

Received 14 September 2021 Accepted 5 January 2022

Edited by V. Jancik, Universidad Nacional Autónoma de México, México

Keywords: crystal structure; coordination polymer; lanthanide; glutarate.

CCDC reference: 2107848

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of a three-dimensional neodymium(III) coordination polymer, $[Nd_2(H_2O)_6(glutarato)(SO_4)_2]_n$

Saranphong Yimklan,^a* Yothin Chimupala,^b Sutsiri Wongngam^a and Nippich Kaeosamut^a

^aDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand, and ^bDepartment of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand. *Correspondence e-mail: Saranphong.Yimklan@cmu.ac.th

A three-dimensional coordination polymer, poly[hexaaqua(μ_4 -glutarato)bis-(μ_3 -sulfato)dineodymium(III)], [Nd₂(glutarato)(SO₄)₂(H₂O)₆]_n (glutarato²⁻ = C₅H₆O₄²⁻), **1**, consisting of cationic {Nd₂(H₂O)₆(SO₄)₂]_n²ⁿ⁺ layers linked by bridging glutarate ligands, was synthesized by the microwave-heating technique within few minutes. The crystal structure of **1** consists of two crystallographically independent *TPRS*-{Nd^{III}O₉} (*TPRS* is tricapped trigonal–prismatic geometry) units that form an edge-sharing dinuclear cluster interconnected to neighbouring dimers by the μ_3 -SO₄²⁻ anions, yielding a cationic two-dimensional {Nd₂(H₂O)₆(SO₄)₂]_n²ⁿ⁺ sheet. Adjacent cationic layers are then linked *via* the μ_4 glutarato²⁻ ligands into a three-dimensional coordination network. Strong O– H···O hydrogen bonds are the predominant interaction in the crystal structure.

1. Chemical context

Coordination polymers (CPs) and metal-organic frameworks (MOFs) have attracted much attention because of the fascinating tuneability of their molecular architectures and functionalities that helps to adjust their properties for applications in different areas such as in sensing and magnetism, as well as catalysis. These properties are cooperatively provided by both the inorganic building units and the organic counterparts (Furukawa et al., 2013). Across the periodic table, the not-so-rare earth lanthanides (Ln) have become one of the promising choices for such materials because of their robust Ln-O bonds, versatile coordination geometries and high thermal stability with exotic properties, including photoluminescence and adaptive active sites for catalysis (Pagis et al., 2016). On the other hand, the flexibility of the organic linkers, such as aliphatic polycarboxylates, can also diversify the structural architecture that sometimes defines the macroscopic properties of the materials (Kim et al., 2017).

Herein, we report a microwave synthesis of a new threedimensional coordination polymer, $[Nd_2(H_2O)_6(glutarato)-(SO_4)_2]_n$ (1). The crystal structure reveals that the glutarates act as bridging ligands binding the cationic $\{Nd_2(H_2O)_6-(SO_4)_2\}_n^{2n+}$ sheets into a three-dimensional network.

2. Structural commentary

The coordination network **1**, $[Nd_2(H_2O)_6(glutarato)(SO_4)_2]_n$ crystallizes in the monoclinic $P2_1/c$ space group. There are two crystallographically independent Nd^{III} cations (Nd1 and Nd2),

two sulfate anions, and six coordinated water molecules in the asymmetric unit, as illustrated in Fig. 1.

Both Nd^{III} cations are nine-coordinated to O atoms from one bridging glutarate²⁻, two chelating glutarate²⁻, two

chelating sulfate anions and three coordinated H₂O, adopting a distorted tricapped trigonal-prismatic geometry, TPRS-{Nd^{III}O₉} (see Fig. 1b), forming an edge-sharing dinuclear unit with its symmetry-related Nd^{III}O₉ polyhedron. The Nd^{III}–O bond distances are in the range of 2.383 (2)-2.785 (2) Å, which are reasonable and comparable to those reported for other Nd^{III} coordination polymers such as [Nd(H₂O)₄(glutarato)]Cl (Hussain et al., 2015), [Nd(H₂O)₄(glutarato)]Cl·2H₂O (Legendziewicz et al., 1999) and [Nd₂(H₂O)₂(glutarato)]·2H₂O (Głowiak et al., 1986). In contrast to the above-mentioned coordination polymers, [Nd(glutarato)(H₂O)₄]Cl (Hussain et al., 2015) and [Nd(glutarato)(H₂O)₄]Cl·2H₂O (Legendziewicz et al., 1999) consisting of cationic {Nd(H₂O)_x(glutarato)}^{*n*+}_{*n*} (x = 2, 4) subunits compensated by uncoordinated chloride anions, each of the tetrahedral SO_4^{2-} ligands in 1 links three adjacent Nd^{III} atoms, forming a neutral two-dimensional network of $[Nd_2(H_2O)_6(glutarato)(SO_4)_2]_n$. The S–O bond distances are in the range 1.449 (3)–1.485 (2) Å, with O-S-O angles ranging from 107.78 (16) to $111.67 (15)^\circ$. The flexible glutarate linker exhibits a $(\mu_4 - \kappa^2 O : \kappa O' : \kappa^2 O'' : \kappa O'''$ coordination mode with an anti-anti conformation as depicted in Fig. 2a. There are six crystallographically independent water

Figure 1

Graphical representations of (a) an extended asymmetric unit of **1** drawn with 50% probability ellipsoids, (b) coordination geometries of Nd1 (top) and Nd2 (bottom) and (c) coordination environment of Nd1 (left) and Nd2 (right). [Symmetry codes: (i) -x + 2, -y, -z; (ii) -x + 2, y - 1/2, $-z - \frac{1}{2}$; (iii) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (iv) -x + 1, -y + 1, -z; (v) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (vi) -x + 2, $y + \frac{1}{2}$, $-z - \frac{1}{2}$.]

molecules completing the coordination sites of the two Nd^{III} atoms (three H₂O molecules for each Nd^{III} atom, Fig. 2*b*).

3. Supramolecular features

The polymeric structure of **1** can be described as a threedimensional non-porous framework, which is constructed from edge-sharing *TPRS*-{Nd^{III}O₉} polyhedra linked through sulfate anions, acting as tritopic inorganic linkers, into a cationic $[Nd_2(H_2O)_6(SO_4)_2]_n^{2n+}$ sheets parallel to the (011) layers, as illustrated in Fig. 3*a*. It is noteworthy that these sheets also contain large inorganic $[Nd(SO_4)]_4$ rings further stabilized by $O-H\cdots O$ hydrogen bonds between the water molecules and sulfate anions (Table 1). Eventually, the final three-dimensional network is formed by connecting these adjacent cationic sheets by the glutarate ligands (Fig. 3*b*). This three-dimensional arrangement also features $O-H\cdots O$ hydrogen bonds between two water molecules or between a water molecule and oxygen atoms of the glutarate ligands (Fig. 2b). In total, all but one hydrogen atom from the six crystallographically independent water molecules are involved in hydrogen bonding (Table 1). Analysis of these hydrogen bonds revealed thirteen different first-order graph sets (Bernstein *et al.*, 1995) consisting of five rings and eight different chains.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom *et al.*, 2016) confirms that no Nd^{III} coordination polymer containing both glutarate^{2–} and $SO_4^{2–}$ has been reported. However, several

Figure 2

Depictions of (a) the coordination modes of the glutarate and the sulfate ligands in **1** and (b) seven of the eleven crystallographically independent hydrogen bonds (dashed green lines) with bond distances. [Symmetry codes: (i) -x + 2, -y, -z; (ii) -x + 2, $y - \frac{1}{2}$, $-z - \frac{1}{2}$; (iii) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (iv) -x + 1, -y + 1, -z; (v) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (vi) -x + 2, $y + \frac{1}{2}$, $z - \frac{1}{2}$; (vii) x + 1, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (viii) x - 1, y, z; (ix) -x + 1, $y + \frac{1}{2}$, $-z - \frac{1}{2}$; (x) x, y, z - 1.]

research communications

Table 1	
Hydrogen-bond geometry (Å,	°).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
0.05	1.01	0 700 (4)	155
0.85	1.91	2.709 (4)	155
0.85	1.94	2.774 (3)	165
0.81(2)	2.38 (4)	2.966 (4)	130 (4)
0.84(2)	2.09 (2)	2.903 (4)	165 (4)
0.85	2.10	2.825 (4)	143
0.85	2.07	2.904 (4)	166
0.85	1.95	2.733 (3)	153
0.85	1.99	2.745 (4)	148
0.85 (2)	2.13 (2)	2.966 (4)	165 (4)
0.83 (2)	2.03 (2)	2.826 (3)	160 (3)
0.81 (2)	2.00 (2)	2.805 (3)	170 (4)
	<i>D</i> -H 0.85 0.81 (2) 0.84 (2) 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85	$\begin{array}{c cccc} D-H & H\cdots A \\ \hline 0.85 & 1.91 \\ 0.85 & 1.94 \\ 0.81 (2) & 2.38 (4) \\ 0.84 (2) & 2.09 (2) \\ 0.85 & 2.10 \\ 0.85 & 2.07 \\ 0.85 & 1.95 \\ 0.85 & 1.99 \\ 0.85 (2) & 2.13 (2) \\ 0.83 (2) & 2.03 (2) \\ 0.81 (2) & 2.00 (2) \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry codes: (i) $x + 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) x + 1, y, z; (iv) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (vi) $-x + 1, y + \frac{1}{2}, -z - \frac{1}{2}$; (vii) x, y, z - 1; (viii) -x + 1, -y + 1, -z - 1; (ix) $-x + 2, y - \frac{1}{2}, -z - \frac{1}{2}$.

related polymeric structures, *viz. catena-*[(μ -pentanedioato)tetraaquaneodymium chloride] (NEMXIP; Hussain *et al.*, 2015), *catena-*[(μ_4 -glutarato)tetraaquadineodymium chloride dihydrate] (DIQZAE01; Marsh, 2005), *catena-*[bis(μ_4 -pentane-1,5-dionato)(μ_2 -pentane-1,5-dionato)diaquadineodymium(III) tetrahydrate] (FAQYUR; Legendziewicz *et al.*, 1999) and *catena-*[tris(μ_3 -glutarato-O, O, O', O'', O''')diaquadineodymium(III) dihydrate] (FAFGAU; Głowiak *et al.*, 1986), have been reported.

5. Synthesis and crystallization

Complex **1** was synthesized by dissolving Nd₂(SO₄)₃·8H₂O (1 mmol, 0.721 g), glutaric acid (1 mmol, 0.132 g), and 4,4'bipyridine (1 mmol, 0.156 g) in 40.0 mL of deionized water under ambient conditions. The solution was transferred into an open glass reactor and then irradiated by microwaves (800 W) for 10 minutes. The solution was let to cool to ambient temperature. Pale-purple block-shaped crystals crystallized from the solution within a few minutes. FT–IR (ATR Mode, cm⁻¹) of **1**: $\nu_{stretch}$ (O–H) 3364, $\nu_{stretch}$ (C–H) 2990, ν_{as} (COO⁻) 1531, ν_{s} (COO⁻) 1430, δ (O–H) 1355, ν_{s} (S– O) 1101, ν_{s} (S–O) 1077, ν_{s} (SO₄^{2–}) 596.

Table 2	
Experimental details.	
Crystal data	
Chemical formula	$[Nd_2(C_5H_6O_4)(SO_4)_2(H_2O)_6]$
M _r	718.79
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	293
a, b, c (Å)	15.5461 (1), 12.6621 (1), 8.8883 (1)
β (°)	95.287 (1)
$V(Å^3)$	1742.19 (3)
Ζ	4
Radiation type	Μο Κα
$\mu \ (\mathrm{mm}^{-1})$	6.23
Crystal size (mm)	$0.2 \times 0.2 \times 0.2$
Data collection	
Diffractometer	SuperNova, Single source at offset/ far, HyPix3000
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014)
T_{\min}, T_{\max}	0.448, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	38711, 3830, 3482
R _{int}	0.067
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.648
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.022, 0.045, 1.08
No. of reflections	3830
No. of parameters	268
No. of restraints	9
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.62, -0.88

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

6. Refinement

T | | | | |

Crystal data, data collection and structure refinement details are summarized in Table 2. Carbon-bound H atoms were positioned geometrically (C-H = 0.97 Å) and constrained using the riding-model approximation with $U_{iso}(H) =$ $1.2U_{eq}(C)$. The H atoms from the water molecules were located in the residual electron-density map, and where

Figure 3 Views of (a) the [Nid (II O) (SO)] 2^{n+} short or

Views of (a) the $[Nd_2(H_2O)_6(SO_4)_2]_n^{2n+}$ sheet and (b) the three-dimensional framework of **1**.

necessary, refined with distance and angle restraints or riding on the parent oxygen atom.

Acknowledgements

This research was partially supported by the CMU Junior Research Fellowship Program, Faculty of Science, Chiang Mai University, the Development and Promotion of Science and Technology Talent Project (DPST) through a research fund for graduates with first placement. The authors thank W. Booncharoen for chemical and physical analysis services during the COVID-19 pandemic. SY and YC acknowledge A. Rujiwatra for supervision in the DPST research fund. SW and NK also thank the DPST project for their research grants.

Funding information

Funding for this research was provided by: Faculty of Science, Chiang Mai University; Development and Promotion of Science and Technology Talent Project (DPST) through a research fund for graduates with first placement; CMU Junior Research Fellowship Program. References

- Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. (2013). Science, 341, 1230444–1230444.
- Głowiak, T., Dao-Cong Ngoan & Legendziewicz, J. (1986). Acta Cryst. C42, 1494–1496.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hussain, S., Khan, I. U., Harrison, W. T. A. & Tahir, M. N. (2015). J. Struct. Chem. 56, 934–941.
- Kim, H.-C., Huh, S., Kim, J. Y., Moon, H. R., Lee, D. N. & Kim, Y. (2017). CrystEngComm, 19, 99–109.
- Legendziewicz, J., Keller, B., Turowska-Tyrk, I. & Wojciechowski, W. (1999). New J. Chem. 23, 1097–1103.
- Marsh, R. E. (2005). Acta Cryst. B61, 359.
- Pagis, C., Ferbinteanu, M., Rothenberg, G. & Tanase, S. (2016). ACS Catal. 6, 6063–6072.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

supporting information

Acta Cryst. (2022). E78, 159-163 [https://doi.org/10.1107/S2056989022000159]

Crystal structure of a three-dimensional neodymium(III) coordination polymer, $[Nd_2(H_2O)_6(glutarato)(SO_4)_2]_n$

Saranphong Yimklan, Yothin Chimupala, Sutsiri Wongngam and Nippich Kaeosamut

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2014); cell refinement: *CrysAlis PRO* (Agilent, 2014); data reduction: *CrysAlis PRO* (Agilent, 2014); program(s) used to solve structure: *SHELXT2018/2* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

Poly[hexaaqua(μ_4 -glutarato)bis(μ_3 -sulfato)dineodymium(III)]

Crystal data	
$[Nd_{2}(C_{5}H_{6}O_{4})(SO_{4})_{2}(H_{2}O)_{6}]$ $M_{r} = 718.79$ Monoclinic, $P2_{1}/c$ a = 15.5461 (1) Å b = 12.6621 (1) Å c = 8.8883 (1) Å $\beta = 95.287 (1)^{\circ}$ $V = 1742.19 (3) Å^{3}$ Z = 4	F(000) = 1376 $D_x = 2.740 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25026 reflections $\theta = 2.1-27.3^{\circ}$ $\mu = 6.23 \text{ mm}^{-1}$ T = 293 K Block, clear light violet $0.2 \times 0.2 \times 0.2 \text{ mm}$
Data collection	
SuperNova, Single source at offset/far, HyPix3000 diffractometer Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source Mirror monochromator ω scans Absorption correction: multi-scan (CrysAlisPro; Agilent, 2014)	$T_{\min} = 0.448, T_{\max} = 1.000$ 38711 measured reflections 3830 independent reflections 3482 reflections with $I > 2\sigma(I)$ $R_{int} = 0.067$ $\theta_{\max} = 27.4^{\circ}, \ \theta_{\min} = 2.1^{\circ}$ $h = -20 \rightarrow 19$ $k = -16 \rightarrow 16$ $l = -11 \rightarrow 11$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.045$ S = 1.08 3830 reflections 268 parameters 9 restraints	Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0106P)^2 + 1.2155P]$ where $P = (F_o^2 + 2F_c^2)/3$

 $\begin{array}{l} (\Delta/\sigma)_{\rm max}=0.003\\ \Delta\rho_{\rm max}=0.62~{\rm e}~{\rm \AA}^{-3}\\ \Delta\rho_{\rm min}=-0.88~{\rm e}~{\rm \AA}^{-3} \end{array}$

Extinction correction: SHELXL2018/3 (Sheldrick 2015b), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.00033 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure of 1 was solved in the space group P21/c (No. 14) using direct methods in the SHELXT (Sheldrick, 2015a) structure-solution program and refined by full-matrix least-squares minimization on F2 using SHELXL 2018/3 (Sheldrick, 2015b).

Fractional atomic coordinates and	l isotropic or e	quivalent isotropic	c displacement	parameters	$(Å^2)$)
-----------------------------------	------------------	---------------------	----------------	------------	---------	---

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Nd2	1.07588 (2)	0.09859 (2)	-0.12226 (2)	0.01075 (6)	
Nd1	0.42661 (2)	0.43378 (2)	-0.18797 (2)	0.01254 (6)	
S2	1.05205 (6)	0.38265 (6)	-0.21038 (9)	0.01194 (18)	
S1	0.41004 (6)	0.35878 (6)	0.21539 (9)	0.01539 (19)	
O11	0.93262 (15)	0.07269 (16)	-0.0510 (2)	0.0157 (5)	
O6	1.11665 (15)	0.45391 (16)	-0.1313 (2)	0.0180 (5)	
O5	1.04359 (16)	0.28751 (16)	-0.1153 (2)	0.0177 (5)	
08	0.96805 (15)	0.43635 (16)	-0.2326 (2)	0.0155 (5)	
O16W	1.16897 (17)	0.0982 (2)	-0.3338 (3)	0.0265 (6)	
H16A	1.222796	0.084873	-0.321649	0.040*	
H16B	1.152057	0.070890	-0.418758	0.040*	
O17W	1.21843 (18)	0.1988 (2)	-0.0366 (3)	0.0321 (7)	
H17A	1.218 (3)	0.2626 (15)	-0.044 (5)	0.048*	
H17B	1.259 (2)	0.177 (3)	-0.083 (4)	0.048*	
012	0.80870 (15)	0.03120 (18)	0.0300 (3)	0.0220 (6)	
O12W	0.27085 (16)	0.37303 (19)	-0.2316 (3)	0.0258 (6)	
H12A	0.237228	0.422979	-0.210018	0.039*	
H12B	0.258297	0.362463	-0.325853	0.039*	
O9	0.56170 (17)	0.41489 (18)	-0.0404 (3)	0.0236 (6)	
O2	0.48805 (16)	0.42067 (18)	0.2617 (3)	0.0247 (6)	
O13W	0.36280 (16)	0.5016 (2)	-0.4426 (3)	0.0283 (6)	
H13A	0.309153	0.513771	-0.439262	0.042*	
H13B	0.364813	0.453202	-0.508542	0.042*	
O10	0.67742 (18)	0.4309 (2)	0.1157 (3)	0.0335 (7)	
O14W	0.5138 (2)	0.3668 (2)	-0.4039 (3)	0.0425 (8)	
H14A	0.545 (3)	0.400 (3)	-0.463 (4)	0.064*	
H14B	0.498 (3)	0.313 (2)	-0.451 (5)	0.064*	
01	0.39367 (18)	0.3531 (2)	0.0516 (3)	0.0348 (7)	
C4	0.8121 (2)	0.1900 (3)	-0.1158 (4)	0.0213 (8)	
H4A	0.776496	0.167837	-0.205583	0.026*	
H4B	0.856900	0.236004	-0.147741	0.026*	
C1	0.6402 (2)	0.3905 (3)	-0.0018 (4)	0.0178 (8)	

C5	0.8539 (2)	0.0942 (2)	-0.0408 (4)	0.0148 (8)	
C2	0.6882 (3)	0.3205 (3)	-0.1001 (4)	0.0297 (10)	
H2A	0.715651	0.364043	-0.171662	0.036*	
H2B	0.647082	0.274906	-0.157345	0.036*	
C3	0.7565 (2)	0.2524 (3)	-0.0148 (4)	0.0249 (9)	
H3A	0.728270	0.203229	0.048365	0.030*	
H3B	0.793796	0.297267	0.051188	0.030*	
O18	0.97596 (18)	0.14621 (19)	-0.3490 (3)	0.0206 (6)	
H18A	0.945 (2)	0.095 (2)	-0.376 (4)	0.031*	
H18B	0.992 (2)	0.172 (3)	-0.425 (3)	0.031*	
07	1.08197 (15)	0.34921 (17)	-0.3553 (2)	0.0160 (5)	
O4	0.4228 (2)	0.2533 (2)	0.2767 (3)	0.0447 (8)	
03	0.33686 (18)	0.4071 (2)	0.2790 (3)	0.0431 (8)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Nd2	0.01192 (11)	0.01076 (10)	0.00957 (10)	0.00054 (7)	0.00104 (8)	0.00014 (7)
Nd1	0.01289 (12)	0.01314 (11)	0.01148 (10)	0.00009 (7)	0.00057 (8)	0.00022 (7)
S2	0.0158 (5)	0.0112 (4)	0.0089 (4)	0.0013 (3)	0.0013 (3)	0.0007 (3)
S1	0.0187 (5)	0.0147 (4)	0.0133 (4)	-0.0029 (4)	0.0047 (4)	0.0003 (3)
011	0.0119 (13)	0.0187 (12)	0.0161 (13)	0.0037 (10)	0.0000 (11)	-0.0004 (10)
06	0.0206 (14)	0.0169 (12)	0.0154 (12)	-0.0016 (11)	-0.0037 (11)	-0.0019 (10)
05	0.0272 (15)	0.0134 (12)	0.0128 (12)	0.0019 (11)	0.0028 (11)	0.0042 (9)
08	0.0177 (14)	0.0140 (12)	0.0152 (12)	0.0039 (10)	0.0036 (11)	0.0022 (9)
O16W	0.0175 (15)	0.0443 (17)	0.0177 (14)	-0.0005 (13)	0.0022 (12)	-0.0048 (12)
O17W	0.0298 (18)	0.0261 (15)	0.0389 (18)	-0.0074 (14)	-0.0057 (14)	0.0082 (14)
012	0.0154 (14)	0.0191 (13)	0.0313 (14)	0.0002 (11)	0.0010 (12)	0.0079 (11)
O12W	0.0194 (15)	0.0312 (15)	0.0261 (14)	-0.0007 (12)	-0.0024 (12)	-0.0030 (12)
09	0.0178 (15)	0.0285 (14)	0.0241 (14)	0.0071 (11)	0.0006 (12)	0.0010 (11)
02	0.0240 (16)	0.0300 (14)	0.0193 (14)	-0.0128 (12)	-0.0021 (12)	0.0040 (11)
O13W	0.0205 (15)	0.0439 (17)	0.0201 (13)	0.0049 (13)	0.0003 (12)	-0.0037 (12)
O10	0.0281 (17)	0.0360 (16)	0.0342 (16)	0.0110 (13)	-0.0090 (14)	-0.0181 (13)
O14W	0.061 (2)	0.0426 (19)	0.0262 (17)	0.0041 (17)	0.0190 (16)	-0.0004 (14)
01	0.0471 (19)	0.0486 (17)	0.0084 (12)	-0.0274 (15)	0.0015 (12)	-0.0004 (12)
C4	0.020 (2)	0.0195 (19)	0.024 (2)	0.0058 (16)	0.0006 (16)	0.0038 (15)
C1	0.015 (2)	0.0190 (18)	0.0188 (19)	0.0056 (15)	-0.0017 (16)	-0.0020 (15)
C5	0.015 (2)	0.0144 (17)	0.0149 (18)	0.0013 (15)	-0.0009 (15)	-0.0031 (14)
C2	0.029 (2)	0.038 (2)	0.022 (2)	0.0139 (19)	-0.0004 (18)	-0.0049 (17)
C3	0.030 (2)	0.023 (2)	0.0209 (19)	0.0139 (17)	0.0010 (17)	-0.0023 (16)
O18	0.0267 (16)	0.0193 (14)	0.0155 (13)	-0.0062 (11)	-0.0003 (12)	0.0043 (11)
O7	0.0188 (14)	0.0185 (12)	0.0111 (11)	0.0050 (10)	0.0030 (10)	-0.0002 (9)
O4	0.057 (2)	0.0187 (15)	0.0566 (19)	-0.0073 (14)	-0.0032 (17)	0.0138 (14)
O3	0.0171 (16)	0.069 (2)	0.0430 (18)	0.0099 (14)	0.0029 (14)	-0.0298 (15)

Geometric parameters (Å, °)

Nd2—O11	2.393 (2)	O11—C5	1.265 (4)
Nd2—O11 ⁱ	2.670 (2)	O16W—H16A	0.8508
Nd2—O5	2.446 (2)	O16W—H16B	0.8501
Nd2—O8 ⁱⁱ	2.487 (2)	O17W—H17A	0.811 (18)
Nd2—O16W	2.476 (3)	O17W—H17B	0.836 (18)
Nd2—017W	2.606 (3)	O12—C5	1.268 (4)
Nd2—O12 ⁱ	2.514 (2)	O12W—H12A	0.8534
Nd2—O18	2.502 (2)	O12W—H12B	0.8534
Nd2—O7 ⁱⁱⁱ	2.456 (2)	O9—C1	1.275 (4)
Nd1—O12W	2.536 (2)	O13W—H13A	0.8513
Nd1—O9 ^{iv}	2.785 (2)	O13W—H13B	0.8508
Nd1—O9	2.383 (2)	O10-C1	1.255 (4)
Nd1—O2 ^{iv}	2.397 (2)	O14W—H14A	0.854 (19)
Nd1—O13W	2.536 (2)	O14W—H14B	0.831 (18)
Nd1	2.481 (3)	C4—H4A	0.9700
Nd1—O14W	2.592 (3)	C4—H4B	0.9700
Nd1—O1	2.457 (2)	C4—C5	1.502 (4)
Nd1—O4 ^v	2.390 (2)	C4—C3	1.523 (5)
S2—O6	1.479 (2)	C1—C2	1.491 (5)
S2—O5	1.485 (2)	C2—H2A	0.9700
S2—O8	1.470 (2)	C2—H2B	0.9700
S2—O7	1.472 (2)	C2—C3	1.516 (5)
S1—O2	1.471 (2)	С3—НЗА	0.9700
S1—O1	1.457 (2)	С3—Н3В	0.9700
S1—O4	1.449 (3)	O18—H18A	0.827 (18)
S1—O3	1.452 (3)	O18—H18B	0.814 (18)
O11-Nd2-O11 ⁱ	68.86 (8)	O8—S2—O6	109.74 (13)
O11—Nd2—O5	85.94 (8)	O8—S2—O5	109.14 (14)
O11—Nd2—O8 ⁱⁱ	78.84 (7)	O8—S2—O7	111.34 (13)
O11—Nd2—O16W	145.48 (8)	O7—S2—O6	109.63 (14)
O11—Nd2—O17W	140.93 (8)	O7—S2—O5	108.47 (13)
O11—Nd2—O12 ⁱ	118.53 (7)	O1—S1—O2	111.67 (15)
O11—Nd2—O18	73.89 (8)	O4—S1—O2	107.78 (16)
O11—Nd2—O7 ⁱⁱⁱ	74.65 (7)	O4—S1—O1	109.63 (16)
O5—Nd2—O11 ⁱ	139.33 (7)	O4—S1—O3	109.07 (19)
O5—Nd2—O8 ⁱⁱ	140.68 (7)	O3—S1—O2	108.79 (16)
O5—Nd2—O16W	99.03 (8)	O3—S1—O1	109.83 (17)
O5—Nd2—O17W	71.78 (8)	Nd2—O11—Nd2 ⁱ	111.14 (8)
O5—Nd2—O12 ⁱ	140.61 (7)	C5—O11—Nd2	156.8 (2)
O5—Nd2—O18	70.81 (7)	C5—O11—Nd2 ⁱ	91.97 (19)
O5—Nd2—O7 ⁱⁱⁱ	72.67 (7)	S2—O5—Nd2	138.58 (13)
08 ¹¹ —Nd2—O11 ¹	66.58 (7)	S2—O8—Nd2 ^{v1}	130.54 (13)
08 ¹¹ —Nd2—017W	137.65 (9)	Nd2—016W—H16A	122.8
08^{n} Nd2 -012^{n}	77.46 (7)	Nd2—O16W—H16B	121.4
08 ⁿ —Nd2—O18	70.18 (7)	H16A—O16W—H16B	104.6

O16W-Nd2-O11 ⁱ	119.98 (8)	Nd2—017W—H17A	118 (3)
O16W—Nd2—O8 ⁱⁱ	75.90 (8)	Nd2—O17W—H17B	111 (3)
O16W—Nd2—O17W	71.46 (9)	H17A—O17W—H17B	107 (3)
O16W-Nd2-O12 ⁱ	78.27 (8)	C5—O12—Nd2 ⁱ	99.3 (2)
O16W—Nd2—O18	75.62 (9)	Nd1—O12W—H12A	109.7
O17W—Nd2—O11 ⁱ	108.23 (8)	Nd1—O12W—H12B	109.0
O12 ⁱ —Nd2—O11 ⁱ	49.67 (7)	H12A—O12W—H12B	104.3
O12 ⁱ —Nd2—O17W	70.17 (8)	Nd1—O9—Nd1 ^{iv}	109.09 (9)
018—Nd2—011 ⁱ	126.89 (7)	C1—O9—Nd1 ^{iv}	88.51 (19)
O18—Nd2—O17W	124.49 (8)	C1—O9—Nd1	161.0 (2)
O18—Nd2—O12 ⁱ	142.32 (8)	S1—O2—Nd1 ^{iv}	142.78 (14)
07 ⁱⁱⁱ —Nd2—O11 ⁱ	70.19 (7)	Nd1—O13W—H13A	109.5
07 ⁱⁱⁱ —Nd2—O8 ⁱⁱ	135.02 (7)	Nd1—O13W—H13B	109.6
07 ⁱⁱⁱ —Nd2—O16W	139.53 (8)	H13A—O13W—H13B	104.6
07 ⁱⁱⁱ —Nd2—017W	68.32 (8)	C1—O10—Nd1 ^{iv}	103.6 (2)
07^{iii} —Nd2— 012^{i}	84.15 (8)	Nd1—O14W—H14A	131 (3)
07^{iii} —Nd2—012	132.77 (8)	Nd1—O14W—H14B	120(3)
$O12W$ Nd1 $O9^{iv}$	108 50 (8)	H14A - O14W - H14B	104(3)
O12W Nd1 $O14W$	110.17(10)	S1—O1—Nd1	14454(15)
09—Nd1— $012W$	146 52 (8)	H4A - C4 - H4B	107.7
09 Nd1 -012 W	70 91 (9)	C5-C4-H4A	108.8
09 —Nd1— 02^{iv}	75 27 (8)	C5-C4-H4B	108.8
09—Nd1— $013W$	141.04(8)	C5-C4-C3	113.8 (3)
$O9$ —Nd1— $O10^{iv}$	119 29 (8)	C3—C4—H4A	108.8
09—Nd1— $014W$	83 11 (10)	C3-C4-H4B	108.8
09—Nd1—O1	74 03 (9)	$O9-C1-Nd1^{iv}$	66 63 (18)
09 —Nd1— 04^{v}	89.01 (9)	09-C1-C2	120 3 (3)
O^{2iv} -Nd1-O12W	13740(8)	$010-C1-Nd1^{iv}$	52.67(17)
$O2^{iv}$ Nd1 $O2^{iv}$	70 71 (8)	010-C1-09	1188(3)
$O2^{iv}$ Nd1 $O13W$	71.12 (8)	010-C1-C2	120.8(3)
$O2^{iv}$ Nd1 $O10^{iv}$	85 99 (9)	$C2 - C1 - Nd1^{iv}$	120.0(3) 167.7(3)
$O2^{iv}$ -Nd1-O14W	73.06 (9)	$O11-C5-Nd2^{i}$	63.04 (17)
$O2^{iv}$ -Nd1-O1	136.14 (8)	011 - C5 - 012	118.9(3)
013W Nd1 $-012W$	71 15 (8)	011 - C5 - C4	121.6(3)
$O13W$ —Nd1— $O9^{iv}$	114.29 (7)	$012-C5-Nd2^{i}$	55.97 (16)
O13W—Nd1—O14W	68.79 (9)	012 - C5 - C4	119.5 (3)
$O10^{iv}$ —Nd1—O12W	67.24 (8)	$C4-C5-Nd2^{i}$	175.3 (3)
$O10^{iv}$ Nd1 $O12^{iv}$	48 43 (8)	C1 - C2 - H2A	108 7
$O10^{iv}$ Nd1 $O13W$	77 67 (9)	C1 - C2 - H2B	108.7
$O10^{iv}$ Nd1 $O14W$	144 63 (9)	C1 - C2 - C3	1142(3)
$O14W$ Nd1 $O9^{iv}$	139 56 (9)	$H^2A - C^2 - H^2B$	107.6
01—Nd1— $012W$	74 58 (8)	C3 - C2 - H2A	108.7
01 Nd1 012 11	70.08 (8)	C3—C2—H2B	108.7
01 Nd1 $-013W$	144 93 (9)	C4—C3—H3A	108.7
$01 - Nd1 - 010^{iv}$	82 52 (10)	C4-C3-H3B	108.7
O1-Nd1-O14W	132 11 (10)	C_{2} C_{3} C_{4}	114.2 (3)
$O4^{v}$ Nd1 $O12W$	70 57 (9)	C2 - C3 - H3A	108 7
$O4^{v}$ Nd1 $O9^{iv}$	140 98 (9)	$C_2 = C_3 = H_3 R$	108.7
07 — Mu1 — 07	110.90 (9)	02-05-1150	100.7

$O4^v$ —Nd1— $O2^{iv}$	137.22 (10)	НЗА—СЗ—НЗВ	107.6
O4 ^v —Nd1—O13W	102.45 (9)	Nd2—O18—H18A	110 (3)
O4 ^v —Nd1—O10 ^{iv}	135.22 (10)	Nd2—O18—H18B	123 (3)
O4 ^v —Nd1—O14W	65.60 (10)	H18A—O18—H18B	107 (3)
O4 ^v —Nd1—O1	72.38 (10)	S2—O7—Nd2 ^v	141.35 (13)
O6—S2—O5	108.45 (13)	S1—O4—Nd1 ⁱⁱⁱ	164.56 (18)
Nd2—O11—C5—Nd2 ⁱ	-174.9 (5)	O8—S2—O5—Nd2	128.04 (19)
Nd2—O11—C5—O12	-178.5 (3)	$O8$ — $S2$ — $O7$ — $Nd2^{v}$	32.0 (3)
Nd2 ⁱ O11C5O12	-3.5 (3)	O9—C1—C2—C3	-148.9 (3)
Nd2—O11—C5—C4	4.0 (7)	O2—S1—O1—Nd1	-18.1 (4)
Nd2 ⁱ	179.0 (3)	O2—S1—O4—Nd1 ⁱⁱⁱ	-137.7 (7)
Nd2 ⁱ —O12—C5—O11	3.8 (3)	O10-C1-C2-C3	34.9 (5)
Nd2 ⁱ —O12—C5—C4	-178.6 (2)	O1—S1—O2—Nd1 ^{iv}	31.5 (3)
Nd1—O9—C1—Nd1 ^{iv}	158.3 (7)	O1—S1—O4—Nd1 ⁱⁱⁱ	-15.9 (8)
Nd1	166.0 (5)	C1—C2—C3—C4	-173.6 (3)
Nd1 ^{iv} O9C1O10	7.7 (3)	C5—C4—C3—C2	-157.3 (3)
Nd1 ^{iv}	-168.6 (3)	C3—C4—C5—O11	-134.7 (3)
Nd1—O9—C1—C2	-10.3 (9)	C3—C4—C5—O12	47.8 (4)
Nd1 ^{iv}	-8.9 (4)	O7—S2—O5—Nd2	6.6 (2)
Nd1 ^{iv}	167.4 (3)	O7—S2—O8—Nd2 ^{vi}	-59.51 (19)
Nd1 ^{iv} —C1—C2—C3	89.6 (11)	O4— $S1$ — $O2$ — $Nd1$ ^{iv}	151.9 (3)
O6—S2—O5—Nd2	-112.4 (2)	O4—S1—O1—Nd1	-137.5 (3)
O6-S2-O8-Nd2 ^{vi}	62.05 (19)	O3—S1—O2—Nd1 ^{iv}	-89.9 (3)
O6—S2—O7—Nd2 ^v	-89.7 (2)	O3—S1—O1—Nd1	102.7 (3)
O5-S2-O8-Nd2 ^{vi}	-179.23 (14)	O3—S1—O4—Nd1 ⁱⁱⁱ	104.4 (8)
O5—S2—O7—Nd2 ^v	152.09 (19)		

Symmetry codes: (i) -x+2, -y, -z; (ii) -x+2, y-1/2, -z-1/2; (iii) x, -y+1/2, z+1/2; (iv) -x+1, -y+1, -z; (v) x, -y+1/2, z-1/2; (vi) -x+2, y+1/2, -z-1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
016 <i>W</i> —H16 <i>A</i> ···O3 ^{vii}	0.85	1.91	2.709 (4)	155
O16 <i>W</i> —H16 <i>B</i> ···O6 ^v	0.85	1.94	2.774 (3)	165
O17 <i>W</i> —H17 <i>A</i> ···O12 <i>W</i> ^{viii}	0.81 (2)	2.38 (4)	2.966 (4)	130 (4)
O17 <i>W</i> —H17 <i>B</i> ···O3 ^{vii}	0.84 (2)	2.09 (2)	2.903 (4)	165 (4)
O12 <i>W</i> —H12 <i>A</i> ···O6 ^{ix}	0.85	2.10	2.825 (4)	143
O12 <i>W</i> —H12 <i>B</i> ···O17 <i>W</i> ^x	0.85	2.07	2.904 (4)	166
O13 <i>W</i> —H13 <i>A</i> ···O12 ^{xi}	0.85	1.95	2.733 (3)	153
O13 <i>W</i> —H13 <i>B</i> ···O3 ^{xii}	0.85	1.99	2.745 (4)	148
O14 <i>W</i> —H14 <i>A</i> ···O13 <i>W</i> ^{xiii}	0.85 (2)	2.13 (2)	2.966 (4)	165 (4)
O18—H18A····O6 ⁱⁱ	0.83 (2)	2.03 (2)	2.826 (3)	160 (3)
O18—H18 <i>B</i> ····O5 ^v	0.81 (2)	2.00 (2)	2.805 (3)	170 (4)

Symmetry codes: (ii) -x+2, y-1/2, -z-1/2; (v) x, -y+1/2, z-1/2; (vii) x+1, -y+1/2, z-1/2; (viii) x+1, y, z; (ix) x-1, y, z; (x) x-1, -y+1/2, z-1/2; (xi) -x+1, y+1/2, -z-1/2; (xii) x, y, z-1; (xiii) -x+1, -y+1, -z-1.