CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 5 November 2021
Accepted 14 December 2021

Edited by O. Blacque, University of Zürich, Switzerland

Keywords: crystal structure; cobalt(II)thiocyanate; 1,3-dicyclohexylthiourea; thermal properties.

CCDC reference: 2128608

Supporting information: this article has supporting information at journals.iucr.org/e

Synthesis, crystal structure and thermal properties of bis(1,3-dicyclohexylthiourea- κ S)bis(isothio-cyanato- κN)cobalt(II)

Christoph Krebs,* Inke Jess and Christian Näther

Institute of Inorganic Chemistry, University of Kiel, Max-Eyth.-Str. 2, 24118 Kiel, Germany. *Correspondence e-mail: ckrebs@ac.uni-kiel.de

Crystals of the title compound, $\left[\mathrm{Co}(\mathrm{NCS})_{2}\left(\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$, were obtained by the reaction of $\mathrm{Co}(\mathrm{NCS})_{2}$ with 1,3-dicyclohexylthiourea in ethanol. Its crystal structure consists of discrete complexes that are located on twofold rotation axes, in which the $\mathrm{Co}^{\mathrm{II}}$ cations are tetrahedrally coordinated by two terminal N bonded thiocyanate anions and two 1,3-dicyclohexylthiourea ligands. These complexes are linked via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonding into chains, which elongate in the b-axis direction. These chains are closely packed in a pseudo-hexagonal manner. The CN stretching vibration of the thiocyanate anions located at $2038 \mathrm{~cm}^{-1}$ is in agreement with only terminal bonded anionic ligands linked to metal cations in a tetrahedral coordination. TG-DTA measurements prove the decomposition of the compound at about 227° C. DSC measurements reveal a small endothermic signal before decomposition at about $174^{\circ} \mathrm{C}$, which might correspond to melting.

1. Chemical context

Coordination polymers based on $\mathrm{Co}(\mathrm{NCS})_{2}$ have been investigated for several years because they can show interesting magnetic properties due to the large magnetic anisotropy of $\mathrm{Co}^{\mathrm{II}}$. This is the reason why we and others are especially interested in this class of compounds. In most cases, the $\mathrm{Co}^{\mathrm{II}}$ cations are octahedrally coordinated and linked by pairs of thiocyanate anions into chains, even if a few compounds with single thiocyanate bridges have been reported (Palion-Gazda et al., 2015). If the Co cations are alltrans or cis-cis-trans coordinated with the thiocyanate anions in the trans-position, the chains are linear and frequently show antiferromagnetic or ferromagnetic behavior or a slow relaxation of the magnetization indicative of single-chain magnetism (Wang et al., 2005; Shurda et al., 2013; Wöhlert et al., 2014; Jin et al., 2007; Prananto et al., 2017; Mautner et al., 2018; Rams et al., 2020; Jochim et al., 2020a). In the case where the Co centers are cis-cis-trans coordinated with the thiocyanate anions in the cis-position, the chains are corrugated and the magnetic exchange is suppressed (Shi et al., 2007; Böhme et al., 2020). In some cases $\mathrm{Co}(\mathrm{NCS})_{2}$ layers are observed, in which the Co cations are linked by single and double thiocyanate bridges or by single anionic ligands exclusively (Suckert et al., 2016; Werner et al., 2015a). These compounds usually show ferromagnetic behavior with low critical temperatures, which can be tuned by mixed crystal formation with $\mathrm{Ni}^{\mathrm{II}}$ cations (Wellm et al., 2018, 2020; Neumann et al., 2018a).

In the case where monocoordinating co-ligands are used and the chains are linear, these compounds have the general composition $\mathrm{Co}(\mathrm{NCS})_{2}(L)_{2} \quad(L=$ co-ligand) but for this composition a second structure exists, in which the Co cations are tetrahedrally coordinated and in this case, no cooperative magnetic exchange interactions can be observed. The reason why, dependent on the nature of the co-ligand, chains or complexes are formed is not clear. First of all, one can assume that the cobalt cations would prefer a tetrahedral coordination with bulky co-ligands because of steric crowding. On the other hand, we observed that strong N -donor co-ligands such as, for example, 4-(dimethylamino)pyridine would lead to the formation of tetrahedral complexes (Neumann et al., 2018b), whereas weaker donors such as 4-(4-chlorobenzyl)pyridine (Werner et al., 2015b) or 4-(3-phenylpropyl)pyridine (Werner et al., 2014; Ceglarska et al., 2021) lead to the formation of chains. In the case of intermediate donor ligands like 4-methoxypyridine, both isomers can be obtained, chains and discrete complexes (Mautner et al., 2018; Rams et al., 2020).

In the course of our systematic work, we became interested in S-donor co-ligands and with thiourea we obtained a compound with the desired chain structure showing antiferromagnetic ordering but no slow relaxation of the magnetization (Jochim et al., 2020a). In further work, we obtained two compounds with 1,3-dimethylthiourea (and 1,1,3,3-tetramethylthiourea) but in this case, tetrahedral discrete complexes were obtained (Jochim et al., 2020b,c). To investigate the influence of the co-ligand in more detail we used 1,3dicyclohexylthiourea as the co-ligand and we obtained crystals of the title compound, which were characterized by single crystal X-ray diffraction, which proves the formation of a discrete complex even with this ligand. Investigations using X-ray powder diffraction show that the title compound was obtained as a pure phase (Fig. 1). The CN stretching vibration is observed at $2038 \mathrm{~cm}^{-1}$, which is typical for thiocyanates that are only terminal bonded to metal cations in a tetrahedral coordination (Fig. S1). Measurements using simultaneously differential thermoanalysis (DTA) and thermogravimetry reveal the decomposition of the title compound starting at about $227^{\circ} \mathrm{C}$, which is accompanied with an endothermic event in the DTA curve (Fig. S2). The experimental mass loss of 37.7% is in a reasonable agreement with that calculated for the removal of one 1,3-dicyclohexylthiourea ligand of 36.6%. The mass loss in the second step is higher than expected for

Figure 1
Experimental (top) and calculated powder pattern (bottom) of the title compound measured with $\mathrm{Cu} K \alpha$ radiation.
the removal of the second 1,3-dicyclohexylthiourea ligand, but in this temperature region the thiocyanate anions also decompose. Additional measurements using differential scanning calorimetry show a small endothermic event before the compound decomposes (Fig. S3). To check if this event corresponds to some transition, the residue formed after the endothermic signal (see point ' x ' in Fig. S3) was isolated and investigated by XRPD measurements, which shows that the powder pattern is identical to that of the pristine material but of lower crystallinity (Fig. S4).

2. Structural commentary

The asymmetric unit of the title compound consists of one $\mathrm{Co}^{\mathrm{II}}$ cation that is located on a twofold rotation axis, one thio-

Figure 2
Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) $-x+1$, $y,-z+\frac{3}{2}$.]

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Co1}-\mathrm{N} 1$	$1.9516(16)$	$\mathrm{Co} 1-\mathrm{S} 11$	$2.3130(5)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$	$113.00(10)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{S} 11$	$106.00(5)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{S} 11^{\mathrm{i}}$	$109.67(5)$		
Symmetry code: (i) $-x+1, y,-z+\frac{3}{2}$.			

cyanate anion and one 1,3-dicyclohexylthiourea ligand that occupies general positions. The $\mathrm{Co}^{\mathrm{II}}$ cations are fourfold coordinated by two terminal N -bonded thiocyanate anions and two sulfur atoms of 1,3-dicyclohexylthiourea ligands each (Fig. 2). The $\mathrm{Co}-\mathrm{N}$ and $\mathrm{Co}-\mathrm{S}$ distances are comparable to that observed in other $\mathrm{Co}(\mathrm{NCS})_{2}$ compounds with thiourea derivatives (Table 1, Jochim et al., 2020a,b). The bond angles deviate from the ideal values, revealing that the tetrahedra are slightly distorted (see supporting information). Both hexane rings of the 1,3-dimethylthiourea ligand are in a chair conformation (Figs. 2 and 3). There are two symmetryequivalent intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds between the amino H atom of the 1,3-dicyclohexylthiourea ligand and the N atoms of the thiocyanate anions (Table 2 and Fig. 3). The $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ angle is close to linearity, indicating that this is a relatively strong interaction (Table 2).

3. Supramolecular features

In the crystal structure of the title compound the discrete complexes are linked into chains by two intermolecular N $\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds related by the twofold rotation axis between the $\mathrm{N}-\mathrm{H} H$ atoms and the thiocyanate S atom of a neighboring complex (Fig. 4, Table 2). The discrete complexes are additionally linked by two symmetry-equivalent $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds, which might correspond to a weak interaction (Fig. 4, Table 2). These chains elongate along the b-axis direction and each chain is surrounded by six neighboring chains in a pseudo-hexagonal manner (Fig. 5).

Figure 3
View of the discrete complex with intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding shown as dashed lines.

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 11-\mathrm{H} 11 \cdots \mathrm{~N} 1$	0.88	2.33	$3.169(2)$	160
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{~S} 1^{\mathrm{ii}}$	1.00	2.93	$3.774(2)$	143
$\mathrm{~N} 12-\mathrm{H} 12 A \cdots \mathrm{~S} 1^{\mathrm{ii}}$	0.88	2.84	$3.6770(16)$	159
$\mathrm{C}_{19}-\mathrm{H} 19 B \cdots \mathrm{~S} 11$	0.99	3.00	$3.529(2)$	114

Symmetry code: (ii) $x, y-1, z$.

4. Database survey

There are only ten crystal structures with this ligand reported in the Cambridge Structural Database (CSD version 5.42, last update November 2020; Groom et al., 2016). The most important for us is bis(1,3-dicyclohexylthiourea)bis(isothiocyanato)zinc(II), which is isotypic to the title compound (refcode: TINBIC; Jia et al., 2007). These authors also reported the structure of hexakis(1,3-dicyclohexylthiourea)lead(II)bis(isothiocyanate) ethanol solvate, which

Figure 4
Crystal structure of the title compound with a view of a chain formed by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonding (dashed lines).

Figure 5
Crystal structure of the title compound with a view in the direction of the crystallographic b-axis, showing the arrangement of the chains. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonding is shown as dashed lines.
consists of discrete complexes, in which the $\mathrm{Pb}^{\mathrm{II}}$ cations are octahedrally coordinated by six 1,3-dicyclohexylthiourea ligands (refcode: TINBUO; Jia et al., 2007). In that paper, the crystal structure of bis(1,3-dicyclohexylthiourea)dichlorocobalt(II) is also reported (refcode: TINBEY). The crystal structures of chlorobis(1,3-dicyclohexylthiourea)copper(I), of bromobis(1,3-dicyclohexylthiourea)copper(I) (refcodes: WODVER and WODVIV; Jia et al., 2008) and of chloro-tris(1,3-dicyclohexylthiourea)tellurium(II) chloride (refcode: OCAWUK; Husebye et al., 2001) also consist of discrete complexes. The crystal structure of 1,3-dicyclohexylthiourea was reported by Ramnathan et al. (1996) (refcode: ZIVGUG).

There are also several crystal structures with $\mathrm{Co}(\mathrm{NCS})_{2}$ reported, in which the $\mathrm{Co}^{\mathrm{II}}$ cations are tetrahedrally coordinated by two terminal N -bonded thiocyanate anions and two N -donor co-ligands, for example two polymorphic modifications of bis(4-dimethylaminopyridine)bis(isothiocyanato)cobalt(II) (refcode: GIQPEE; Neumann et al., 2018a; Krebs et al., 2021), bis(4-vinylpyridine)di(isothiocyanato)cobalt(II) (refcode: BOZJUW; Foxman \& Mazurek, 1982), bis(2chloropyridine)bis(isothiocyanato)cobalt(II), bis(2-bromopyridine)bis(isothiocyanato)cobalt(II), bis(2-methylpyridine)bis(isothiocyanato)cobalt(II) (refcodes: DEYDUI, DEYFIY and DEYGAR; Wöhlert et al., 2013) and bis(4-methoxypyridine)bis(isothiocyanato)cobalt(II) (refcode: KIJQAY; Mautner et al., 2018).

Two structures have already been reported with thiourea derivatives and $\mathrm{Co}(\mathrm{NCS})_{2}$, viz. bis(1,3-dimethylthiourea)bis(isothiocyanato)cobalt(II) (refcode: QUSZAI; Jochim et al., 2020b) and bis(1,1,3,3-tetramethylthiourea)bis(isothiocyanato)cobalt(II) (refcode: WUQTIO; Jochim et al., 2020c).

5. Synthesis and crystallization

Synthesis

$\mathrm{Co}(\mathrm{NCS})_{2}$ was purchased from Merck. 1,3-Dicyclohexylthiourea was purchased from Alfa Aesar. All chemicals were used without further purification. Blue-colored single crystals suitable for single-crystal X-ray analysis were obtained after storage of $0.25 \mathrm{mmol} \mathrm{Co}(\mathrm{NCS})_{2}(43.8 \mathrm{mg})$ and $0.50 \mathrm{mmol} 1,3-$ dicyclohexylthiourea (120.2 mg) in 2.0 ml ethanol at 333 K over night.

Experimental details

The data collection for single crystal structure analysis was performed using an XtaLAB Synergy, Dualflex, HyPix diffractometer from Rigaku with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation.

The IR spectrum was measured using an ATI Mattson Genesis Series FTIR Spectrometer, control software: WINFIRST, from ATI Mattson.

The PXRD measurement was performed with $\mathrm{Cu} K \alpha_{1}$ radiation $(\lambda=1.540598 \AA$) using a Stoe Transmission Powder Diffraction System (STADI P) equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator.

Thermogravimetry and differential thermoanalysis (TGDTA) measurements were performed in a dynamic nitrogen atmosphere in $\mathrm{Al}_{2} \mathrm{O}_{3}$ crucibles using a STA-PT 1000 ther-

Table 3
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
β (${ }^{\circ}$)
$V\left(\mathrm{~A}^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$\left[\mathrm{Co}(\mathrm{NCS})_{2}\left(\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$
655.89
Monoclinic, $C 2 / c$
100
$24.0667(4), 8.8282(1), 18.8910(3)$
$125.619(2)$
$3262.76(11)$
4
$\mathrm{Cu} \mathrm{K} \mathrm{\alpha}$
6.73
$0.15 \times 0.08 \times 0.03$
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$\begin{array}{ll}R_{\text {int }} & 0.025 \\ (\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right) & 0.639\end{array}$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$0.035,0.096,1.05$
XtaLAB Synergy, Dualflex, HyPix
Multi-scan (CrysAlis PRO; Rigaku OD, 2021)
$0.704,1.000$
20399, 3503, 3462
0.639

3503
177
H -atom parameters constrained
$0.65,-0.36$

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2016/6 (Sheldrick, 2015b), DIAMOND (Brandenburg \& Putz, 1999) and publCIF (Westrip, 2010).
mobalance from Linseis. The instrument was calibrated using standard reference materials.

The DSC experiments were performed using a DSC 1 star system with STARe Excellence software from Mettler-Toledo AG under dynamic nitrogen flow in Al pans.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All non-hydrogen atoms were refined anisotropically. The C-bound H atoms were positioned with idealized geometry and were refined isotropically with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ using a riding model.

Acknowledgements

Financial support by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. NA720/5-2).

References

Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. \& Näther, C. (2020). Inorg. Chem. 59, 5325-5338.

Brandenburg, K. \& Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Ceglarska, M., Böhme, M., Neumann, T., Plass, W., Näther, C. \& Rams, M. (2021). Phys. Chem. Chem. Phys. 23, 10281-10289.
Foxman, B. M. \& Mazurek, H. (1982). Inorg. Chim. Acta, 59, 231-235.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Husebye, S., Törnroos, K. W. \& Zhu, H.-Z. (2001). Acta Cryst. C57, 854-856.
Jia, D. X., Zhu, A. M., Deng, J. \& Zhang, Y. (2007). Z. Anorg. Allg. Chem. 633, 2059-2063.
Jia, D. X., Zhu, A. M., Ji, M. \& Zhang, Y. (2008). J. Coord. Chem. 61, 2307-2314.
Jin, Y., Che, Y. X. \& Zheng, J. M. (2007). J. Coord. Chem. 60, 20672074.

Jochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. \& Näther, C. (2020a). Inorg. Chem. 59, 89718982.

Jochim, A., Radulovic, R., Jess, I. \& Näther, C. (2020b). Acta Cryst. E76, 1476-1481.
Jochim, A., Radulovic, R., Jess, I. \& Näther, C. (2020c). Acta Cryst. E76, 1373-1377.
Krebs, C., Jess, I. \& Näther, C. (2021). Acta Cryst. E77, 1120-1125.
Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. \& Massoud, S. S. (2018). Polyhedron, 154, 436-442.
Neumann, T., Jess, I., Pielnhofer, F. \& Näther, C. (2018b). Eur. J. Inorg. Chem. pp. 4972-4981.
Neumann, T., Rams, M., Wellm, C. \& Näther, C. (2018a). Cryst. Growth Des. 18, 6020-6027.
Palion-Gazda, J., Machura, B., Lloret, F. \& Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.
Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. \& Batten, S. R. (2017). Aust. J. Chem. 70, 516528.

Ramnathan, A., Sivakumar, K., Subramanian, K., Meerarani, D., Ramadas, K. \& Fun, H.-K. (1996). Acta Cryst. C52, 139-142.
Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. \& Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Shi, J. M., Chen, J. N., Wu, C. J. \& Ma, J. P. (2007). J. Coord. Chem. 60, 2009-2013.
Shurdha, E., Moore, C. E., Rheingold, A. L., Lapidus, S. H., Stephens, P. W., Arif, A. M. \& Miller, J. S. (2013). Inorg. Chem. 52, 1058310594.

Suckert, S., Rams, M., Böhme, M., Germann, L., Dinnebier, R. E., Plass, W., Werner, J. \& Näther, C. (2016). Dalton Trans. 45, 1819018201.

Wang, X. Y., Li, B. L., Zhu, X. \& Gao, S. (2005). Eur. J. Inorg. Chem. pp. 3277-3286.
Wellm, C., Majcher-Fitas, A., Rams, M. \& Näther, C. (2020). Dalton Trans. 49, 16707-16714.
Wellm, C., Rams, M., Neumann, C., Ceglarska, M. \& Näther, C. (2018). Cryst. Growth Des. 18, 3117-3123.

Werner, J., Rams, M., Tomkowicz, Z. \& Näther, C. (2014). Dalton Trans. 43, 17333-17342.
Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. \& Näther, C. (2015b). Dalton Trans. 44, 14149-14158.
Werner, J., Tomkowicz, Z., Reinert, T. \& Näther, C. (2015a). Eur. J. Inorg. Chem. pp. 3066-3075.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wöhlert, S., Jess, I., Englert, U. \& Näther, C. (2013). CrystEngComm, 15, 5326-5336.
Wöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. \& Näther, C. (2014). Inorg. Chem. 53, 8298-8310.

supporting information

Acta Cryst. (2022). E78, 71-75 [https://doi.org/10.1107/S205698902101327X]

Synthesis, crystal structure and thermal properties of bis(1,3-dicyclohexylthio-urea- κ S)bis(isothiocyanato- $\kappa \mathrm{N}$)cobalt(II)

Christoph Krebs, Inke Jess and Christian Näther

Computing details

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg \& Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(1,3-dicyclohexylthiourea- κ S)bis(isothiocyanato- κN) cobalt(II)

Crystal data

$\left[\mathrm{Co}(\mathrm{NCS})_{2}\left(\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$
$M_{r}=655.89$
Monoclinic, $C 2 / c$
$a=24.0667$ (4) \AA
$b=8.8282$ (1) \AA
$c=18.8910(3) \AA$
$\beta=125.619(2)^{\circ}$
$V=3262.76(11) \AA^{3}$
$Z=4$

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source
Mirror monochromator
Detector resolution: 10.0000 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.096$
$S=1.05$
3503 reflections
177 parameters
0 restraints
Primary atom site location: dual
$F(000)=1396$
$D_{\mathrm{x}}=1.335 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 13904 reflections
$\theta=2.9-78.5^{\circ}$
$\mu=6.73 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, intense blue
$0.15 \times 0.08 \times 0.03 \mathrm{~mm}$
$T_{\text {min }}=0.704, T_{\text {max }}=1.000$
20399 measured reflections
3503 independent reflections
3462 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=80.0^{\circ}, \theta_{\text {min }}=4.5^{\circ}$
$h=-30 \rightarrow 30$
$k=-11 \rightarrow 10$
$l=-20 \rightarrow 24$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.054 P)^{2}+5.0479 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.65 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.36$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Col	0.500000	0.91248 (4)	0.750000	0.02073 (12)
N1	0.57874 (8)	1.03449 (18)	0.78063 (11)	0.0283 (3)
C1	0.62890 (10)	1.1041 (2)	0.82549 (13)	0.0241 (4)
S1	0.69885 (2)	1.19936 (6)	0.88857 (3)	0.02946 (13)
S11	0.53579 (2)	0.76716 (5)	0.87146 (3)	0.02478 (12)
C11	0.59547 (9)	0.6489 (2)	0.87525 (12)	0.0221 (3)
N11	0.63300 (8)	0.70206 (18)	0.84996 (11)	0.0257 (3)
H11	0.628830	0.799458	0.837934	0.031*
C12	0.68063 (9)	0.6182 (2)	0.83960 (13)	0.0250 (4)
H12	0.664260	0.511209	0.823464	0.030*
C13	0.67862 (11)	0.6900 (3)	0.76500 (14)	0.0377 (5)
H13A	0.691074	0.798367	0.777936	0.045*
H13B	0.631610	0.683568	0.710954	0.045*
C14	0.72780 (12)	0.6107 (3)	0.75124 (15)	0.0433 (6)
H14A	0.712524	0.504987	0.732404	0.052*
H14B	0.727319	0.662885	0.704507	0.052*
C15	0.80009 (11)	0.6105 (3)	0.83419 (15)	0.0342 (5)
H15A	0.817213	0.715832	0.849578	0.041*
H15B	0.830355	0.553156	0.824289	0.041*
C16	0.80239 (10)	0.5391 (2)	0.90921 (14)	0.0297 (4)
H16A	0.849393	0.546680	0.963165	0.036*
H16B	0.790582	0.430304	0.896754	0.036*
C17	0.75272 (10)	0.6167 (2)	0.92332 (13)	0.0276 (4)
H17A	0.752748	0.562352	0.969193	0.033*
H17B	0.767965	0.721974	0.943308	0.033*
N12	0.60327 (7)	0.50735 (18)	0.90351 (10)	0.0224 (3)
H12A	0.635837	0.452301	0.908415	0.027*
C18	0.56066 (9)	0.4371 (2)	0.92713 (12)	0.0212 (3)
H18	0.550070	0.515812	0.955748	0.025*
C19	0.49330 (9)	0.3789 (2)	0.84687 (12)	0.0244 (4)
H19A	0.502584	0.301113	0.817278	0.029*
H19B	0.468264	0.463403	0.805576	0.029*
C20	0.44955 (10)	0.3106 (2)	0.87343 (13)	0.0262 (4)
H20A	0.437460	0.390552	0.898999	0.031*
H20B	0.406622	0.270325	0.821191	0.031*
C21	0.48772 (10)	0.1834 (2)	0.93957 (13)	0.0281 (4)
H21A	0.495221	0.098353	0.911865	0.034*
H21B	0.459693	0.145614	0.958672	0.034*
C22	0.55656 (10)	0.2392 (2)	1.01863 (12)	0.0256 (4)

H22A	0.581609	0.153099	1.058555	0.031^{*}
H22B	0.548684	0.315490	1.050304	0.031^{*}
C23	$0.60031(10)$	$0.3096(2)$	$0.99230(13)$	$0.0264(4)$
H23A	0.643242	0.349894	1.044513	0.032^{*}
H23B	0.612306	0.231184	0.965832	0.032^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	$0.0151(2)$	$0.0140(2)$	$0.0277(2)$	0.000	$0.00945(17)$	0.000
N 1	$0.0226(8)$	$0.0191(8)$	$0.0361(9)$	$-0.0028(6)$	$0.0130(7)$	$0.0022(7)$
C1	$0.0240(9)$	$0.0176(8)$	$0.0317(9)$	$0.0029(7)$	$0.0167(8)$	$0.0038(7)$
S1	$0.0212(2)$	$0.0271(2)$	$0.0354(2)$	$-0.00593(17)$	$0.0138(2)$	$-0.00315(18)$
S11	$0.0221(2)$	$0.0209(2)$	$0.0337(2)$	$0.00480(16)$	$0.01759(19)$	$0.00516(17)$
C11	$0.0167(8)$	$0.0214(9)$	$0.0251(8)$	$0.0010(7)$	$0.0105(7)$	$0.0026(7)$
N 11	$0.0209(7)$	$0.0206(8)$	$0.0381(9)$	$0.0044(6)$	$0.0186(7)$	$0.0086(6)$
C12	$0.0182(8)$	$0.0251(9)$	$0.0329(9)$	$0.0022(7)$	$0.0156(8)$	$0.0053(8)$
C13	$0.0241(10)$	$0.0537(14)$	$0.0336(10)$	$0.0071(9)$	$0.0157(9)$	$0.0142(10)$
C14	$0.0342(12)$	$0.0667(17)$	$0.0342(11)$	$0.0050(11)$	$0.0229(10)$	$0.0070(11)$
C15	$0.0251(10)$	$0.0360(11)$	$0.0479(12)$	$0.0000(8)$	$0.0250(10)$	$0.0022(9)$
C16	$0.0199(9)$	$0.0290(10)$	$0.0376(10)$	$0.0010(8)$	$0.0154(8)$	$-0.0003(8)$
C17	$0.0234(9)$	$0.0285(9)$	$0.0292(9)$	$0.0023(7)$	$0.0144(8)$	$0.0011(8)$
N12	$0.0177(7)$	$0.0215(7)$	$0.0298(7)$	$0.0023(6)$	$0.0148(6)$	$0.0042(6)$
C18	$0.0186(8)$	$0.0197(8)$	$0.0261(9)$	$0.0001(7)$	$0.0134(7)$	$0.0027(7)$
C19	$0.0221(9)$	$0.0261(9)$	$0.0242(8)$	$-0.0031(7)$	$0.0129(7)$	$-0.0002(7)$
C20	$0.0227(9)$	$0.0275(10)$	$0.0290(9)$	$-0.0066(7)$	$0.0155(8)$	$-0.0030(7)$
C21	$0.0324(10)$	$0.0239(9)$	$0.0344(10)$	$-0.0052(8)$	$0.0232(9)$	$-0.0014(8)$
C22	$0.0280(9)$	$0.0238(9)$	$0.0288(9)$	$0.0040(7)$	$0.0188(8)$	$0.0066(7)$
C23	$0.0220(9)$	$0.0255(9)$	$0.0310(9)$	$0.0044(7)$	$0.0151(8)$	$0.0086(7)$

Geometric parameters ($A,{ }^{\circ}$)

Col-N1	1.9516 (16)	C16-H16B	0.9900
Col-N1 ${ }^{\text {i }}$	1.9517 (16)	C16-C17	1.530 (3)
Co1-S11	2.3130 (5)	C17-H17A	0.9900
Col-S11 ${ }^{\text {i }}$	2.3131 (5)	C17-H17B	0.9900
N1-C1	1.167 (3)	N12-H12A	0.8800
C1-S1	1.620 (2)	N12-C18	1.472 (2)
S11-C11	1.7431 (18)	C18-H18	1.0000
C11-N11	1.330 (2)	C18-C19	1.526 (2)
C11-N12	1.328 (2)	C18-C23	1.525 (2)
N11-H11	0.8800	C19-H19A	0.9900
N11-C12	1.470 (2)	C19-H19B	0.9900
C12-H12	1.0000	C19-C20	1.529 (2)
C12-C13	1.520 (3)	C20-H20A	0.9900
C12-C17	1.522 (3)	C20-H20B	0.9900
C13-H13A	0.9900	C20-C21	1.526 (3)
C13-H13B	0.9900	C21-H21A	0.9900

$\mathrm{C} 13-\mathrm{C} 14$	$1.522(3)$
$\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$	0.9900
$\mathrm{C} 14-\mathrm{H} 14 \mathrm{~B}$	0.9900
$\mathrm{C} 14-\mathrm{C} 15$	$1.519(3)$
$\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A}$	0.9900
$\mathrm{C} 15-\mathrm{H} 15 \mathrm{~B}$	0.9900
$\mathrm{C} 15-\mathrm{C} 16$	$1.522(3)$
$\mathrm{C} 16-\mathrm{H} 16 \mathrm{~A}$	0.9900

$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$
N1-Co1-S11 ${ }^{\text {i }}$
N1-Col-S11
N1 ${ }^{\text {i }}$ Col-S11 ${ }^{\text {i }}$
N1 ${ }^{\text {i }}$ Col-S11
S11-Col-S11 ${ }^{\text {i }}$
C1—N1-Col
N1-C1-S1
C11-S11-Co1
N11-C11—S11
N12-C11-S11
N12-C11-N11
C11-N11-H11
C11-N11-C12
C12-N11-H11
N11- C12-H12
N11-C12-C13
N11-C12-C17
C13-C12-H12
C13-C12-C17
C17-C12- H12
C12-C13-H13A
113.00 (10)
109.67 (5)
106.00 (5)
106.00 (5)
109.67 (5)
112.63 (3)
157.11 (17)
179.39 (19)
101.24 (6)
119.32 (14)
120.02 (13)
120.67 (16)
116.0
127.98 (16)
116.0
108.5
107.87 (16)
111.80 (16)
108.5
111.64 (16)
108.5
109.4

C12-C13-H13B
C12-C13-C14
H13A-C13-H13B
C14-C13-H13A
C14-C13-H13B
109.4
111.01 (18)
108.0
109.4
109.4

C13-C14—H14A 109.4
C13-C14-H14B
H14A-C14-H14B
C15-C14-C13
C15-C14-H14A
109.4
108.0
111.2 (2)
109.4

C15-C14-H14B
109.4

C14-C15-H15A
109.4

C14-C15-H15B
109.4

C14-C15-C16
H15A-C15-H15B
C16-C15-H15A
C16-C15-H15B
108.0
109.4
109.4

$\mathrm{C} 21-\mathrm{H} 21 \mathrm{~B}$	0.9900
$\mathrm{C} 21-\mathrm{C} 22$	$1.528(3)$
$\mathrm{C} 22-\mathrm{H} 22 \mathrm{~A}$	0.9900
$\mathrm{C} 22-\mathrm{H} 22 \mathrm{~B}$	0.9900
$\mathrm{C} 22-\mathrm{C} 23$	$1.534(3)$
$\mathrm{C} 23-\mathrm{H} 23 \mathrm{~A}$	0.9900
$\mathrm{C} 23-\mathrm{H} 23 \mathrm{~B}$	0.9900

110.88 (16)
109.5
109.5
109.5
109.5
108.1
118.1
123.87 (15)
118.1
108.3
111.41 (15)
109.67 (14)
108.3
108.3
110.89 (16)
109.7
109.7
110.05 (15)
108.2
109.7
109.7
109.4
109.4
108.0
110.96 (16)
109.4
109.4
109.5
109.5
110.86 (16)
108.1
109.5
109.5
109.2
109.2
111.83 (16)
107.9
109.2
109.2

supporting information

C15-C16-H16A	109.3	$\mathrm{C} 18-\mathrm{C} 23-\mathrm{C} 22$	$109.63(15)$
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B}$	109.3	$\mathrm{C} 18-\mathrm{C} 23-\mathrm{H} 23 \mathrm{~A}$	109.7
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$111.61(17)$	$\mathrm{C} 18-\mathrm{C} 23-\mathrm{H} 23 \mathrm{~B}$	109.7
$\mathrm{H} 16 \mathrm{~A}-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B}$	108.0	$\mathrm{C} 22-\mathrm{C} 23-\mathrm{H} 23 \mathrm{~A}$	109.7
C17-C16-H16A	109.3	$\mathrm{C} 22-\mathrm{C} 23-\mathrm{H} 23 \mathrm{~B}$	109.7
C17-C16-H16B	109.3	$\mathrm{H} 23 \mathrm{~A}-\mathrm{C} 23-\mathrm{H} 23 \mathrm{~B}$	108.2

Symmetry code: (i) $-x+1, y,-z+3 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 11 — \mathrm{H} 11 \cdots \mathrm{~N} 1$	0.88	2.33	$3.169(2)$	160
$\mathrm{C} 12 — \mathrm{H} 12 \cdots$ 1 $^{\mathrm{ii}}$	1.00	2.93	$3.774(2)$	143
$\mathrm{~N} 12 — \mathrm{H} 12 A \cdots \mathrm{~S}^{\mathrm{ii}}$	0.88	2.84	$3.6770(16)$	159
$\mathrm{C} 19 — \mathrm{H} 19 B \cdots \mathrm{~S} 11$	0.99	3.00	$3.529(2)$	114

Symmetry code: (ii) $x, y-1, z$.

