

Received 10 December 2021 Accepted 2 January 2022

Edited by V. Jancik, Universidad Nacional Autónoma de México, México

Keywords: crystal structure; cyclobutyl; thiazole; 4-oxobut-2-enoic acid; Hirshfeld surface analysis.

CCDC reference: 1953658

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of (Z)-4-{[4-(3-methyl-3-phenylcyclobutyl)thiazol-2-yl]amino}-4-oxobut-2-enoic acid

Okan Simsek,^a* Muharrem Dincer,^a Necmi Dege,^a Eiad Saif,^{b,c}* Ibrahim Yilmaz^d and Alaaddin Cukurovali^e

^aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139, Samsun, Turkey, ^bDepartment of Computer and Electronic Engineering Technology, Sanaa Community College, Sanaa, Yemen, ^cOndokuz Mayıs University, Faculty of Engineering, Department of Electrical and Electronic Engineering, 55139, Samsun, Turkey, ^dDepartment of Chemistry, Kamil Ozdag Science, Karamanoğlu Mehmetbey University, 70200, Karaman, Turkey, and ^eDepartment of Chemistry, Sciences Faculty, Fırat University, 23119, Elazığ, Turkey. *Correspondence e-mail: okan.simsek@omu.edu.tr, eiad.saif@scc.edu.ye

The title cyclobutyl compound, $C_{18}H_{18}N_2O_3S$, was synthesized by the interaction of 4-(3-methyl-3-phenylcyclobutyl)thiazol-2-amine and maleic anhydride, and crystallizes in the orthorhombic space group $P2_12_12_1$ with Z' = 1. The molecular geometry is partially stabilized by an intramolecular N-H···O hydrogen bond forming an $S_1^1(7)$ ring motif. The molecule is non-planar with a dihedral angle of 88.29 (11)° between the thiazole and benzene rings. In the crystal, the molecules are linked by O-H···N hydrogen bonds, forming supramolecular ribbons with $C_1^1(9)$ chain motifs. To further analyze the intermolecular interactions, a Hirshfeld surface analysis was performed. The results indicate that the most important contributions to the overall surface are from H····H (43%), C···H (18%), O···H (17%) and N···H (6%), interactions.

1. Chemical context

Cyclobutanes are four-membered carbocycles, which present a unique structural feature in bioactive natural products. Many natural cyclobutanes contain various substituents (Hui et al., 2021). Complex derivatives of cyclobutanes have an important place in biology and biotechnology (Dincer et al., 2004). In addition, it has been shown that 3-substituted cyclobutane carboxylic acid derivatives exhibit anti-inflammatory and antidepressant activities (Dehmlow & Schmidt, 1990), and can also form liquid crystals (Coghi et al., 1976). In addition, thiazole is a heterocyclic organic compound that has a fivemembered ring containing three carbon, one sulfur, and one nitrogen atoms. Thiazoles are found in many potent biologically active compounds, such as sulfathiazole (antimicrobial drug), ritonavir (antiretroviral drug), abafungin (antifungal drug), bleomycine, and tiazofurin (antineoplastic drug) (Kashyap et al., 2012; Mohapatra et al., 2019). In this study, (Z)-4-{[4-(3-methyl-3-phenylcyclobutyl)thiazol-2-yl]amino}-4oxobut-2-enoic acid was synthesized from 4-(3-methyl-3phenylcyclobutyl)thiazol-2-amine and maleic anhydride and was characterized by single crystal X-ray diffraction and the crystal packing was analyzed using Hirshfeld surface analysis.

2. Structural commentary

The title cyclobutyl derivative crystallizes in the orthorhombic $P2_12_12_1$ space group with Z' = 1. Its molecular structure is

illustrated in Fig. 1, showing the intramolecular $N-H\cdots O$ hydrogen bond forming an $S_1^1(7)$ ring motif. The molecule is non-planar as the thiazole and benzene rings are twisted with respect to each other, subtending a dihedral angle of 88.29 (11)°. In addition, the cyclobutyl ring is twisted by 58.1 (2) and 40.2 (2)°, with respect to the thiazole, and benzene rings. In the thiazole ring, the C12–N1 bond length is 1.386 (4) Å and classified as a single bond.

The cyclobutane adopts a puckered (butterfly) conformation. The average carbon–carbon (C–C) bond lengths within the ring is 1.5506 Å, with average C–C–C bond angles of 88.89°, while the average torsion angle within the C₄ ring is 15.83°. When these parameters are compared with the recently published cyclobutane derivatives (Gumus *et al.*, 2021), it is seen that there are no considerable differences. The S1–C13 and S1–C14 bond lengths are 1.727 (4) and 1.716 (3) Å, typical of a single bond. These values are comparable to those reported previously [1.718 (4) Å (Kansiz *et al.*, 2021) and 1.727 (9) Å (Qadir *et al.*, 2021)], but are longer than the values of 1.685 (4) and 1.698 (3) Å reported by Albayati *et al.* (2020).

3. Supramolecular features

The crystal packing of the title compound (Fig. 2) features intermolecular hydrogen bonds (C16–H16····O1ⁱ and O3– H3A····N1ⁱⁱ; symmetry codes are given in Table 1). In the crystal, the molecules are linked by O3–H3A····N1 hydrogen bonds forming supramolecular ribbons *via* $C_1^1(9)$ motifs. Adjacent ribbons are connected by C16–H16····O1 hydrogen bonds, leading to the formation of layers lying parallel to the *bc* plane.

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level. Dashed lines denote the intramolecular $N-H\cdots O$ hydrogen bonds forming an $S_1^1(7)$ ring motif.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C16-H16\cdotsO1^{i}$ $N2-H2A\cdotsO2$	0.93 0.86	2.35 1.83	3.233 (4) 2.651 (4)	159 158
$O3-H3A\cdots N1^{n}$	0.82	1.81	2.607 (3)	165

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{5}{2}, -z + 1$; (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.42, update of September 2021; Groom et al., 2016) for the 4-(3-methyl-3-phenylcyclobutyl)thiazole moiety gave several hits including 4-{[4-(3-mesityl-3-methylcyclobutyl)-1,3-thiazol-2-yl]amino}-4-oxobutanoic acid dihydrate (CIBQIP; Sen et al., 2013), 2-[4-(3-(2,5-dimethylphenyl)-3-methylcyclobutyl]-1,3thiazol-2-vl)-1H-isoindole-1,3(2H)-dione (HAMKAJ; Özdemir et al., 2010), 2-chloro-N-[4-(3-methyl-3-phenylcyclobutyl)-1,3-thiazol-2-yl]-N'-(naphthalen-1-ylmethylidene)acetohydrazide (IJULIJ; Inkaya et al., 2011a), N-[4-(3-methyl-3phenylcyclobutyl)-1,3-thiazol-2-yl]acetamide (LUXDIU; Ekici et al., 2020), N'-benzylidene-2-chloro-N-[4-(3-methyl-3phenylcyclobutyl)-1,3-thiazol-2-yl]acetohydrazide (PICZUY; Demir et al., 2012), 2-chloro-N'-[4-(dimethylamino)benzylidene]-N-[4-(3-methyl-3-phenylcyclobutyl)-1.3-thiazol-2-yl]acetohydrazide (QAKFUF; Inkaya et al., 2011b), 2-chloro-N'-(2-furylmethylene)-N-[4-(3-methyl-3-phenylcyclobutyl)-1,3thiazol-2-yl]acetohydrazide (URECEB; Demir et al., 2016) and 4-[4-(3-mesityl-3-methylcyclobutyl)-1,3-thiazol-2-yl]-1thia-4-azaspiro[4.5]decan-3-one (VOXBER; Sen et al., 2015). In LUXDIU (Ekici et al., 2020), the cyclobutyl ring has puckering parameters Q = 0.240 (4) Å and $\theta = 17.67$ (2)°, that are close to those for the title compound [Q = 0.216 (2) Å and]

Figure 2

A view of the crystal packing of the title compound. Blue dashed lines denote the intermolecular O3 $-H3A\cdots$ N1 hydrogen bonds forming a $C_1^1(9)$ motif (Table 1).

research communications

 $\theta = 15.83 (5)^{\circ}$]. The cyclobutane ring is puckered, with a dihedral angle of 25.20 (5)° in IJULIJ (Inkaya *et al.*, 2011*a*) and 22.99 $(47)^{\circ}$ in QAKFUF (Inkaya et al., 2011b). In HAMKAJ (Özdemir et al., 2010), the cyclobutane ring has a puckered conformation with 28.84 (22)°. This value is significantly bigger than those in the literature; $20.03 (3)^{\circ}$ (PICZUY; Demir et al., 2012) and 18.9 (3)° (CIBQIP; Sen et al., 2013). In the title compound, the C-S bond lengths within the thiazole ring are 1.727 (4) and 1.716 (3) Å, which are congruent with similar examples from the literature, 1.697 (6) and 1.739 (6) Å (VOXBER; Sen et al., 2015) and 1.701 (4) and 1.726 (2) Å (URECEB; Demir et al., 2016). These values are shorter than the standard value for a Csp^2 -S single bond (1.76 Å). In all structures, the phenyl and thiazole rings are cis-related with respect to the cyclobutane ring. The asymmetric units in all above-mentioned examples contain only one molecule.

Figure 3

The Hirshfeld surface analysis of the title compound mapped with d_{norm} over the range -0.763 to 1.558 showing C-H···O and O-H···N hydrogen-bonded contacts.

5. Hirshfeld surface analysis

To compare quantitatively the different intermolecular interactions affecting the molecular packing in the studied compound, the Hirshfeld surface analysis was employed. The strength of the present intermolecular interactions can be displayed on the Hirshfeld surface (Spackman & Javatilaka, 2009) generated by CrystalExplorer17 (Turner et al., 2017), here indicated by the red spots (Fig. 3). Furthermore, the Hirshfeld surface analysis is a valuable tool for predicting the properties of a crystal and its potential applications (Althamili et al., 2020; Ilmi et al., 2020). The contributions of the different types of intermolecular interactions for the title compound are shown in the two-dimensional fingerprint plots in Fig. 3. Fig. 4 displays the diverse contacts and their percentages observed in the crystal structure of the C₁₈H₁₈O₃S compound based on the Hirshfeld calculations. The molecular packing of the title compound is mainly controlled by relatively strong $O \cdots H$ (17%) and $N \cdots H$ (6%) interactions ions and by abundant, but weaker, $H \cdots H$ (43%) and $C \cdots H$ (18%) 8%) van der Waals type interactions. S...H (6.8%), S...C $(1.8\%), C \cdots O (1.7\%), C \cdots C (1.7\%) \text{ and } C \cdots N (1.5\%)$ contacts are also present. The corresponding fingerprint plots and decomposed d_{norm} maps for these interactions are shown in Fig. 3. The results also indicate the presence of $N-H\cdots O$, $C-H \cdots O$ and $O-H \cdots N$ hydrogen bonds.

6. Synthesis and crystallization

A mixture of 4-(3-methyl-3-phenylcyclobutyl)thiazol-2-amine (2.4436 g, 10 mmol) and maleic anhydride (0.9806 g, 10 mmol) in 20 mL of dry toluene under argon atmosphere was refluxed for 12 h (monitored by TLC). Solvent was removed under reduced pressure and the residue crystallized from ethanol in the form of brilliant yellow crystals. The reaction scheme is

Figure 4 Intermolecular interactions and their percentages in $C_{18}H_{18}N_2O_3S$.

Figure 5

The synthesis of (Z)-4-{[4-(3-methyl-3-phenylcyclobutyl)thiazol-2vl]amino}-4-oxobut-2-enoic acid.

shown in Fig. 5. Yield 94%, m.p. 460 K. Characteristic IR bands (cm⁻¹): 2975–2855 v(C–H aliphatics), 1670 v(C=O), 1626 ν (C=O), 1569 ν (C=N azomethine), 699 ν (C-S-C). Characteristic ¹H NMR shifts (THF- d_8 + acetone- d_6 , TMS, ppm): 1.26 (s, 3H, -CH₃), 2.15-2.20 (m, 2H, -CH₂- in cyclobutane ring), 2.31–2.36 (m, 2H, -CH₂- in cyclobutane ring), 3.48 (quint, J = 9.2 Hz, 2H, >CH- in cyclobutane ring), 6.10 (d, *J* = 12.8 Hz, 1H, –CH=), 6.27 (*d*, *J* = 12.4 Hz, 1H, –CH–), 6.50 (s, 1H, S-CH=in thiazole ring), 6.89-6.92 (m, 3H, aromatics), 7.00 (m, 2H, aromatics). -OH and -NH- protons of this molecule have not been determined in the ¹H NMR spectrum. Characteristic ¹³C NMR shifts (THF- d_8 + acetoned₆, TMS, ppm): 165.30, 162.65, 156.96, 154.69, 152.29, 132.00, 130.84, 127.71, 124.81, 124.21, 107.19, 40.25, 38.16, 30.20, 29.35.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Although the acidic protons from the O-H and N-H bonds could be located in the difference-Fourier map, even very strong distance restraints were not sufficient to obtain proper distances between the parent atom and hydrogen. Therefore, both protons were refined in geometrical positions using the corresponding AFIX instructions with O-H = 0.82 Å and $U_{iso}(H) = 1.5U_{eq}(O)$, and N-H = 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(N)$, respectively. The C-bound H atoms were positioned geometrically (C-H = 0.93, 0.96, 0.97 and 0.98 Å) and refined using a riding model, with $U_{iso}(H)$ = $1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for other H atoms.

Acknowledgements

Author contributions are as follows. Conceptualization, OS, MD, AC and ES; synthesis, AC and IY; writing (review and editing of the manuscript) OS, ND and AC; formal analysis, AC, OS, ND and MD; crystal-structure determination, OS, AC and ND; validation, AC, MD, ND and ES; project administration, AC, OS, ES and IY.

Funding information

Funding for this research was provided by Ondokuz Mayıs University under Project No. PYO·FEN.1906.19.001.

References

Albayati, M. R., Kansız, S., Dege, N., Kaya, S., Marzouki, R., Lgaz, H., Salghi, R., Ali, I. H., Alghamdi, M. M. & Chung, I.-M. (2020). J. Mol. Struct. 1205, 127654.

Table 2 Experimental details.

Crystal data	
Chemical formula	$C_{18}H_{18}N_2O_3S$
$M_{\rm r}$	342.40
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	296
a, b, c (Å)	5.9685 (4), 11.0580 (9), 26.215 (2)
$V(Å^3)$	1730.2 (2)
Ζ	4
Radiation type	Μο Κα
$\mu \ (\mathrm{mm}^{-1})$	0.21
Crystal size (mm)	$0.78 \times 0.71 \times 0.59$
Data collection	
Diffractometer	Stoe IPDS 2
Absorption correction	Integration (X-RED32; Stoe & Cie, 2002)
T_{\min}, T_{\max}	0.832, 0.899
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	7546, 3338, 2648
R _{int}	0.058
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.617
Definement	
Remement $P[F^2 > 2\pi(F^2)] = P(F^2) = S$	0.045 0.112 0.07
$R[\Gamma > 2O(\Gamma)], WR(\Gamma), S$	2229
No. of peremeters	2220 219
No. of parameters	Lio
$\Lambda_{0} = \Lambda_{0} = (e^{-3})$	0.20 0.16
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (CA)	Elack x determined using 907
Absolute structure	quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-0.05 (8)

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2017/1 (Sheldrick, 2015b), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and PLATON (Spek, 2020).

- Al-thamili, D. M., Almansour, A. I., Arumugam, N., Kansız, S., Dege, N., Soliman, S. M., Azam, M. & Kumar, R. S. (2020). J. Mol. Struct. 1222, 128940.
- Coghi, L., Lanfredi, A. M. M. & Tiripicchio, A. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1808-1810.
- Dehmlow, E. V. & Schmidt, S. (1990). Liebigs Ann. Chem. pp. 411-414.
- Demir, S., Dinçer, M., Çukurovalı, A. & Yılmaz, İ. (2012). Int. J. Quantum Chem. 112, 1016-1028.
- Demir, S., Dinçer, M., Çukurovalı, A. & Yılmaz, İ. (2016). Mol. Cryst. Liq. Cryst. 629, 44-60.
- Dinçer, M., Özdemir, N., Yılmaz, İ, Çukurovalı, A. & Büyükgüngör, O. (2004). Acta Cryst. C60, 0674-0676.
- Ekici, Ö., Demircioğlu, Z., Ersanlı, C. C. & Çukurovalı, A. (2020). J. Mol. Struct. 1204, 127513.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.
- Gumus, M. K., Sen, F., Kansiz, S., Dege, N. & Saif, E. (2021). Acta *Cryst.* E77, 1267–1271.
- Hui, C., Brieger, L., Strohmann, C. & Antonchick, A. P. (2021). J. Am. Chem. Soc. 143, 18864-18870.
- Ilmi, R., Kansız, S., Al-Rasbi, N., Dege, N., Raithby, P. R. & Khan, M. S. (2020). New J. Chem. 44, 5673-5683.
- Inkaya, E., Dinçer, M., Çukurovalı, A. & Yılmaz, E. (2011a). Acta Cryst. E67, o310.
- Inkaya, E., Dinçer, M., Çukurovalı, A. & Yılmaz, E. (2011b). Acta Cryst. E67, 0131-0132.
- Kansiz, S., Dege, N., Ozturk, S., Akdemir, N., Tarcan, E., Arslanhan, A. & Saif, E. (2021). Acta Cryst. E77, 138-141.

research communications

- Kashyap, S. J., Garg, V. K., Sharma, P. K., Kumar, N., Dudhe, R. & Gupta, J. K. (2012). *Med. Chem. Res.* **21**, 2123–2132.
- Mohapatra, R. K., Sarangi, A. K., Azam, M., El-ajaily, M. M., Kudrat-E-Zahan, Md., Patjoshi, S. B. & Dash, D. C. (2019). J. Mol. Struct. 1179, 65–75.
- Özdemir, N., Dinçer, M. & Çukurovalı, A. (2010). J. Mol. Model. 16, 291–302.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Qadir, A. M., Kansiz, S., Dege, N. & Saif, E. (2021). Acta Cryst. E77, 1126–1129.
- Şen, F., Dinçer, M., Çukurovalı, A. & Yılmaz, İ. (2013). J. Mol. Struct. 1046, 1–8.

- Şen, F., Ekici, Ö., Dinçer, M. & Çukurovalı, A. (2015). J. Mol. Struct. 1086, 109–117.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
- Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *Crystal Explorer 17.5*. University of Western Australia. http://hirshfeldsurface.net.

supporting information

Acta Cryst. (2022). E78, 120-124 [https://doi.org/10.1107/S2056989022000032]

Crystal structure and Hirshfeld surface analysis of (*Z*)-4-{[4-(3-methyl-3-phenyl-cyclobutyl)thiazol-2-yl]amino}-4-oxobut-2-enoic acid

Okan Simsek, Muharrem Dincer, Necmi Dege, Eiad Saif, Ibrahim Yilmaz and Alaaddin Cukurovali

Computing details

Data collection: *X-AREA* (Stoe & Cie, 2002); cell refinement: *X-AREA* (Stoe & Cie, 2002); data reduction: *X-RED32* (Stoe & Cie, 2002); program(s) used to solve structure: *SHELXT2014/5* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2017/1* (Sheldrick, 2015b); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2020).

(Z)-4-{[4-(3-Methyl-3-phenylcyclobutyl)thiazol-2-yl]amino}-4-oxobut-2-enoic acid

Crystal data

 $C_{18}H_{18}N_{2}O_{3}S$ $M_{r} = 342.40$ Orthorhombic, $P2_{1}2_{1}2_{1}$ a = 5.9685 (4) Å b = 11.0580 (9) Å c = 26.215 (2) Å $V = 1730.2 (2) \text{ Å}^{3}$ Z = 4 F(000) = 720

Data collection

Stoe IPDS 2 diffractometer Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus Detector resolution: 6.67 pixels mm⁻¹ rotation method scans Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{min} = 0.832$, $T_{max} = 0.899$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.113$ S = 0.973338 reflections 218 parameters $D_{\rm x} = 1.314 \text{ Mg m}^{-3}$ Melting point: 460 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7998 reflections $\theta = 1.6-27.3^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$ T = 296 KPrism, light yellow $0.78 \times 0.71 \times 0.59 \text{ mm}$

7546 measured reflections 3338 independent reflections 2648 reflections with $I > 2\sigma(I)$ $R_{int} = 0.058$ $\theta_{max} = 26.0^\circ, \theta_{min} = 1.6^\circ$ $h = -7 \rightarrow 7$ $k = -13 \rightarrow 12$ $l = -32 \rightarrow 30$

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites Extinction correction: SHELXL2017/1

 $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Absolute structure parameter: -0.05(8)

Absolute structure: Flack x determined using

907 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et*

Extinction coefficient: 0.014 (3)

(Sheldrick 2015b),

al., 2013)

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0679P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.16 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.4002 (6)	0.8359 (3)	0.80585 (12)	0.0711 (8)	
H1	0.274222	0.794587	0.794336	0.085*	
C2	0.4122 (8)	0.8741 (4)	0.85639 (13)	0.0839 (11)	
H2	0.293567	0.858606	0.878430	0.101*	
C3	0.5971 (8)	0.9343 (4)	0.87390 (14)	0.0897 (12)	
Н3	0.604483	0.958968	0.907768	0.108*	
C4	0.7710 (7)	0.9581 (4)	0.84151 (14)	0.0877 (11)	
H4	0.896441	0.999348	0.853340	0.105*	
C5	0.7611 (6)	0.9208 (4)	0.79108 (13)	0.0764 (9)	
Н5	0.880417	0.937415	0.769367	0.092*	
C6	0.5764 (5)	0.8595 (3)	0.77256 (11)	0.0626 (7)	
C7	0.5717 (5)	0.8175 (3)	0.71772 (11)	0.0642 (8)	
C8	0.6388 (6)	0.9135 (4)	0.67725 (13)	0.0751 (9)	
H8A	0.628167	0.996095	0.689444	0.090*	
H8B	0.783448	0.898561	0.661620	0.090*	
C9	0.4381 (6)	0.8741 (3)	0.64378 (12)	0.0695 (8)	
H9	0.486075	0.814897	0.618184	0.083*	
C10	0.3400 (5)	0.8091 (4)	0.69128 (12)	0.0706 (9)	
H10A	0.223403	0.854686	0.708437	0.085*	
H10B	0.291717	0.726837	0.684630	0.085*	
C11	0.7026 (7)	0.6997 (4)	0.71183 (14)	0.0864 (10)	
H11A	0.698104	0.674197	0.676846	0.130*	
H11B	0.855370	0.712428	0.721945	0.130*	
H11C	0.636589	0.638486	0.732996	0.130*	
C12	0.2935 (6)	0.9681 (3)	0.62006 (11)	0.0664 (8)	
C13	0.3006 (7)	1.0888 (3)	0.62654 (14)	0.0823 (10)	
H13	0.408013	1.128814	0.645944	0.099*	
C14	-0.0010 (6)	1.0208 (3)	0.57345 (11)	0.0636 (8)	
C15	-0.3247 (6)	1.0930 (3)	0.52675 (12)	0.0682 (8)	
C16	-0.5193 (6)	1.0635 (3)	0.49439 (13)	0.0712 (9)	
H16	-0.622658	1.126176	0.491776	0.085*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

-0.5769 (6)	0.0646(2)	0.46006(10)	
	0.9040(3)	0.46806 (12)	0.0710 (8)
-0.714462	0.969359	0.451502	0.085*
-0.4561 (6)	0.8490 (3)	0.46116 (12)	0.0674 (8)
0.1187 (4)	0.9299 (2)	0.58924 (9)	0.0609 (6)
-0.1832 (5)	1.0037 (2)	0.54206 (10)	0.0677 (7)
-0.209319	0.931474	0.531402	0.081*
-0.2951 (5)	1.1985 (2)	0.54005 (10)	0.0859 (7)
-0.3074 (5)	0.8116 (2)	0.48857 (12)	0.0998 (9)
-0.5286 (4)	0.7906 (2)	0.42168 (8)	0.0776 (7)
-0.459781	0.726735	0.418911	0.116*
0.0856 (2)	1.16026 (8)	0.59435 (4)	0.0829 (3)
	$\begin{array}{c} -0.714462 \\ -0.4561 (6) \\ 0.1187 (4) \\ -0.1832 (5) \\ -0.209319 \\ -0.2951 (5) \\ -0.3074 (5) \\ -0.5286 (4) \\ -0.459781 \\ 0.0856 (2) \end{array}$	-0.714462 0.969359 $-0.4561(6)$ $0.8490(3)$ $0.1187(4)$ $0.9299(2)$ $-0.1832(5)$ $1.0037(2)$ -0.209319 0.931474 $-0.2951(5)$ $1.1985(2)$ $-0.3074(5)$ $0.8116(2)$ $-0.5286(4)$ $0.7906(2)$ -0.459781 0.726735 $0.0856(2)$ $1.16026(8)$	-0.714462 0.969359 0.451502 $-0.4561(6)$ $0.8490(3)$ $0.46116(12)$ $0.1187(4)$ $0.9299(2)$ $0.58924(9)$ $-0.1832(5)$ $1.0037(2)$ $0.54206(10)$ -0.209319 0.931474 0.531402 $-0.2951(5)$ $1.1985(2)$ $0.54005(10)$ $-0.3074(5)$ $0.8116(2)$ $0.48857(12)$ $-0.5286(4)$ $0.7906(2)$ 0.418911 $0.0856(2)$ $1.16026(8)$ $0.59435(4)$

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0678 (18)	0.073 (2)	0.0730 (18)	0.0039 (18)	0.0067 (16)	0.0099 (16)
C2	0.093 (3)	0.088 (3)	0.0708 (19)	0.018 (2)	0.018 (2)	0.0131 (17)
C3	0.104 (3)	0.098 (3)	0.067 (2)	0.025 (3)	-0.006(2)	-0.0036 (18)
C4	0.082 (2)	0.100 (3)	0.082 (2)	0.007 (2)	-0.016 (2)	-0.012 (2)
C5	0.0613 (18)	0.092 (3)	0.076 (2)	0.0016 (18)	-0.0035 (16)	-0.0028 (17)
C6	0.0600 (16)	0.0635 (19)	0.0644 (15)	0.0079 (16)	-0.0002 (14)	0.0052 (13)
C7	0.0552 (16)	0.070 (2)	0.0676 (16)	-0.0017 (16)	0.0036 (13)	0.0008 (14)
C8	0.0637 (19)	0.095 (3)	0.0663 (18)	-0.0158 (17)	0.0057 (14)	0.0062 (16)
C9	0.0714 (18)	0.075 (2)	0.0626 (16)	-0.0095 (17)	-0.0003 (15)	-0.0063 (14)
C10	0.0590 (17)	0.077 (2)	0.0757 (18)	-0.0103 (16)	-0.0003 (15)	0.0048 (16)
C11	0.076 (2)	0.087 (3)	0.096 (2)	0.012 (2)	0.0016 (19)	-0.016 (2)
C12	0.0735 (19)	0.071 (2)	0.0550 (15)	-0.0107 (17)	0.0018 (15)	-0.0046 (13)
C13	0.095 (3)	0.073 (3)	0.079 (2)	-0.015 (2)	-0.015 (2)	-0.0097 (17)
C14	0.073 (2)	0.058 (2)	0.0592 (15)	-0.0101 (15)	0.0050 (14)	-0.0059 (13)
C15	0.083 (2)	0.0537 (19)	0.0677 (18)	-0.0004 (16)	0.0095 (16)	0.0001 (13)
C16	0.077 (2)	0.060(2)	0.0762 (19)	0.0093 (16)	-0.0005 (16)	0.0013 (15)
C17	0.0756 (19)	0.061 (2)	0.0759 (18)	0.0136 (17)	-0.0069 (17)	0.0009 (15)
C18	0.0757 (19)	0.0570 (18)	0.0696 (17)	-0.0036 (16)	-0.0085 (16)	-0.0025 (15)
N1	0.0687 (15)	0.0577 (15)	0.0565 (13)	-0.0073 (12)	0.0034 (12)	-0.0068 (11)
N2	0.0778 (16)	0.0501 (14)	0.0753 (15)	-0.0039 (13)	-0.0071 (14)	-0.0072 (12)
O1	0.1089 (18)	0.0548 (14)	0.0940 (15)	-0.0059 (13)	0.0042 (14)	-0.0051 (12)
O2	0.1046 (19)	0.0668 (16)	0.128 (2)	0.0217 (15)	-0.0505 (18)	-0.0262 (14)
O3	0.0922 (16)	0.0679 (14)	0.0727 (13)	0.0082 (12)	-0.0112 (12)	-0.0049 (11)
S 1	0.1047 (7)	0.0564 (5)	0.0875 (6)	-0.0127 (5)	-0.0120 (5)	-0.0076 (4)

Geometric parameters (Å, °)

C1—C6	1.391 (5)	C10—H10B	0.9700	
C1—C2	1.393 (5)	C11—H11A	0.9600	
C1—H1	0.9300	C11—H11B	0.9600	
C2—C3	1.368 (6)	C11—H11C	0.9600	
С2—Н2	0.9300	C12—C13	1.346 (5)	
C3—C4	1.366 (6)	C12—N1	1.386 (4)	

supporting information

С3—Н3	0.9300	C13—S1	1 727 (4)
C4-C5	1 386 (5)	C13—H13	0.9300
C4—H4	0.9300	C14—N1	1 301 (4)
C5—C6	1 382 (5)	C14 N2	1.301(1) 1.377(4)
C5—H5	0.9300	C14 $N2$	1.577(4) 1716(3)
C6 C7	1.511(4)	$C_{15} = 0_1$	1.710(3) 1.220(4)
$C_0 = C_1$	1.511 (4)	C15 = 01	1.230(4) 1.260(4)
C7 = C10	1.520(5)	C15 - N2	1.300(4)
C7 = C10	1.550 (4)	C10 - C10	1.4/3(3) 1.228(5)
C/-C8	1.555 (4)		1.338 (3)
	1.547 (5)	C16—H16	0.9300
C8—H8A	0.9700		1.479 (5)
С8—Н8В	0.9700	С17—Н17	0.9300
C9—C12	1.488 (5)	C18—O2	1.215 (4)
C9—C10	1.553 (5)	C18—O3	1.295 (4)
С9—Н9	0.9800	N2—H2A	0.8600
C10—H10A	0.9700	O3—H3A	0.8200
	100.0 (1)		112 5
C6-C1-C2	120.0 (4)	C9—C10—H10A	113.7
C6—C1—H1	120.0	С/—С10—Н10В	113.7
C2—C1—H1	120.0	C9—C10—H10B	113.7
C3—C2—C1	120.6 (4)	H10A—C10—H10B	110.9
С3—С2—Н2	119.7	C7—C11—H11A	109.5
C1—C2—H2	119.7	C7—C11—H11B	109.5
C4—C3—C2	119.9 (3)	H11A—C11—H11B	109.5
С4—С3—Н3	120.1	C7—C11—H11C	109.5
С2—С3—Н3	120.1	H11A—C11—H11C	109.5
C3—C4—C5	120.2 (4)	H11B—C11—H11C	109.5
C3—C4—H4	119.9	C13—C12—N1	113.6 (3)
C5—C4—H4	119.9	C13—C12—C9	128.5 (3)
C6—C5—C4	121.0 (3)	N1—C12—C9	117.8 (3)
С6—С5—Н5	119.5	C12—C13—S1	111.6 (3)
С4—С5—Н5	119.5	C12—C13—H13	124.2
C5—C6—C1	118.3 (3)	S1—C13—H13	124.2
C5—C6—C7	120.0 (3)	N1-C14-N2	121.2 (3)
C1—C6—C7	121.7(3)	N1-C14-S1	115.3(2)
C6-C7-C11	1104(3)	N2-C14-S1	123.5(3)
C6-C7-C10	1174(3)	01-C15-N2	123.3(3) 121.1(3)
$C_{11} - C_{7} - C_{10}$	111, 1, (3)	01 - C15 - C16	121.1(3) 1190(3)
C6-C7-C8	115.8 (3)	N_{2} C_{15} C_{16}	119.0(3)
C_{11} C_{7} C_{8}	112.5(3)	C_{17} C_{16} C_{15}	132.8(3)
$C_{11} = C_{7} = C_{8}$	112.3(3)	$C_{17} = C_{10} = C_{15}$	132.8 (3)
$C_{10} = C_{10} = C_{10}$	80.0(2)	$C_{1} = C_{10} = H_{10}$	112.6
C_{9}	09.0 (2)	C16 C17 C18	113.0 120.1(2)
C7 C9 U9	113./	C10 - C17 - C18	130.1 (3)
$C_{1} = C_{2} = H_{2} = H_{2}$	113./	$C_{10} = C_{17} = H_{17}$	114.9
	113./	10 - 11 - H1	114.9
U = U = U = U = D	113./	02 - 018 - 03	123.1 (3)
на—Са—Нав	110.9	02	125.4 (3)
C12—C9—C8	119.3 (3)	O3—C18—C17	111.5 (3)

C12—C9—C10	116.1 (3)	C14—N1—C12	111.3 (3)
C8—C9—C10	88.1 (2)	C15—N2—C14	124.5 (3)
С12—С9—Н9	110.5	C15—N2—H2A	117.7
С8—С9—Н9	110.5	C14—N2—H2A	117.7
С10—С9—Н9	110.5	C18—O3—H3A	109.5
C7—C10—C9	89.7 (2)	C14—S1—C13	88.22 (18)
C7—C10—H10A	113.7		
C6—C1—C2—C3	-0.4 (6)	C8—C9—C10—C7	-15.9 (3)
C1—C2—C3—C4	0.5 (6)	C8—C9—C12—C13	-5.7 (5)
C2—C3—C4—C5	-0.3 (6)	C10—C9—C12—C13	97.8 (4)
C3—C4—C5—C6	0.1 (6)	C8—C9—C12—N1	178.4 (3)
C4—C5—C6—C1	0.0 (5)	C10-C9-C12-N1	-78.1 (4)
C4—C5—C6—C7	-178.7 (3)	N1-C12-C13-S1	0.4 (4)
C2-C1-C6-C5	0.1 (5)	C9—C12—C13—S1	-175.7 (3)
C2-C1-C6-C7	178.8 (3)	O1—C15—C16—C17	168.3 (4)
C5-C6-C7-C11	80.9 (4)	N2-C15-C16-C17	-12.7 (6)
C1—C6—C7—C11	-97.7 (4)	C15—C16—C17—C18	-2.2 (7)
C5-C6-C7-C10	-150.3 (3)	C16—C17—C18—O2	19.8 (6)
C1—C6—C7—C10	31.1 (5)	C16—C17—C18—O3	-160.4 (4)
C5—C6—C7—C8	-48.3 (4)	N2-C14-N1-C12	179.7 (3)
C1—C6—C7—C8	133.0 (3)	S1-C14-N1-C12	-0.1 (3)
C6—C7—C8—C9	-135.5 (3)	C13-C12-N1-C14	-0.2 (4)
C11—C7—C8—C9	96.2 (3)	C9—C12—N1—C14	176.4 (3)
C10—C7—C8—C9	-15.8 (3)	O1—C15—N2—C14	1.0 (5)
C7—C8—C9—C12	134.9 (3)	C16—C15—N2—C14	-178.0 (3)
C7—C8—C9—C10	15.8 (3)	N1-C14-N2-C15	175.5 (3)
C6—C7—C10—C9	134.0 (3)	S1-C14-N2-C15	-4.7 (4)
С11—С7—С10—С9	-97.6 (3)	N1-C14-S1-C13	0.3 (3)
C8—C7—C10—C9	15.8 (3)	N2-C14-S1-C13	-179.5 (3)
C12—C9—C10—C7	-137.8 (3)	C12-C13-S1-C14	-0.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
C16—H16…O1 ⁱ	0.93	2.35	3.233 (4)	159
N2—H2A···O2	0.86	1.83	2.651 (4)	158
O3—H3A····N1 ⁱⁱ	0.82	1.81	2.607 (3)	165

Symmetry codes: (i) x-1/2, -y+5/2, -z+1; (ii) x-1/2, -y+3/2, -z+1.