| C16  | 0.80239 (10) | 0.5391 (2)   | 0.90921 (14) | 0.0297 (4)                  |  |
| H16A | 0.849393     | 0.546680     | 0.963165     | 0.036*                      |  |
| H16B | 0.790582     | 0.430304     | 0.896754     | 0.036*                      |  |
| C17  | 0.75272 (10) | 0.6167 (2)   | 0.92332 (13) | 0.0276 (4)                  |  |
| H17A | 0.752748     | 0.562352     | 0.969193     | 0.033*                      |  |
| H17B | 0.767965     | 0.721974     | 0.943308     | 0.033*                      |  |
| N12  | 0.60327 (7)  | 0.50735 (18) | 0.90351 (10) | 0.0224 (3)                  |  |
| H12A | 0.635837     | 0.452301     | 0.908415     | 0.027*                      |  |
| C18  | 0.56066 (9)  | 0.4371 (2)   | 0.92713 (12) | 0.0212 (3)                  |  |
| H18  | 0.550070     | 0.515812     | 0.955748     | 0.025*                      |  |
| C19  | 0.49330 (9)  | 0.3789 (2)   | 0.84687 (12) | 0.0244 (4)                  |  |
| H19A | 0.502584     | 0.301113     | 0.817278     | 0.029*                      |  |
| H19B | 0.468264     | 0.463403     | 0.805576     | 0.029*                      |  |
| C20  | 0.44955 (10) | 0.3106 (2)   | 0.87343 (13) | 0.0262 (4)                  |  |
| H20A | 0.437460     | 0.390552     | 0.898999     | 0.031*                      |  |
| H20B | 0.406622     | 0.270325     | 0.821191     | 0.031*                      |  |
| C21  | 0.48772 (10) | 0.1834 (2)   | 0.93957 (13) | 0.0281 (4)                  |  |
| H21A | 0.495221     | 0.098353     | 0.911865     | 0.034*                      |  |
| H21B | 0.459693     | 0.145614     | 0.958672     | 0.034*                      |  |
| C22  | 0.55656 (10) | 0.2392 (2)   | 1.01863 (12) | 0.0256 (4)                  |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| H22A | 0.581609     | 0.153099   | 1.058555     | 0.031*     |
|------|--------------|------------|--------------|------------|
| H22B | 0.548684     | 0.315490   | 1.050304     | 0.031*     |
| C23  | 0.60031 (10) | 0.3096 (2) | 0.99230 (13) | 0.0264 (4) |
| H23A | 0.643242     | 0.349894   | 1.044513     | 0.032*     |
| H23B | 0.612306     | 0.231184   | 0.965832     | 0.032*     |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$      | $U^{13}$     | $U^{23}$      |
|-----|-------------|-------------|-------------|---------------|--------------|---------------|
| Col | 0.0151 (2)  | 0.0140 (2)  | 0.0277 (2)  | 0.000         | 0.00945 (17) | 0.000         |
| N1  | 0.0226 (8)  | 0.0191 (8)  | 0.0361 (9)  | -0.0028 (6)   | 0.0130 (7)   | 0.0022 (7)    |
| C1  | 0.0240 (9)  | 0.0176 (8)  | 0.0317 (9)  | 0.0029 (7)    | 0.0167 (8)   | 0.0038 (7)    |
| S1  | 0.0212 (2)  | 0.0271 (2)  | 0.0354 (2)  | -0.00593 (17) | 0.0138 (2)   | -0.00315 (18) |
| S11 | 0.0221 (2)  | 0.0209 (2)  | 0.0337 (2)  | 0.00480 (16)  | 0.01759 (19) | 0.00516 (17)  |
| C11 | 0.0167 (8)  | 0.0214 (9)  | 0.0251 (8)  | 0.0010 (7)    | 0.0105 (7)   | 0.0026 (7)    |
| N11 | 0.0209 (7)  | 0.0206 (8)  | 0.0381 (9)  | 0.0044 (6)    | 0.0186 (7)   | 0.0086 (6)    |
| C12 | 0.0182 (8)  | 0.0251 (9)  | 0.0329 (9)  | 0.0022 (7)    | 0.0156 (8)   | 0.0053 (8)    |
| C13 | 0.0241 (10) | 0.0537 (14) | 0.0336 (10) | 0.0071 (9)    | 0.0157 (9)   | 0.0142 (10)   |
| C14 | 0.0342 (12) | 0.0667 (17) | 0.0342 (11) | 0.0050 (11)   | 0.0229 (10)  | 0.0070 (11)   |
| C15 | 0.0251 (10) | 0.0360 (11) | 0.0479 (12) | 0.0000 (8)    | 0.0250 (10)  | 0.0022 (9)    |
| C16 | 0.0199 (9)  | 0.0290 (10) | 0.0376 (10) | 0.0010 (8)    | 0.0154 (8)   | -0.0003 (8)   |
| C17 | 0.0234 (9)  | 0.0285 (9)  | 0.0292 (9)  | 0.0023 (7)    | 0.0144 (8)   | 0.0011 (8)    |
| N12 | 0.0177 (7)  | 0.0215 (7)  | 0.0298 (7)  | 0.0023 (6)    | 0.0148 (6)   | 0.0042 (6)    |
| C18 | 0.0186 (8)  | 0.0197 (8)  | 0.0261 (9)  | 0.0001 (7)    | 0.0134 (7)   | 0.0027 (7)    |
| C19 | 0.0221 (9)  | 0.0261 (9)  | 0.0242 (8)  | -0.0031 (7)   | 0.0129 (7)   | -0.0002 (7)   |
| C20 | 0.0227 (9)  | 0.0275 (10) | 0.0290 (9)  | -0.0066 (7)   | 0.0155 (8)   | -0.0030 (7)   |
| C21 | 0.0324 (10) | 0.0239 (9)  | 0.0344 (10) | -0.0052 (8)   | 0.0232 (9)   | -0.0014 (8)   |
| C22 | 0.0280 (9)  | 0.0238 (9)  | 0.0288 (9)  | 0.0040 (7)    | 0.0188 (8)   | 0.0066 (7)    |
| C23 | 0.0220 (9)  | 0.0255 (9)  | 0.0310 (9)  | 0.0044 (7)    | 0.0151 (8)   | 0.0086 (7)    |

Geometric parameters (Å, °)

| Co1—N1               | 1.9516 (16) | C16—H16B | 0.9900    |
|----------------------|-------------|----------|-----------|
| Co1—N1 <sup>i</sup>  | 1.9517 (16) | C16—C17  | 1.530 (3) |
| Co1—S11              | 2.3130 (5)  | C17—H17A | 0.9900    |
| Co1—S11 <sup>i</sup> | 2.3131 (5)  | C17—H17B | 0.9900    |
| N1—C1                | 1.167 (3)   | N12—H12A | 0.8800    |
| C1—S1                | 1.620(2)    | N12—C18  | 1.472 (2) |
| S11—C11              | 1.7431 (18) | C18—H18  | 1.0000    |
| C11—N11              | 1.330 (2)   | C18—C19  | 1.526 (2) |
| C11—N12              | 1.328 (2)   | C18—C23  | 1.525 (2) |
| N11—H11              | 0.8800      | C19—H19A | 0.9900    |
| N11—C12              | 1.470 (2)   | C19—H19B | 0.9900    |
| С12—Н12              | 1.0000      | C19—C20  | 1.529 (2) |
| C12—C13              | 1.520 (3)   | C20—H20A | 0.9900    |
| C12—C17              | 1.522 (3)   | C20—H20B | 0.9900    |
| C13—H13A             | 0.9900      | C20—C21  | 1.526 (3) |
| C13—H13B             | 0.9900      | C21—H21A | 0.9900    |
|                      |             |          |           |

| C13—C14                               | 1.522 (3)         | C21—H21B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9900      |
|---------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| C14—H14A                              | 0.9900            | C21—C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.528 (3)   |
| C14—H14B                              | 0.9900            | C22—H22A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9900      |
| C14—C15                               | 1.519 (3)         | C22—H22B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9900      |
| C15—H15A                              | 0.9900            | C22—C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.534 (3)   |
| C15—H15B                              | 0.9900            | C23—H23A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9900      |
| C15—C16                               | 1.522 (3)         | C23—H23B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9900      |
| C16—H16A                              | 0.9900            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
|                                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| N1—Co1—N1 <sup>i</sup>                | 113.00 (10)       | C12—C17—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110.88 (16) |
| N1—Co1—S11 <sup>i</sup>               | 109.67 (5)        | C12—C17—H17A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5       |
| N1—Co1—S11                            | 106.00 (5)        | C12—C17—H17B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5       |
| N1 <sup>i</sup> —Co1—S11 <sup>i</sup> | 106.00 (5)        | C16—C17—H17A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5       |
| N1 <sup>i</sup> —Co1—S11              | 109.67 (5)        | C16—C17—H17B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5       |
| S11—Co1—S11 <sup>i</sup>              | 112.63 (3)        | H17A—C17—H17B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108.1       |
| C1—N1—Co1                             | 157.11 (17)       | C11—N12—H12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 118.1       |
| N1-C1-S1                              | 179.39 (19)       | C11—N12—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 123.87 (15) |
| C11—S11—Co1                           | 101.24 (6)        | C18—N12—H12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 118.1       |
| N11—C11—S11                           | 119.32 (14)       | N12—C18—H18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 108.3       |
| N12—C11—S11                           | 120.02 (13)       | N12—C18—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 111.41 (15) |
| N12—C11—N11                           | 120.67 (16)       | N12—C18—C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.67 (14) |
| C11—N11—H11                           | 116.0             | C19—C18—H18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 108.3       |
| C11—N11—C12                           | 127.98 (16)       | C23—C18—H18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 108.3       |
| C12—N11—H11                           | 116.0             | C23—C18—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110.89 (16) |
| N11—C12—H12                           | 108.5             | C18—C19—H19A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.7       |
| N11—C12—C13                           | 107.87 (16)       | C18—C19—H19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.7       |
| N11—C12—C17                           | 111.80 (16)       | C18—C19—C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110.05 (15) |
| C13—C12—H12                           | 108.5             | H19A—C19—H19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108.2       |
| C13—C12—C17                           | 111.64 (16)       | C20—C19—H19A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.7       |
| С17—С12—Н12                           | 108.5             | C20—C19—H19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.7       |
| C12—C13—H13A                          | 109.4             | C19—C20—H20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.4       |
| C12—C13—H13B                          | 109.4             | C19—C20—H20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.4       |
| C12 - C13 - C14                       | 111.01 (18)       | H20A—C20—H20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108.0       |
| H13A—C13—H13B                         | 108.0             | $C_{21}$ $C_{20}$ $C_{19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110.96 (16) |
| C14— $C13$ — $H13A$                   | 109.4             | $C_{21}$ $C_{20}$ $H_{20A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.4       |
| C14— $C13$ — $H13B$                   | 109.4             | $C_{21}$ $C_{20}$ $H_{20B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.4       |
| C13 - C14 - H14A                      | 109.1             | $C_{20}$ $C_{21}$ $H_{21}$ $H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.1       |
| C13 - C14 - H14B                      | 109.1             | $C_{20}$ $C_{21}$ $H_{21R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.5       |
| $H_{14A}$ $-C_{14}$ $H_{14B}$         | 109.4             | $C_{20} = C_{21} = C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110.86 (16) |
| $C_{15}$ $C_{14}$ $C_{13}$            | 100.0<br>111.2(2) | $H_{21}^{-1} = C_{21}^{-1} = H_{21}^{-1} = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 108.1       |
| $C_{15}$ $C_{14}$ $H_{144}$           | 109.4             | $C^{22}$ $C^{21}$ $H^{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100.1       |
| $C_{15} = C_{14} = H_{14}$            | 109.4             | $C_{22}$ $C_{21}$ $H_{21R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.5       |
| $C_{12} = C_{14} = H_{15}$            | 109.4             | $C_{22} = C_{21} = H_{21} B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5       |
| C14 = C15 = H15R                      | 109.4             | $C_{21} = C_{22} = H_{22R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.2       |
| C14 C15 C16                           | 102.7             | $C_{21} = C_{22} = 1122B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.2       |
| $H_{15} = C_{15} = C_{10}$            | 108.0             | $\begin{array}{c} 0.21 \\ \hline 0.22 \\ \hline 0.23 $ | 107.0       |
| C16 C15 H15A                          | 100.0             | 1122 - C22 - 1122 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 107.9       |
| C16 C15 U15D                          | 107.4             | $C_{23} = C_{22} = \Pi_{22} \Lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.2       |
|                                       | 109.4             | $U_{23}$ — $U_{22}$ — $\Pi_{22}$ D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.2       |

| C15—C16—H16A  | 109.3       | C18—C23—C22   | 109.63 (15) |
|---------------|-------------|---------------|-------------|
| C15—C16—H16B  | 109.3       | C18—C23—H23A  | 109.7       |
| C15—C16—C17   | 111.61 (17) | C18—C23—H23B  | 109.7       |
| H16A—C16—H16B | 108.0       | С22—С23—Н23А  | 109.7       |
| C17—C16—H16A  | 109.3       | С22—С23—Н23В  | 109.7       |
| C17—C16—H16B  | 109.3       | H23A—C23—H23B | 108.2       |

Symmetry code: (i) -x+1, y, -z+3/2.

## Hydrogen-bond geometry (Å, °)

| D—H···A                      | <i>D</i> —Н | H···A | $D \cdots A$ | D—H··· $A$ |  |
|------------------------------|-------------|-------|--------------|------------|--|
| N11—H11…N1                   | 0.88        | 2.33  | 3.169 (2)    | 160        |  |
| C12—H12…S1 <sup>ii</sup>     | 1.00        | 2.93  | 3.774 (2)    | 143        |  |
| N12—H12A····S1 <sup>ii</sup> | 0.88        | 2.84  | 3.6770 (16)  | 159        |  |
| C19—H19 <i>B</i> ···S11      | 0.99        | 3.00  | 3.529 (2)    | 114        |  |
|                              |             |       |              |            |  |

Symmetry code: (ii) x, y-1, z.