

Crystal structure of a trifluoromethyl benzoato quadruple-bonded dimolybdenum complex

Elisabeth Aigeldinger,‡ Lilliana Brandao,‡ Troy Powell,‡ Alaina C. Hartnett, Rui Sun, Dilek K. Dogutan* and Shao-Liang Zheng

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. *Correspondence e-mail: dkiper@fas.harvard.edu

The study of quadruple bonds between transition metals, in particular those of dimolybdenum, has revealed much about the two-electron bond. The solid-state structure of the quadruple-bonded dimolybdenum(II) complex tetrakis[μ -4-(trifluoromethyl)benzoato- $\kappa^2 O:O'$]bis[(tetrahydrofuran- κO)molybdenum(II)] 0.762-pentane 0.238-tetrahydrofuran solvate, [Mo₂(p-O₂CC₆H₄CF₃)₄·2THF]-0.762C₅H₁₂·0.238C₄H₈O or [Mo₂(C₈H₄F₃O₂)₄(C₄H₈O)₂]·0.762C₅H₁₂·0.238C₄H₈O is reported. The complex crystallizes within a triclinic cell and low symmetry ($P\overline{1}$) results from the intercalated pentane/THF solvent molecules. The paddlewheel structure at 100 K has inversion symmetry and comprises four bridging carboxylate ligands encases the Mo₂(II,II) core that is characterized by two axially coordinated THF molecules and an Mo–Mo distance of 2.1098 (7) Å.

1. Chemical context

The $\sigma^2 \pi^4 \delta^2$ quadruple bond has contributed prominently to the elucidation of the single most distinguishing feature of the discipline of chemistry - the two-electron bond (Lewis, 1916). As originally defined with the inception of valence and molecular orbital bonding models (Heitler & London, 1927; Pauling, 1928; Lennard-Jones, 1929; Mulliken, 1932; James & Coolidge, 1933; Coulson & Fischer, 1949), the two-electron bond forms from pairing two electrons in two orbitals. Remarkably, the four states that characterize the two-electron bond remained undefined experimentally for over 60 years owing to the dissociative nature of the σ and π antibonding orbitals. This experimental challenge was overcome with the two-electron δ bond of quadruple-bonded metal-metal complexes. Anchored by a $\sigma^2 \pi^4$ framework and sterically locking ligands, the four states of the two-electron bond, ${}^{1}\delta\delta$, ${}^{3}\delta\delta^{*}$, ${}^{1}\delta\delta^{*}$ and ${}^{1}\delta^{*}\delta^{*}$, were experimentally defined for dimolybdenum quadruple-bond complexes (Engebretson et al. 1994, 1999; Cotton & Nocera, 2000). Within the group of dimolybdenum quadruple-bond complexes, the tetraacetates are exemplars. The initial structure of Mo₂(O₂CCH₃)₄ by Lawton & Mason (1965) established the existence of the quadruple bond in the now familiar paddlewheel arrangement of acetates. The dimolybdenum bond distance of 2.11 Å in this structure was subsequently refined nearly a decade later to be 2.0934 (8) (Cotton et al., 1974). Intriguingly, many subsequent structures have shown that the inductive effect of the R group on the carboxylic acid does not perturb the Mo-Mo bond distance, indicating the robustness of the two-electron bond within a quadruple-bond architecture. It has been postulated

Received 13 December 2021 Accepted 4 January 2022

Edited by J. T. Mague, Tulane University, USA

‡ Authors contributed equally to this work.

Keywords: crystal structure; quadruple bond; molybdenum; delta bond.

CCDC reference: 2132473

Supporting information: this article has supporting information at journals.iucr.org/e

that the strength of the Mo–Mo quadruple bond may be perturbed, but only in cases where *R* is a strong electronwithdrawing group and there is a good axial donor ligand (Cotton *et al.*, 1978). To add further to an understanding of Mo₂(II,II) quadruple bond distances, we examined a dimolybdenum core ligated by trifluoromethylbenzoate with THF axial donor ligands. We now report the synthesis and X-ray crystal structure of tetrakis(μ -4-trifluoromethylbenzoato- $\kappa^2 O:O'$)dimol-

ybdenum(II) 0.762-pentane 0.238-tetrahydrofuran solvate $[Mo_2(p-O_2CC_6H_4CF_3)_4:2THF]\cdot 0.762C_5H_{12}\cdot 0.238C_4H_8O$. The presence of the CF₃ electron-withdrawing group on the bridging benzoate ligands, together with the donor THF axial ligands, results in a slightly elongated metal-metal bond distance as compared to its benzoate congener, $Mo_2(O_2CC_6H_5)_4$.

2. Structural commentary

The dimolybdenum complex, $[Mo_2(p-O_2CC_6H_4CF_3)_4$ ·2THF] (Fig. 1), was characterized by using single-crystal X-ray diffraction. Half of the molecule (Fig. 1) resides in the asymmetric unit, with the complete molecule generated by inversion about the quadruple-bond inversion center. The fluorine atoms of the trifluoromethyl groups are rotationally disordered and the highest occupancy positions are shown in Fig. 1. The crystallization solvents, THF and pentane, are disordered (0.238:0.762) (Fig. 2).

Selected bond metrics for $Mo_2(p-O_2CC_6H_4CF_3)_4$ ·2THF are listed in Table 1. Complete lists of the structural metrics for the compound are presented in the Supporting information. The Mo—Mo bond length is 2.1098 (7) Å. Whereas the bond distance is within the typical range of dimolybdenum quadruple bond lengths of 2.06–2.17Å (Cotton *et al.*, 2002), it is slightly longer than what is observed for dimolybdenum cores bridged by carboxylates. As a comparison, the dimolybdenum bond distance in the Mo₂(O₂CC₆H₅)₄ congener, is 2.096 (1) Å. Thus, with the addition of a CF₃ group in the 4-position of benzoate, the Mo—Mo bond length increases by 0.014 (2) Å.

Table 1	
Selected geometric parameters (Å, °).	

0		,	
Mo1-O1	2.0996 (17)	Mo1-Mo1 ⁱ	2.1098 (7)
Mo1-O4	2.1030 (17)	Mo1-O3 ⁱ	2.1204 (17)
Mo1-O2 ⁱ	2.1076 (17)	Mo1-O1S	2.5422 (19)
O1-Mo1-Mo1	93.20 (5)	O2 [*] -Mo1-Mo1 [*]	90.10 (5)
O4-Mo1-Mo1 ⁱ	92.37 (5)	Mo1 ⁱ -Mo1-O3 ⁱ	90.84 (5)
	()		

Symmetry code: (i) -x, -y + 1, -z + 1.

A similar trend is observed for the bond distances in the primary coordination sphere. The minimum Mo-O bond distance decreases by 0.008 (5) Å, and the maximum Mo-Obond distance decreases by 0.011 (5) Å as compared to $Mo_2(O_2CC_6H_5)_4$. The most significant decrease in bond metrics is observed for the Mo-O1S axial ligand distance, which results in a decrease of 0.033 (4) Å for the axial coordinated oxygen atom of THF as compared to the axially coordinated oxygen in Mo₂(O₂CC₆H₅)₄. However, we note for this compound that the oxygen is provided from a carboxylate ligand of a neighboring molecule as opposed to an axially coordinated solvent molecule. Consequently, as proposed by Cotton (Cotton et al., 1978), the presence of ligands about the dimolybdenum center that are electron withdrawing and donating in the axial position is needed to perturb the overall bonding within a quadruple-bond framework. To this point, the metrics of [Mo₂(p-O₂CC₆H₄CF₃)₄·THF] are indistinguishable from those of $Mo_2(O_2CC_6F_5)_4$ ·THF (Han, 2011). The electron-withdrawing nature of the fluoro-substituted benzoates is established by their pK_as as compared to that of benzoate ($pK_a = 1.75$, 3.77 and 4.20 for C₆F₅COOH, *p*-CF₃ C_6H_4COOH and C_6H_5COOH , respectively; Rumble, 2021; Boiadjiev & Lightner, 1999). That an electron-withdrawing group alone is insufficient to perturb the dimolybdenum bond distance is indicated by a comparison of the structures for $Mo_2(O_2CCH_3)_4$ and $Mo_2(O_2CCF_3)_4$. The d(Mo-Mo) of 2.0934 (8) and 2.090 (4) Å for $Mo_2(O_2CCH_3)_4$ and

Figure 1

Ellipsoid plot of the dimolybdenum complex. The CF_3 groups are rotationally disordered, therefore the highest occupancy positions are shown for each atom. Hydrogen atoms and unbound solvent are omitted for clarity.

research communications

 $Mo_2(O_2CCF_3)_4$, respectively (Cotton & Norman, 1971; Cotton *et al.*, 1974), are indistinguishable despite a significant difference in electron-withdrawing properties [p $K_a(CH_3COOH) = 4.76$, p $K_a(CF_3COOH) = 0.52$; Rumble, 2021]. Thus, a donor ligand is needed in addition to electron-withdrawing carboxylate equatorial ligands to observe a difference in the dimolybdenum quadruple bond.

3. Supramolecular features

The structure was solved in the triclinic space group $P\overline{1}$ with a half of an Mo-dimer per asymmetric unit and one full molecule per unit cell (Fig. 2). The low symmetry arises from the presence of disordered THF/pentane solvent molecules embedded within a solvent channel arising from the crystal packing. The disordered solvents are situated in the bodycenter of eight $[Mo_2(p-O_2CC_6H_4CF_3)_4 \cdot THF]$ complexes with two THF molecules skewed towards the pentane; the next nearest neighbors are a series of four trifluoromethyl groups from distinct $[Mo_2(p-O_2CC_6H_4CF_3)_4 \cdot THF]$ complexes. These four trifluoromethyl groups are oriented tangentially to the solvent channel (Fig. 2b) along the b-axis direction with a volume of 162 \AA^3 for one void volume within the unit cell according to established methods for determining solventaccessible voids (van der Sluis & Spek, 1990). The adjacent pairs of symmetry-related benzene rings (C10-C16) in the p-O₂CC₆H₄CF₃ ligands interact through aromatic $\pi - \pi$ stacking interactions with a face-to-face distance of 3.7856 (9) Å (Fig. 2b) and form a one-dimensional chain. In addition, the trifluoromethyl group of a $p-O_2CC_6H_4CF_3$ ligand (for C10-C16 and F4-F6) is perpendicular to the aromatic plane of a neighboring p-O₂CC₆H₄CF₃ ligand (C1-C7 and F1-F3) with weak C-F··· π interactions (Kawahara *et al.*, 2004) [the distances between the F atoms and the C2-C8 plane are 3.024 (2)–3.430 (1) Å]. The coordinated THF molecules also have weak $C-H \cdots F$ interactions (D'Oria & Novoa, 2008) with the trifluoromethyl group of the p-O₂CC₆H₄CF₃ ligands [the C-H···F distances are 2.568 (1)–3.045 (1) Å].

4. Database survey

In a search of the Cambridge Structural Database (WebCSD, accessed 17 December 2021; Groom *et al.*, 2016), the CSD search fragment, $C_{32}H_{16}F_{12}Mo_2O_8$, for $Mo_2(O_2CC_6H_4CF_3)_4$ yielded no hits in the database and the CSD search fragment, $C_{40}H_{32}F_{12}Mo_2O_{10}$, for $[Mo_2(p-O_2CC_6H_4CF_3)_4$ ·THF] also yielded no hits. The CSD reference code for $Mo_2(O_2CC_6F_5)_4$ ·THF (Han, 2011) is AYODOI, for $Mo_2(O_2CC_6H_5)_4$ (Cotton *et al.*, 1978) is MOBZOA, for $Mo_2(O_2CC_6H_3)_4$ (Cotton *et al.*, 1974) is MOLACE01, and for $Mo_2(O_2CCF_3)_4$ (Cotton & Norman, 1971) is TFACMO.

5. Purification and crystallization

The overall synthetic scheme is shown in the reaction scheme. Molybdenum hexacarbonyl, 4-(trifluoromethyl) benzoic acid, THF, and 1,2-dichlorobenzene were purchased from Sigma-

Crystal packing of the dimolybdenum complex shown along (a) the a-axis, (b) the b-axis and (c) the c-axis. The crystal has triclinic ($P\overline{1}$) symmetry. Pentane and THF solvent molecules are present in the structure. Color scheme: C (gray), O (red), H (white), F (green), Mo (teal).

Aldrich. Mo(CO)₆ and 4-(trifluoromethyl)benzoic acid were combined in a flask with THF and anhydrous 1,2-dichlorobenzene. The reaction was heated under reflux for 24 h at 413 K under nitrogen (Pence *et al.*, 1999). The reaction mixture was cooled, the solution was filtered and the collected residue was washed with dichloromethane and hexanes.

The crystallization was set up in a glove box. The crude product was dissolved in THF and recrystallized by vapor diffusion of pentane using a 6 by 50 mm borosilicate glass crystallization tube housed within a 20 mL glass vial. The assembly was allowed to stand at 238 K for 24 days. Orange rectangular crystals were observed and harvested for X-ray diffraction analysis.

6. Refinement

Crystal data, data collection and structure refinement details are included in Table 2. Hydrogen atoms on C atoms were placed at idealized positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the atoms to which they are linked (1.5 times for methyl groups). Rotational and positional disorder for one trifluoromethyl substituent containing C1 and C13 was modeled. The overlapping solvent molecules (assigned as THF and pentane based on solvent crystallization conditions and apparent arrangement of electron-density peaks) were disordered adjacent to an inversion center (special position). The restraints on bond lengths and constraints of the atomic displacement parameters on each pair of disorder fragments (SADI/SAME and EADP instructions of SHELXL2014) as well as the restraints of the atomic displacement parameters (SIMU/RIGU instructions of SHELXL2014) were applied for the disorder refinement (Zheng et al., 2008). Crystallographic refinement details, including disorder modeling and the software employed, are given in the crystallographic information file (*.cif). To stabilize the refinement model, 713 restraints (SADI/SAME and RIGU/SIMU) were applied to accommodate the disordered trifluoromethyl group, the coordinated THF molecules, as well as the THF/pentane solvent molecules in the channel as detailed by Müller et al. (2006) to furnish a data+restraint-to-parameter ratio of 9.75. This ratio increases

Table 2	
Experimental details.	

Crystal data	
Chemical formula	$[Mo_2(C_8H_4F_3O_2)_4(C_4H_8O)_2]$
	$0.762C_5H_{12} \cdot 0.238C_4H_8O$
M _r	1164.68
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	100
a, b, c (Å)	7.7687 (17), 12.099 (5), 12.572 (2)
α, β, γ (°)	85.843 (13), 81.208 (8), 83.107 (16)
$V(Å^3)$	1157.6 (6)
Ζ	1
Radiation type	Μο Κα
$\mu \ (\mathrm{mm}^{-1})$	0.65
Crystal size (mm)	$0.30 \times 0.13 \times 0.06$
Data collection	
Diffractometer	Bruker D8 goniometer with
Dimactometer	Photon 100 CMOS detector
Absorption correction	Multi-scan (SADABS; Krause et
	al., 2015)
T_{\min}, T_{\max}	0.701, 0.745
No. of measured, independent and	39433, 4094, 3814
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.033
$(\sin \theta / \lambda)_{\max} (A^{-1})$	0.597
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.028, 0.064, 1.12
No. of reflections	4094
No. of parameters	493
No. of restraints	713
H-atom treatment	H-atom parameters constrained
$\Delta ho_{ m max}, \Delta ho_{ m min} \ ({ m e} \ { m \AA}^{-3})$	0.67, -0.39

Computer programs: APEX2 and SAINT (Bruker, 2015), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), SHELXTL (Sheldrick, 2008), and PLATON (Spek, 2020).

to 11.6 if the disordered THF/pentane solvent molecules in the channel are squeezed out of the structure.

Acknowledgements

We thank Theodore A. Betley and Daniel G. Nocera for helpful discussions and contributions to the preparation of the manuscript.

Funding information

Funding for this research was provided by: the Department of Chemistry and Chemical Biology, Harvard University.

References

- Boiadjiev, S. E. & Lightner, D. A. (1999). J. Phys. Org. Chem. 12, 751– 757.
- Bruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cotton, F. A., Daniels, L. M., Hillard, E. A. & Murillo, C. A. (2002). Inorg. Chem. 41, 2466–2470.
- Cotton, F. A., Extine, M. & Gage, L. D. (1978). *Inorg. Chem.* 17, 172–176.
- Cotton, F. A., Mester, Z. C. & Webb, T. R. (1974). Acta Cryst. B30, 2768–2770.
- Cotton, F. A. & Nocera, D. G. (2000). Acc. Chem. Res. 33, 483-490.

- Coulson, C. A. & Fischer, I. (1949). Philos. Mag. 40, 386-393.
- D'Oria, E. & Novoa, J. J. (2008). CrystEngComm, 10, 423-436.

Cotton, F. A. & Norman, J. G. (1971). J. Coord. Chem. 1, 161-171.

research communications

- Engebretson, D. S., Graj, E. M., Leroi, G. E. & Nocera, D. G. (1999). J. Am. Chem. Soc. 121, 868–869.
- Engebretson, D. S., Zaleski, J. M., Leroi, G. E. & Nocera, D. G. (1994). *Science*, **265**, 759–762.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B72, 171–179.
- Han, L.-J. (2011). Acta Cryst. E67, m1289-m1290.
- Heitler, W. & London, F. (1927). Z. Phys. 44, 455-472.
- James, H. M. & Coolidge, A. S. (1933). J. Chem. Phys. 1, 825-835.
- Kawahara, S., Tsuzuki, S. & Uchimaru, T. (2004). J. Phys. Chem. A, 108, 6744-6749.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Lawton, D. & Mason, R. (1965). J. Am. Chem. Soc. 87, 921-922.
- Lennard-Jones, J. E. (1929). Trans. Faraday Soc. 25, 668-686.
- Lewis, G. N. (1916). J. Am. Chem. Soc. 38, 762-785.

- Müller, P., Herbst-Irmer, R., Spek, A., Schneider, T. & Sawaya, M. (2006). Crystal Structure Refinement: a Crystallographer's Guide to SHELXL, p. 16. Oxford University Press.
- Mulliken, R. S. (1932). Phys. Rev. 41, 751-758.
- Pauling, L. (1928). Chem. Rev. 5, 173-213.
- Pence, L. E., Weisgerber, A. M. & Maounis, F. A. (1999). J. Chem. Educ. 76, 404-405.
- Rumble, J. R. (2021). CRC Handbook of Chemistry and Physics, 102nd ed. Boca Raton: CRC Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.
- Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Zheng, S.-L., Vande Velde, C. M. L., Messerschmidt, M., Volkov, A., Gembicky, M. & Coppens, P. (2008). *Chem. Eur. J.* **14**, 706–713.

Acta Cryst. (2022). E78, 154-158 [https://doi.org/10.1107/S205698902200010X]

Crystal structure of a trifluoromethyl benzoato quadruple-bonded dimolybdenum complex

Elisabeth Aigeldinger, Lilliana Brandao, Troy Powell, Alaina C. Hartnett, Rui Sun, Dilek K. Dogutan and Shao-Liang Zheng

Computing details

Data collection: *APEX2* (Bruker, 2015); cell refinement: *SAINT* (Bruker, 2015); data reduction: *SAINT* (Bruker, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008), and *PLATON* (Spek, 2020).

Tetrakis[μ -4-(trifluoromethyl)benzoato- $\kappa^2 O:O'$)bis[(tetrahydrofuran- κO)molybdenum(II)] 0.762-pentane 0.238-tetrahydrofuran solvate

Crystal data	
$[Mo_{2}(C_{8}H_{4}F_{3}O_{2})_{4}(C_{4}H_{8}O)_{2}] \cdot 0.762C_{5}H_{12} \cdot 0.238C_{4}H_{8}O$ $M_{r} = 1164.68$ Triclinic, $P\overline{1}$ a = 7.7687 (17) Å b = 12.099 (5) Å c = 12.572 (2) Å $a = 85.843 (13)^{\circ}$ $\beta = 81.208 (8)^{\circ}$ $\gamma = 83.107 (16)^{\circ}$ $V = 1157.6 (6) \text{ Å}^{3}$	Z = 1 F(000) = 586 $D_x = 1.671 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9835 reflections $\theta = 2.5-27.2^{\circ}$ $\mu = 0.65 \text{ mm}^{-1}$ T = 100 K Block, orange $0.30 \times 0.13 \times 0.06 \text{ mm}$
Data collection	
Bruker D8 goniometer with Photon 100 CMOS detector diffractometer Radiation source: I μ S microfocus tube ω and phi scans Absorption correction: multi-scan (SADABS; Krause <i>et al.</i> , 2015) $T_{\min} = 0.701, T_{\max} = 0.745$	39433 measured reflections 4094 independent reflections 3814 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 25.1^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -9 \rightarrow 9$ $k = -14 \rightarrow 14$ $l = -14 \rightarrow 14$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.064$ S = 1.12 4094 reflections	 493 parameters 713 restraints Primary atom site location: dual Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.0191P)^2 + 2.0296P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta \rho_{\rm max} = 0.67 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. A single orange plate (0.297 mm × 0.132 mm × 0.056 mm) was chosen for single crystal X-ray diffraction using a Bruker three-circle platform goniometer equipped with an Photon100 CMOS detector. Data were collected as a series of φ and/or ω scans. Data integration down to 0.84 Å resolution was carried out using SAINT V8.37A with reflection spot size optimization. Absorption corrections were made with the program SADABS 2016/2 (Krause *et al.*, 2015). Space group assignments were determined by examination of systematic absences, *E*-statistics, and successive refinement of the structures. The structure was solved by the Intrinsic Phasing methods and refined by least squares methods also using SHELXT-2014 and SHELXL-2014 with the OLEX 2 (Dolomanov *et al.*, 2019) interface. The program PLATON (Spek, 2020) was employed to confirm the absence of higher symmetry space groups. All non-H atoms, including the disorder fragment, were located in difference Fourier maps, and then refined anisotropically. Outlier reflections were omitted from refinement when appropriate.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. All non-H atoms, as well as the disordered atoms were located in difference-Fourier maps, and then refined anisotropically. The restraints on bond lengths and constraints of the atomic displacement parameters on each pair of disorder fragments (SADI/SAME and EADP instructions of SHELXL-2014) as well as the restraints of the atomic displacement parameters (SIMU/RIGU instructions of SHELXL- 2014), if necessary, have been applied for the disorder refinement.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Mo1	-0.08669 (3)	0.43800 (2)	0.51162 (2)	0.01390 (8)	
C1	0.8554 (11)	0.0198 (7)	0.3139 (9)	0.0362 (17)	0.796 (10)
F1	0.8182 (10)	-0.0767 (5)	0.2806 (5)	0.0615 (15)	0.796 (10)
F2	0.9308 (6)	-0.0074 (4)	0.4035 (4)	0.0685 (14)	0.796 (10)
F3	0.9798 (5)	0.0542 (3)	0.2420 (4)	0.0629 (14)	0.796 (10)
C1A	0.840 (5)	0.013 (4)	0.301 (5)	0.054 (5)	0.204 (10)
F1A	0.817 (4)	-0.083 (2)	0.327 (2)	0.066 (5)	0.204 (10)
F2A	0.9862 (16)	0.0311 (12)	0.3439 (19)	0.059 (4)	0.204 (10)
F3A	0.908 (2)	0.0366 (15)	0.1933 (16)	0.080 (5)	0.204 (10)
C14	-0.273 (2)	0.6434 (15)	-0.1264 (11)	0.044 (4)	0.38 (3)
F4	-0.421 (2)	0.7128 (18)	-0.1227 (17)	0.052 (4)	0.38 (3)
F5	-0.303 (3)	0.5510 (13)	-0.1700 (15)	0.055 (3)	0.38 (3)
F6	-0.1534 (18)	0.692 (2)	-0.1933 (11)	0.059 (3)	0.38 (3)
C14A	-0.2779 (13)	0.6523 (8)	-0.1247 (6)	0.034 (2)	0.62 (3)
F4A	-0.4522 (11)	0.6827 (10)	-0.1123 (11)	0.0398 (19)	0.62 (3)
F5A	-0.2538 (17)	0.5654 (8)	-0.1889 (9)	0.044 (2)	0.62 (3)
F6A	-0.1972 (17)	0.7326 (11)	-0.1815 (8)	0.053 (2)	0.62 (3)
01	0.1106 (2)	0.31186 (14)	0.45777 (13)	0.0156 (4)	
02	0.2954 (2)	0.44209 (14)	0.43387 (13)	0.0154 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

O3	0.0284 (2)	0.60139 (14)	0.32975 (13)	0.0159 (4)	
O4	-0.1488 (2)	0.46706 (14)	0.35423 (13)	0.0160 (4)	
C2	0.6966 (4)	0.1020 (2)	0.3359 (2)	0.0258 (6)	
C3	0.5312 (4)	0.0680 (2)	0.3649 (2)	0.0287 (6)	
Н3	0.5155	-0.0086	0.3645	0.034*	
C4	0.3887 (4)	0.1452 (2)	0.3945 (2)	0.0238 (6)	
H4	0.2752	0.1218	0.4143	0.029*	
C5	0.4124 (3)	0.2572 (2)	0.39516 (19)	0.0169 (5)	
C6	0.5781 (3)	0.2909 (2)	0.3642 (2)	0.0189 (5)	
H6	0.5937	0.3677	0.3635	0.023*	
C7	0.7206 (3)	0.2141 (2)	0.3345(2)	0.0231 (6)	
H7	0.8337	0.2376	0.3133	0.028*	
C8	0.2638 (3)	0.3418 (2)	0.43068 (19)	0.0159 (5)	
C9	-0.0782(3)	0.5447(2)	0.2967(2)	0.0173(5)	
C10	-0.1245(3)	0.5704(2)	0.1862(2)	0.0190(5)	
C11	-0.2181(3)	0.3707(2) 0.4987(2)	0.1002(2) 0.1418(2)	0.0190(6)	
H11	-0.2507	0.4327	0.1815	0.028*	
C12	-0.2635(4)	0.4327 0.5235 (3)	0.0398(2)	0.028 0.0284(7)	
H12	-0.3263	0.4743	0.0091	0.0204 (7)	
C13	-0.2173(4)	0.6201 (3)	-0.0171(2)	0.034 0.0282(7)	
C15	-0.1237(4)	0.6201(3)	0.0171(2)	0.0202(7) 0.0304(7)	
H15	-0.0020	0.0519 (3)	-0.0138	0.036*	
C16	-0.0720	0.7500	0.0138 0.1275 (2)	0.030	
U16	-0.0117	0.0007 (2)	0.1273 (2)	0.0200 (0)	
015	-0.2188(2)	0.7133 0.21076 (15)	0.1372 0.59793 (14)	0.030°	0.207(15)
C1S	-0.3188(2) -0.237(3)	0.31070(13)	0.38783(14) 0.6187(15)	0.0213(4)	0.397(13) 0.307(15)
	-0.1085	0.1999 (13)	0.6107 (15)	0.023 (3)	0.397(13) 0.307(15)
LISA UISA	-0.2658	0.1303	0.0102	0.030*	0.397(13) 0.397(15)
C2S	-0.2038	0.1433	0.3728 0.725 (2)	0.030°	0.397(13) 0.307(15)
	-0.310(3)	0.175(5)	0.755(2)	0.032 (4)	0.397(13)
H2SA H2SD	-0.2329	0.1901	0.7844	0.038*	0.397(13)
H25B	-0.3254	0.0946	0.7494	0.038*	0.397(15)
	-0.4855 (15)	0.2465 (9)	0.7481 (8)	0.033 (3)	0.397(15)
H3SA	-0.5817	0.2005	0.7457	0.039*	0.397(15)
H3SB	-0.5062	0.2823	0.8180	0.039*	0.39/(15)
	-0.4/81 (18)	0.3292 (12)	0.6608 (11)	0.020 (3)	0.397(15)
H4SA	-0.5790	0.3272	0.621/	0.024*	0.397(15)
H4SB	-0.4868	0.4040	0.6896	0.024*	0.397 (15)
OIT	-0.3188(2)	0.310/6 (15)	0.58/83 (14)	0.0215 (4)	0.603 (15)
CIT	-0.2628 (19)	0.1954 (9)	0.6098 (9)	0.025 (2)	0.603 (15)
HITA	-0.1365	0.1778	0.5831	0.030*	0.603 (15)
HITB	-0.3303	0.1473	0.5756	0.030*	0.603 (15)
C2T	-0.298 (3)	0.1793 (19)	0.7318 (12)	0.029 (3)	0.603 (15)
H2TA	-0.1874	0.1726	0.7628	0.035*	0.603 (15)
H2TB	-0.3569	0.1113	0.7536	0.035*	0.603 (15)
C3T	-0.4179 (10)	0.2836 (6)	0.7699 (4)	0.0307 (17)	0.603 (15)
H3TA	-0.5269	0.2626	0.8142	0.037*	0.603 (15)
НЗТВ	-0.3577	0.3276	0.8133	0.037*	0.603 (15)
C4T	-0.4562 (12)	0.3465 (8)	0.6735 (7)	0.021 (2)	0.603 (15)

H4TA	-0.4587	0.4273	0.6826	0.025*	0.603 (15)
H4TB	-0.5717	0.3322	0.6568	0.025*	0.603 (15)
C5S	0.2278 (18)	0.8776 (12)	-0.0236 (14)	0.077 (4)	0.381 (5)
H5SA	0.2614	0.8639	-0.1002	0.116*	0.381 (5)
H5SB	0.0998	0.8845	-0.0058	0.116*	0.381 (5)
H5SC	0.2789	0.8154	0.0200	0.116*	0.381 (5)
C6S	0.2985 (18)	0.9909 (13)	0.0015 (11)	0.070 (3)	0.381 (5)
H6SA	0.2682	1.0516	-0.0519	0.084*	0.381 (5)
H6SB	0.2462	1.0141	0.0744	0.084*	0.381 (5)
C7S	0.5068 (17)	0.9639 (12)	-0.0061 (15)	0.075 (4)	0.381 (5)
H7SA	0.5375	0.8957	0.0386	0.090*	0.381 (5)
H7SB	0.5615	0.9530	-0.0816	0.090*	0.381 (5)
C8S	0.571 (2)	1.0696 (17)	0.038 (3)	0.090 (5)	0.381 (5)
H8SA	0.5284	1.0750	0.1161	0.108*	0.381 (5)
H8SB	0.5270	1.1391	-0.0007	0.108*	0.381 (5)
C9S	0.781 (2)	1.049 (2)	0.0156 (16)	0.108 (6)	0.381 (5)
H9SA	0.8179	1.0141	-0.0534	0.162*	0.381 (5)
H9SB	0.8235	0.9998	0.0736	0.162*	0.381 (5)
H9SC	0.8292	1.1204	0.0128	0.162*	0.381 (5)
O2S	0.443 (5)	0.928 (3)	-0.016 (5)	0.076 (6)	0.119 (5)
C10S	0.337 (5)	1.033 (3)	-0.030 (4)	0.079 (6)	0.119 (5)
H10A	0.2310	1.0377	0.0246	0.095*	0.119 (5)
H10B	0.2999	1.0399	-0.1026	0.095*	0.119 (5)
C11S	0.447 (5)	1.125 (2)	-0.019 (3)	0.074 (6)	0.119 (5)
H11A	0.3840	1.1782	0.0338	0.089*	0.119 (5)
H11B	0.4788	1.1652	-0.0887	0.089*	0.119 (5)
C12S	0.610 (7)	1.062 (4)	0.023 (7)	0.087 (7)	0.119 (5)
H12A	0.7167	1.0959	-0.0106	0.105*	0.119 (5)
H12B	0.5991	1.0646	0.1020	0.105*	0.119 (5)
C13S	0.617 (5)	0.950 (3)	-0.008 (4)	0.082 (7)	0.119 (5)
H13A	0.6922	0.9400	-0.0786	0.099*	0.119 (5)
H13B	0.6662	0.8971	0.0462	0.099*	0.119 (5)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mol	0.01239 (11)	0.01700 (12)	0.01261 (12)	-0.00162 (8)	-0.00291 (8)	-0.00050 (8)
C1	0.030 (3)	0.027 (3)	0.051 (3)	0.002 (2)	-0.003 (2)	-0.009 (2)
F1	0.044 (2)	0.036 (2)	0.104 (4)	0.0089 (15)	-0.002(3)	-0.040 (3)
F2	0.058 (2)	0.075 (3)	0.064 (2)	0.0443 (19)	-0.0200 (19)	-0.0107 (19)
F3	0.035 (2)	0.0470 (17)	0.092 (3)	0.0125 (14)	0.0261 (19)	-0.0070 (18)
C1A	0.030 (8)	0.048 (8)	0.084 (9)	0.013 (6)	-0.003 (6)	-0.033 (7)
F1A	0.033 (7)	0.043 (6)	0.116 (13)	0.016 (5)	0.003 (9)	-0.029 (8)
F2A	0.028 (6)	0.049 (7)	0.101 (11)	0.012 (4)	-0.011 (6)	-0.029 (7)
F3A	0.042 (8)	0.092 (9)	0.095 (8)	0.030 (6)	0.010 (6)	-0.029 (6)
C14	0.035 (6)	0.070 (6)	0.021 (7)	0.018 (4)	-0.010 (4)	-0.003 (5)
F4	0.043 (5)	0.081 (7)	0.022 (4)	0.033 (5)	-0.009 (4)	0.006 (6)
F5	0.058 (7)	0.091 (5)	0.015 (5)	0.000 (4)	-0.008 (5)	-0.009 (4)

F6	0.054 (5)	0.099 (8)	0.017 (3)	0.008 (5)	-0.009(3)	0.017 (5)
C14A	0.033 (4)	0.050 (4)	0.017 (4)	0.008 (3)	-0.007 (3)	-0.004 (3)
F4A	0.032 (2)	0.060 (4)	0.025 (3)	0.013 (2)	-0.013 (2)	0.000 (3)
F5A	0.048 (4)	0.064 (3)	0.016 (3)	0.022 (3)	-0.011 (3)	-0.014 (2)
F6A	0.061 (4)	0.075 (5)	0.026 (3)	-0.017 (3)	-0.020 (3)	0.021 (3)
01	0.0144 (9)	0.0176 (9)	0.0153 (9)	-0.0026(7)	-0.0035 (7)	0.0000 (7)
O2	0.0133 (8)	0.0179 (9)	0.0154 (9)	-0.0026 (7)	-0.0026 (7)	0.0001 (7)
03	0.0141 (8)	0.0195 (9)	0.0146 (9)	-0.0032 (7)	-0.0033 (7)	-0.0001 (7)
O4	0.0144 (8)	0.0195 (9)	0.0149 (9)	-0.0025 (7)	-0.0040 (7)	-0.0005 (7)
C2	0.0243 (15)	0.0243 (15)	0.0277 (15)	0.0034 (12)	-0.0031 (12)	-0.0055 (12)
C3	0.0283 (15)	0.0207 (14)	0.0370 (17)	-0.0003 (12)	-0.0040 (13)	-0.0064 (12)
C4	0.0199 (14)	0.0250 (15)	0.0271 (15)	-0.0037 (11)	-0.0032 (11)	-0.0030 (11)
C5	0.0167 (13)	0.0216 (13)	0.0125 (12)	-0.0004 (10)	-0.0047 (10)	0.0005 (10)
C6	0.0183 (13)	0.0203 (13)	0.0185 (13)	-0.0005 (10)	-0.0058 (10)	-0.0001 (10)
C7	0.0155 (13)	0.0295 (15)	0.0240 (14)	-0.0001 (11)	-0.0032 (11)	-0.0030 (11)
C8	0.0171 (13)	0.0208 (14)	0.0105 (12)	-0.0029 (10)	-0.0051 (10)	0.0016 (10)
C9	0.0132 (12)	0.0203 (13)	0.0176 (13)	0.0018 (10)	-0.0014 (10)	-0.0023 (10)
C10	0.0159 (13)	0.0262 (14)	0.0136 (12)	0.0035 (10)	-0.0017 (10)	-0.0035 (10)
C11	0.0199 (13)	0.0299 (15)	0.0198 (14)	0.0007 (11)	-0.0039 (11)	-0.0031 (11)
C12	0.0217 (14)	0.0448 (18)	0.0206 (14)	0.0020 (13)	-0.0093 (11)	-0.0112 (13)
C13	0.0221 (14)	0.0449 (18)	0.0149 (13)	0.0080 (13)	-0.0029 (11)	-0.0025 (12)
C15	0.0299 (16)	0.0399 (18)	0.0187 (14)	0.0002 (13)	-0.0025 (12)	0.0068 (12)
C16	0.0246 (14)	0.0310 (15)	0.0195 (14)	-0.0032 (12)	-0.0045 (11)	0.0010 (11)
O1S	0.0183 (9)	0.0200 (9)	0.0255 (10)	-0.0013 (7)	-0.0011 (7)	-0.0022 (7)
C1S	0.021 (5)	0.016 (4)	0.037 (5)	-0.004 (4)	-0.001 (4)	-0.003 (3)
C2S	0.035 (6)	0.028 (6)	0.032 (5)	-0.003 (5)	-0.003 (4)	0.004 (4)
C3S	0.034 (4)	0.028 (4)	0.031 (4)	-0.002 (3)	0.009 (3)	0.002 (3)
C4S	0.010 (4)	0.028 (5)	0.024 (4)	-0.008 (3)	-0.006 (3)	-0.005 (3)
O1T	0.0183 (9)	0.0200 (9)	0.0255 (10)	-0.0013 (7)	-0.0011 (7)	-0.0022 (7)
C1T	0.020 (4)	0.021 (3)	0.033 (3)	-0.005 (2)	0.001 (3)	-0.002 (2)
C2T	0.031 (4)	0.022 (4)	0.033 (4)	0.002 (4)	-0.009 (3)	0.005 (3)
C3T	0.026 (3)	0.037 (3)	0.025 (2)	0.005 (3)	0.003 (2)	0.002 (2)
C4T	0.015 (3)	0.021 (3)	0.027 (3)	-0.005 (3)	0.003 (3)	-0.003 (2)
C5S	0.080 (8)	0.080 (8)	0.064 (8)	0.009 (6)	-0.005 (6)	0.015 (7)
C6S	0.082 (8)	0.075 (8)	0.042 (6)	0.015 (6)	-0.005 (6)	0.027 (5)
C7S	0.086 (8)	0.071 (8)	0.056 (6)	0.013 (7)	-0.002 (6)	0.025 (6)
C8S	0.101 (9)	0.083 (8)	0.076 (11)	0.012 (7)	-0.011 (7)	0.013 (7)
C9S	0.109 (10)	0.130 (15)	0.079 (11)	0.002 (9)	-0.019 (8)	0.015 (12)
O2S	0.087 (11)	0.079 (10)	0.049 (11)	0.025 (9)	-0.011 (10)	0.020 (9)
C10S	0.094 (12)	0.078 (11)	0.052 (11)	0.022 (10)	-0.005 (11)	0.026 (10)
C11S	0.092 (12)	0.067 (11)	0.051 (11)	0.026 (10)	-0.012 (10)	0.031 (10)
C12S	0.101 (13)	0.084 (11)	0.067 (12)	0.013 (11)	-0.008 (11)	0.019 (11)
C13S	0.087 (12)	0.080 (11)	0.072 (11)	0.014 (11)	-0.020 (11)	0.025 (10)

Geometric parameters (Å, °)

Mo1—O1	2.0996 (17)	C1S—C2S	1.512 (13)
Mo1—O4	2.1030 (17)	C1S—H1SA	0.9900

Mo1—O2 ⁱ	2.1076 (17)	C1S—H1SB	0.9900
Mo1-Mo1 ⁱ	2.1098 (7)	C2S—C3S	1.519 (17)
Mo1—O3 ⁱ	2.1204 (17)	C2S—H2SA	0.9900
Mo1—O1T	2.5422 (19)	C2S—H2SB	0.9900
Mo1—O1S	2.5422 (19)	C3S—C4S	1.430 (12)
C1—F3	1.304 (12)	C3S—H3SA	0.9900
C1—F1	1.345 (11)	C3S—H3SB	0.9900
C1—F2	1.349 (11)	C4S—H4SA	0.9900
C1—C2	1.493 (6)	C4S—H4SB	0.9900
C1A—F1A	1.21 (7)	O1T—C1T	1.431 (9)
C1A—F2A	1.38 (5)	O1T—C4T	1.447 (7)
C1A—F3A	1.40 (7)	C1T—C2T	1.518 (11)
C1A—C2	1.494 (18)	C1T—H1TA	0.9900
C14—F6	1.314 (14)	C1T—H1TB	0.9900
C14—F4	1.341 (13)	C2T—C3T	1.535 (13)
C14—F5	1.341 (14)	С2Т—Н2ТА	0.9900
C14—C13	1.500 (13)	C2T—H2TB	0.9900
C14A—F6A	1.326 (8)	C3T—C4T	1.434 (8)
C14A—F4A	1.348 (9)	СЗТ—НЗТА	0.9900
C14A—F5A	1.349 (8)	СЗТ—НЗТВ	0.9900
C14A—C13	1.509 (8)	С4Т—Н4ТА	0.9900
O1—C8	1.275 (3)	C4T—H4TB	0.9900
O2—C8	1.271 (3)	C5S—C6S	1.605 (14)
O2—Mo1 ⁱ	2.1076 (17)	C5S—H5SA	0.9800
O3—C9	1.269 (3)	C5S—H5SB	0.9800
O3—Mo1 ⁱ	2.1204 (17)	C5S—H5SC	0.9800
O4—C9	1.270 (3)	C6S—C7S	1.602 (14)
C2—C3	1.384 (4)	C6S—H6SA	0.9900
C2—C7	1.389 (4)	C6S—H6SB	0.9900
C3—C4	1.382 (4)	C7S—C8S	1.590 (15)
С3—Н3	0.9500	C7S—H7SA	0.9900
C4—C5	1.390 (4)	C7S—H7SB	0.9900
C4—H4	0.9500	C8S—C9S	1.607 (15)
C5—C6	1.387 (4)	C8S—H8SA	0.9900
C5—C8	1.485 (3)	C8S—H8SB	0.9900
C6—C7	1.381 (4)	C9S—H9SA	0.9800
С6—Н6	0.9500	C9S—H9SB	0.9800
С7—Н7	0.9500	C9S—H9SC	0.9800
C9—C10	1.490 (3)	O2S—C13S	1.425 (18)
C10—C16	1.391 (4)	O2S—C10S	1.442 (18)
C10—C11	1.392 (4)	C10S—C11S	1.505 (18)
C11—C12	1.385 (4)	C10S—H10A	0.9900
C11—H11	0.9500	C10S—H10B	0.9900
C12—C13	1.382 (4)	C11S—C12S	1.53 (2)
C12—H12	0.9500	C11S—H11A	0.9900
C13—C15	1.385 (4)	C11S—H11B	0.9900
C15—C16	1.383 (4)	C12S—C13S	1.436 (18)
C15—H15	0.9500	C12S—H12A	0.9900

C16—H16	0.9500	C12S—H12B	0.9900
O1S—C4S	1.428 (11)	C13S—H13A	0.9900
O1S—C1S	1.465 (12)	C13S—H13B	0.9900
O1—Mo1—O4	89.95 (7)	H1SA—C1S—H1SB	108.6
O1—Mo1—O2 ⁱ	176.69 (6)	C1S—C2S—C3S	102.6 (12)
O4—Mo1—O2 ⁱ	89.57 (7)	C1S—C2S—H2SA	111.3
O1—Mo1—Mo1 ⁱ	93.20 (5)	C3S—C2S—H2SA	111.3
O4—Mo1—Mo1 ⁱ	92.37 (5)	C1S—C2S—H2SB	111.3
O2 ⁱ —Mo1—Mo1 ⁱ	90.10 (5)	C3S—C2S—H2SB	111.3
O1—Mo1—O3 ⁱ	88.41 (7)	H2SA—C2S—H2SB	109.2
O4—Mo1—O3 ⁱ	176.47 (7)	C4S—C3S—C2S	106.9 (10)
O2 ⁱ —Mo1—O3 ⁱ	91.89 (6)	C4S—C3S—H3SA	110.3
Mo1 ⁱ —Mo1—O3 ⁱ	90.84 (5)	C2S—C3S—H3SA	110.3
O1—Mo1—O1T	96.83 (6)	C4S—C3S—H3SB	110.3
O4—Mo1—O1T	98.97 (6)	C2S—C3S—H3SB	110.3
O2 ⁱ —Mo1—O1T	80.01 (6)	H3SA—C3S—H3SB	108.6
$Mo1^{i}$ $Mo1$ $O1T$	164.83 (4)	01S-C4S-C3S	111.1 (8)
$O3^{i}$ —Mo1—O1T	78.13 (6)	01S - C4S - H4SA	109.4
01-M01-018	96.83 (6)	C3S - C4S - H4SA	109.1
04—Mo1—O1S	98 97 (6)	01S-C4S-H4SB	109.1
Ω^{2i} Mo1 Ω^{18}	80.01 (6)	C3S - C4S - H4SB	109.1
$Mo1^{i}$ $Mo1$ $O18$	164.83(4)	H4SA - C4S - H4SB	102.1
$O3^{i}$ Mo1 $O1S$	78 13 (6)	C1T - O1T - C4T	108.1 (6)
$F_3 - C_1 - F_1$	106.4 (6)	CIT-OIT-Mol	118.0(6)
$F_3 = C_1 = F_2$	105.9(7)	C4T - O1T - Mo1	120.2(5)
$F_1 = C_1 = F_2$	105.0(7) 106.0(8)	01T - C1T - C2T	120.2(3) 104 5(9)
F_{3} C_{1} C_{2}	114.9(8)	OIT_CIT_HITA	110.8
$F_1 - C_1 - C_2$	114.9(0) 112.5(7)		110.8
$F_{2} = C_{1} = C_{2}$	112.3 (7)	OIT-CIT-HITB	110.8
$F_1 = C_1 = C_2$	105(4)	C2T_C1T_H1TB	110.8
$F1\Delta$ $C1\Delta$ $F3\Delta$	105(4) 117(3)	HITA_CIT_HITB	108.9
$F_{2} = C_{1} = F_{3}$	97 (<i>A</i>)	$C1T_C2T_C3T$	105.4 (6)
$F_{2A} = C_{1A} = C_{2A}$	118 (5)	C1T $C2T$ $H2TA$	110.7
$F_{2} = C_{1} = C_{2}$	108(3)	$C_{1} = C_{2} = H_{2} = H_{2}$	110.7
$F_{2A} = C_{1A} = C_{2}$	100(3) 109(4)	C1T_C2T_H2TB	110.7
F_{6}	105(4) 106.6(13)	$C_{1} = C_{2} = H_{2} = H_{2}$	110.7
$F_{6} = C_{14} = F_{5}$	100.0(13) 108.3(13)	$H_{2TA} = C_{2T} = H_{2TB}$	108.8
F4 - C14 - F5	106.3(15)	C4T - C3T - C2T	105.6(7)
$F_{6} = C_{14} = C_{13}$	100.5(13) 1110(12)	C4T C3T H3TA	110.6
$F_{4} = C_{14} = C_{13}$	111.0(12) 111.7(14)	$C_{1} = C_{1} = H_{1} = H_{2}$	110.0
F4 - C14 - C13 F5 - C14 - C13	111.7(14) 112.6(14)	C_{21} C_{31} C_{41} C_{31} C_{42} C_{42} C_{42} C_{42} C_{42} C_{43} C	110.0
F_{5} C_{14} E_{4A}	112.0(14) 108.0(7)	$C_{1} = C_{1} = H_{1} = H_{2}$	110.0
F6A = C14A = F4A	106.9(7) 105.8(7)	C_{21} C_{31} C	100.0
E4A C 14A = 5A	103.0(7) 104.2(8)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	106.7
$\mathbf{F}_{\mathbf{A}} = \mathbf{C}_{\mathbf{A}} $	10+.5(0) 114.5(7)	$C_{1} = C_{41} = O_{11}$	100.0 (3)
$\mathbf{F}_{\mathbf{A}} = \mathbf{C}_{\mathbf{A}} $	114.3(7)	$C_{1} = C_{41} = \Pi_{41} = \Pi_{41}$	110.4
$\mathbf{F}_{\mathbf{A}} = \mathbf{C}_{\mathbf{A}} $	110.0 (0)	$\begin{array}{cccc} 0 & 1 & - & - & - & - & - & - & - & - & -$	110.4
ГJA—U14A—U13	112.0 (8)	C31-C41-H41B	110.4

C8—O1—Mo1	115.86 (15)	O1T—C4T—H4TB	110.4
C8-O2-Mo1 ⁱ	118.49 (15)	Н4ТА—С4Т—Н4ТВ	108.6
C9	117.28 (15)	C6S—C5S—H5SA	109.5
C9—O4—Mo1	116.71 (15)	C6S—C5S—H5SB	109.5
C3—C2—C7	120.3 (3)	H5SA—C5S—H5SB	109.5
C3—C2—C1	121.5 (5)	C6S—C5S—H5SC	109.5
C7—C2—C1	118.0 (5)	H5SA—C5S—H5SC	109.5
C3—C2—C1A	116 (2)	H5SB—C5S—H5SC	109.5
C7—C2—C1A	124 (3)	C7S—C6S—C5S	106.0 (10)
C4—C3—C2	120.2 (3)	C7S—C6S—H6SA	110.5
С4—С3—Н3	119.9	C5S—C6S—H6SA	110.5
С2—С3—Н3	119.9	C7S—C6S—H6SB	110.5
C3—C4—C5	119.7 (3)	C5S—C6S—H6SB	110.5
C3—C4—H4	120.2	H6SA—C6S—H6SB	108.7
C5—C4—H4	120.2	C8S—C7S—C6S	105.2 (12)
C6—C5—C4	119.8 (2)	C8S—C7S—H7SA	110.7
C6—C5—C8	119.0 (2)	C6S—C7S—H7SA	110.7
C4—C5—C8	121.2 (2)	C8S—C7S—H7SB	110.7
C7—C6—C5	120.7 (2)	C6S—C7S—H7SB	110.7
С7—С6—Н6	119.7	H7SA—C7S—H7SB	108.8
С5—С6—Н6	119.7	C7S—C8S—C9S	104.7 (14)
C6—C7—C2	119.3 (3)	C7S—C8S—H8SA	110.8
С6—С7—Н7	120.4	C9S—C8S—H8SA	110.8
С2—С7—Н7	120.4	C7S—C8S—H8SB	110.8
O2—C8—O1	122.3 (2)	C9S—C8S—H8SB	110.8
O2—C8—C5	118.2 (2)	H8SA—C8S—H8SB	108.9
O1—C8—C5	119.5 (2)	C8S—C9S—H9SA	109.5
O3—C9—O4	122.8 (2)	C8S—C9S—H9SB	109.5
O3—C9—C10	119.1 (2)	H9SA—C9S—H9SB	109.5
O4—C9—C10	118.1 (2)	C8S—C9S—H9SC	109.5
C16—C10—C11	119.7 (2)	H9SA—C9S—H9SC	109.5
C16—C10—C9	120.3 (2)	H9SB—C9S—H9SC	109.5
C11—C10—C9	120.0 (2)	C13S—O2S—C10S	108.7 (18)
C12—C11—C10	120.0 (3)	O2S-C10S-C11S	107.7 (16)
C12—C11—H11	120.0	O2S-C10S-H10A	110.2
C10—C11—H11	120.0	C11S-C10S-H10A	110.2
C13—C12—C11	119.8 (3)	O2S-C10S-H10B	110.2
C13—C12—H12	120.1	C11S—C10S—H10B	110.2
C11—C12—H12	120.1	H10A-C10S-H10B	108.5
C12—C13—C15	120.8 (3)	C10S—C11S—C12S	103.5 (16)
C12—C13—C14	117.3 (7)	C10S—C11S—H11A	111.1
C15—C13—C14	121.9 (7)	C12S—C11S—H11A	111.1
C12—C13—C14A	120.1 (5)	C10S—C11S—H11B	111.1
C15—C13—C14A	119.0 (5)	C12S—C11S—H11B	111.1
C16—C15—C13	119.5 (3)	H11A—C11S—H11B	109.0
C16—C15—H15	120.2	C13S—C12S—C11S	105.2 (19)
C13—C15—H15	120.2	C13S—C12S—H12A	110.7
C15—C16—C10	120.3 (3)	C11S—C12S—H12A	110.7

C15—C16—H16	119.9	C13S—C12S—H12B	110.7
C_{10} C	119.9	$\begin{array}{c} \text{C115} \\ \text{C125} \\$	110.7
C45 - 015 - 015	100.0(9)	$\Pi_{12}^{-}A - C_{12}^{-}S - \Pi_{12}^{-}B$	108.0
C1S = O1S = Mo1	131.9(7) 110.8(10)	025 - 0135 - 0125	108(2)
C1S = C1S = C2S	10.0(10)	$C_{12} = C_{13} = H_{13}$	110.1
015 - 015 - 025	110.3	$\begin{array}{c} C125 \\ \hline \\ C125 \\ \hline \\ C125 \\ \hline \\ C125 \\ \hline \\ H12P \\ \hline \\ H12P \\ \hline \\ \end{array}$	110.1
C_{2S} C_{1S} H_{1SA}	110.3	C12S C13S H13B	110.1
01S-C1S-H1SB	110.3	H134_C135_H13B	108.4
C_{15} C_{15} H_{15B}	110.3	1115A-C155-1115B	100.4
C25-C15-1115D	110.5		
F3—C1—C2—C3	148.4 (6)	C11—C12—C13—C15	0.9 (4)
F1-C1-C2-C3	26.5 (11)	C11—C12—C13—C14	-179.0 (8)
F2—C1—C2—C3	-92.4 (8)	C11—C12—C13—C14A	-175.4 (5)
F3—C1—C2—C7	-36.4 (9)	F6-C14-C13-C12	-144.3 (13)
F1—C1—C2—C7	-158.3 (6)	F4-C14-C13-C12	96.8 (18)
F2—C1—C2—C7	82.8 (9)	F5-C14-C13-C12	-22.7 (17)
F1A—C1A—C2—C3	-20 (6)	F6-C14-C13-C15	35.7 (17)
F2A—C1A—C2—C3	-139 (3)	F4—C14—C13—C15	-83.1 (18)
F3A—C1A—C2—C3	117 (3)	F5-C14-C13-C15	157.3 (12)
F1A—C1A—C2—C7	164 (4)	F6A-C14A-C13-C12	-166.7 (8)
F2A—C1A—C2—C7	44 (6)	F4A—C14A—C13—C12	69.7 (10)
F3A—C1A—C2—C7	-60 (4)	F5A—C14A—C13—C12	-46.3 (11)
C7—C2—C3—C4	-1.1 (4)	F6A—C14A—C13—C15	16.9 (10)
C1—C2—C3—C4	174.0 (5)	F4A—C14A—C13—C15	-106.7 (9)
C1A—C2—C3—C4	-178 (3)	F5A—C14A—C13—C15	137.3 (8)
C2—C3—C4—C5	-0.1 (4)	C12-C13-C15-C16	-0.3 (4)
C3—C4—C5—C6	1.2 (4)	C14—C13—C15—C16	179.6 (8)
C3—C4—C5—C8	-177.5 (2)	C14A—C13—C15—C16	176.0 (5)
C4—C5—C6—C7	-1.1 (4)	C13-C15-C16-C10	-0.6 (4)
C8—C5—C6—C7	177.6 (2)	C11-C10-C16-C15	0.8 (4)
C5—C6—C7—C2	-0.1 (4)	C9—C10—C16—C15	-178.4 (2)
C3—C2—C7—C6	1.2 (4)	C4S—O1S—C1S—C2S	-23 (3)
C1—C2—C7—C6	-174.1 (5)	Mo1-O1S-C1S-C2S	125 (3)
C1A—C2—C7—C6	177 (3)	O1S—C1S—C2S—C3S	25 (4)
Mo1 ⁱ O2C8O1	1.0 (3)	C1S—C2S—C3S—C4S	-18 (4)
Mo1 ⁱ —O2—C8—C5	-178.29 (15)	C1S—O1S—C4S—C3S	11.2 (18)
Mo1-01-C8-02	-1.3 (3)	Mo1-O1S-C4S-C3S	-127.7 (9)
Mo1-01-C8-C5	177.94 (16)	C2S—C3S—C4S—O1S	5 (3)
C6—C5—C8—O2	-1.7 (3)	C4T—O1T—C1T—C2T	-28.3 (17)
C4—C5—C8—O2	177.0 (2)	Mo1-O1T-C1T-C2T	112.4 (15)
C6—C5—C8—O1	179.0 (2)	O1T—C1T—C2T—C3T	14 (2)
C4—C5—C8—O1	-2.3 (4)	C1T—C2T—C3T—C4T	5 (2)
Mo1 ⁱ O3C9O4	-0.1 (3)	C2T—C3T—C4T—O1T	-21.8 (15)
Mo1 ⁱ —O3—C9—C10	179.30 (16)	C1T—O1T—C4T—C3T	32.4 (11)
Mo1	1.7 (3)	Mo1—O1T—C4T—C3T	-107.3 (6)
Mo1-04-C9-C10	-177.75 (16)	C5S—C6S—C7S—C8S	-170.7 (15)
O3—C9—C10—C16	-11.2 (4)	C6S—C7S—C8S—C9S	-172.8 (17)

O4—C9—C10—C16	168.3 (2)	C13S—O2S—C10S—C11S	-6 (6)
O3—C9—C10—C11	169.7 (2)	O2S—C10S—C11S—C12S	-10 (5)
O4—C9—C10—C11	-10.8 (3)	C10S—C11S—C12S—C13S	22 (6)
C16-C10-C11-C12	-0.2 (4)	C10S—O2S—C13S—C12S	21 (7)
C9—C10—C11—C12	179.0 (2)	C11S—C12S—C13S—O2S	-27 (7)
C10-C11-C12-C13	-0.7 (4)		

Symmetry code: (i) -x, -y+1, -z+1.