

Received 3 January 2022 Accepted 11 January 2022

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: crystal structure; tetrahydroisoquinoline; ethyl ester; hydrogen bond; C— $H \cdots \pi$ (ring).

CCDC reference: 2141278

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of 2-{[7-acetyl-4-cyano-6-hydroxy-8-(4-methoxyphen-yl)-1,6-dimethyl-5,6,7,8-tetrahydroisoquinolin-3-yl]sulfanyl}acetic acid ethyl ester

Elham A. Al-Taifi,^a* Islam S. Marae,^b Yasser A. El-Ossaily,^c Shaaban K. Mohamed,^{d,e}* Joel T. Mague,^f Mehmet Akkurt^g and Etify A. Bakhite^b

^aChemistry Department, Faculty of Science, Sana'a University, Sana'a, Yemen, ^bChemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt, ^cChemistry Department, College of Science, Jouf University, PO Box 2014.Sakaka, Saudi Arabia, ^dChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, ^eChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, ^fDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and ^gDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey. *Correspondence e-mail: elhamaltaifi@gmail.com, shaabankamel@yahoo.com

In the title molecule, $C_{25}H_{28}N_2O_5S$, (alternative name ethyl 2-{[7-acetyl-4-cyano-6-hydroxy-8-(4-methoxyphenyl)-1,6-dimethyl-5,6,7,8-tetrahydroisoquinolin-3yl]sulfanyl}acetate) the 4-methoxyphenyl group is disposed on one side of the bicyclic core and the oxygen atoms of the hydroxyl and acetyl groups are disposed on the other side. In the crystal, a layered structure parallel to the *ac* plane is generated by O-H···O and C-H···O hydrogen bonds plus C-H··· π (ring) interactions.

1. Chemical context

Some tetrahydroisoquinoline (THISQ) based compounds are of medicinal and biological importance, being used as antitumoral (Pingaew *et al.*, 2014; Castillo *et al.*, 2018), antifungal (Scott *et al.*, 2002) and anti-inflammatory agents (Siegfried *et al.*, 1989). Other tetrahydroisoquinolines were used as inhibitors including B-raf^{V600E} or p38 kinase inhibitors (Lu *et al.*, 2016; Rosales *et al.*, 2007). The THISQ core can easily be functionalized to build other heterocyclic rings on the carbocyclic ring (Xu *et al.*, 2002; Carroll *et al.*, 2007; Demers *et al.*, 2008, Marae *et al.*, 2021*a*). Recently, we have used some compounds related to THISQ as durable fluorescent dyes for cotton (Marae *et al.*, 2021*b*). The widespread importance of these compounds motivated us to further study the THISQ core. Here we report the synthesis and crystal structure determination of the title compound.

The title molecule with labelling scheme and 50% probability ellipsoids.

2. Structural commentary

The ethyl sulfanylacetate, acetyl and cyano groups and both methyl groups (C19 and C21) are in equatorial positions with respect to the bicyclic core, while the hydroxyl and anisole groups on the cyclohexane ring occupy an axial and bisectional position, respectively (Fig. 1). The C10–C15 benzene ring is inclined to the N1/C5–C9 pyridine ring by 82.57 (6)°. The C1–C5/C9 cyclohexane ring is in an envelope conformation, with atom C3 at the flap position [deviation from best plane = 0.367 (1) Å] and puckering parameters (Cremer & Pople, 1975) $Q_{\rm T} = 0.5180 (12)$ Å, $\theta = 53.85 (13)^{\circ}$ and $\varphi = 109.07 (17)^{\circ}$.

3. Supramolecular features

In the crystal of the title compound, chains of molecules extending along the *a*-axis direction are formed by O3-

Figure 2

A portion of one chain viewed along the *b*-axis direction. $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds are depicted by red and black dashed lines, respectively.

Table 1	
Hydrogen-bond geometry (Å, °).	

Cg1 is the centroid of the N1/C5-C9 pyridine ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$03-H3\cdots O1^{i}$ $C16-H16C\cdots O2^{ii}$ $C21-H21A\cdots O2^{iii}$ $C22-H22A\cdots O3^{iv}$ $C22-H22B\cdots Cg1^{iv}$	0.90 (2) 0.98 0.98 0.99 0.99	2.05 (2) 2.47 2.51 2.44 2.58	2.9283 (12) 3.1566 (15) 3.3956 (15) 3.1815 (15) 3.4559 (15)	164 (2) 127 150 131 147
$C_{24} - \Pi_{24} D \cdots O_{4}$	0.99	2.32	5.44 2 (2)	134

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z; (iii) -x + 1, -y + 1, -z; (iv) -x + 1, -y + 1, -z + 1; (v) -x, -y + 1, -z + 1.

H3...O1 and C16-H16C...O2 hydrogen bonds (Table 1 and Fig. 2). These are connected into layers parallel to the *ac* plane by C21-H21A...O2, C22-H22A...O3 and C24-H24B...O4 hydrogen bonds as well as C22-H22B...Cg1 interactions (Table 1 and Fig. 3).

4. Hirshfeld surface analysis

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was carried out using *CrystalExplorer17.5* (Turner *et al.*, 2017). The Hirshfeld surface and their associated two-dimensional fingerprint plots were used to quantify the various intermolecular interactions in the title compound. In the Hirshfeld surface plotted over d_{norm} in the range -0.4903 (red) to +1.6396 (blue) a.u. (Fig. 4), the white areas indicate contacts with distances equal to the sum of van der Waals radii, and the red and blue areas indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan *et al.*, 2016). The bright-red spots indicate their roles as the respective donors and/or acceptors.

Fingerprint plots (Fig. 5b-e; Table 2) reveal that $H \cdots H$ (47.6%), $O \cdots H/H \cdots O$ (19.7%), $C \cdots H/H \cdots C$ (12.5%) and $N \cdots H/H \cdots N$ (11.6%) interactions make the greatest contributions to the surface contacts. $S \cdots H/H \cdots S$ (6.4%), $N \cdots C/C \cdots N$ (0.7%), $O \cdots C/C \cdots O$ (0.5%), $O \cdots O$ (0.5%) and $C \cdots C$ (0.4%) contacts also contribute to the overall crystal packing of the title compound. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of $H \cdots H$, $O \cdots H$, $C \cdots H$ and $N \cdots H$ interactions suggest that van der Waals interactions and hydrogen

Figure 3

Packing viewed along the *c*-axis direction giving an elevation view of one layer. Hydrogen bonds are depicted as in Fig. 2 while $C-H\cdots\pi(ring)$ interactions are indicated by green dashed lines.

 Table 2

 Summary of short interatomic contacts (Å) in the title compound.

Contact	Distance	Symmetry operation
O1···H3	2.051 (16)	-1 + x, y, z
$H21A \cdots O2$	2.51	1 - x, 1 - y, -z
$H22A \cdot \cdot \cdot O3$	2.44	1-x, 1-y, 1-z
$O4 \cdot \cdot \cdot H16A$	2.60	x, y, 1 + z
$H24B \cdot \cdot \cdot H24B$	2.44	-x, 1-y, 1-z
$H11 \cdot \cdot \cdot N2$	2.61	1 - x, -y, 1 - z
H18 <i>B</i> ···H2	2.49	1 - x, -y, -z
H21 <i>C</i> ···H16 <i>B</i>	2.51	-x, 1-y, -z
H25 <i>B</i> ···H25 <i>B</i>	2.34	-x, 2 - y, 1 - z

bonding play the major roles in the crystal packing (Hathwar et al., 2015).

5. Database survey

A search of the Cambridge Structural Database (CSD version 5.42, updated September 2021; Groom et al., 2016) for tetrahydroisoquinoline derivatives gave nine compounds very similar to the title compound. In the crystal of NAQRIJ (Mague et al., 2017), dimers form through complementary sets of inversion-related $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds. These are connected into zigzag chains along the *c*-axis direction by pairwise C-H···N interactions that also form inversion dimers. In KUGLIK (Langenohl et al., 2020), the heterocyclic amines are alternately connected to the hydrogen-bonding system along the c axis, which leads to the formation of syndiotactic polymer chains in this direction. In the crystal of DUSVIZ (Selvaraj et al., 2020), molecules are linked via C-H···O hydrogen bonds. In AKIVUO (Al-Taifi et al., 2021), a layered structure with layers parallel to $(10\overline{1})$ is generated by $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds. In ULUTAZ (Naghivev et al., 2021), molecules are linked via N-H···O and C-H···N hydrogen bonds, forming a threedimensional network, and the crystal packing is dominated by $C-H\cdots\pi$ bonds. In CARCOQ (Lehmann et al., 2017), molecules are linked by O-H···O hydrogen bonds, forming chains propagating along the *a*-axis direction. The chains are linked by $C-H \cdots F$ hydrogen bonds, forming layers lying

Figure 4

(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over d_{norm} , with a fixed colour scale of -0.4903 (red) to +1.6396 (blue) a.u.

parallel to the *ab* plane. In POPYEB (Ben Ali *et al.*, 2019), molecules are packed in a herringbone manner parallel to (103) and (103) *via* weak C-H···O and C-H··· π (ring) interactions. In ENOCIU (Naicker *et al.*, 2011) various C-H··· π and C-H···O bonds link the molecules together. In NIWPAL (Bouasla *et al.*, 2008), the molecules are linked by N-H···O intermolecular hydrogen bonds involving the sulfonamide function to form an infinite two-dimensional network parallel to the (001) plane.

6. Synthesis and crystallization

7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(4-methoxyphenyl)-5,6,7,8-tetrahydro-isoquinoline-3(2*H*)-thione (5 mmol,

Table 3	
Experimental d	etails.

Crystal data Chemical formula C25H28N2O5S M_r 468.55 Crystal system, space group Triclinic, $P\overline{1}$ Temperature (K) 150 *a*, *b*, *c* (Å) 10.0643 (6), 10.3592 (7), 83.296 (1), 80.770 (1), 75.638 (1) $\begin{array}{l} \alpha,\,\beta,\,\gamma\,(^{\circ}) \\ V\,({
m \AA}^3) \end{array}$ 1199.23 (13) Z Radiation type Μο Κα $\mu \,({\rm mm}^{-1})$ 0.17 Crystal size (mm) $0.35 \times 0.29 \times 0.27$ Data collection Bruker SMART APEX CCD Diffractometer Absorption correction

Absorption correction	Multi-scan (SADABS; Krause et al., 2015)		
T_{\min}, T_{\max}	0.82, 0.96		
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	22695, 6509, 5177		
R _{int}	0.023		
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.695		
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.045, 0.133, 1.11		
No. of reflections	6509		
No. of parameters	305		
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement		
$\Delta \rho_{\rm max}$, $\Delta \rho_{\rm min}$ (e Å ⁻³)	0.71, -0.22		

12.0685 (8)

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

1.91 g) and sodium acetate trihydrate (1.36 g, 10 mmol) were suspended in 50 ml of absolute ethanol, then 0.55 ml of ethyl chloroacetate (5.3 mmol) were added and the mixture was refluxed for one h. During reflux, the yellow colour disappeared gradually over time to afford a colourless reaction mixture. The reaction mixture was then left to cool at room temperature and the formed precipitate was collected by fitration, washed with water, dried in air and recystallized from ethanol to give the title compound as cubic crystals, yield 2.11 g (94%); m.p. 453–455 K. IR (cm⁻¹): 3454 (O–H); 3048 (C−H aromatic); 2970, 2913 (C−H aliphatic); 2215 (C=N); 1743 (C=O, ester); 1697 (C=O, acetyl). ¹H NMR (CDCl₃, 400 MHz) δ: 6.80–6.86 (dd, J = 8 Hz, 4H, ArH), 4.24–4.26 (d, J = 8 Hz, 1H, C⁸H), 4.12–4.15 (q, J = 6 Hz, 2H, OCH₂), 3.89–3.92 (dd, 2H, SCH₂), 3.78 (s, 3H, OCH₃), 3.38 (s, 1H, OH), 3.09-3.12 (d, J = 12 Hz, 1H, C⁵H), 3.03–3.05 (d, J = 8 Hz, 1H, C⁷H), 2.89–2.92 (d, J = 12 Hz, 1H, C⁵H), 1. 90 (s, 3H, CH₃ at C-1), 1.80 (s, 3H, COCH₃), 1.34 (s, 3H, CH₃ at C-6), 1.18–1.21 (t, J = 6 Hz, 3H, CH₃ of ester group).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All C-bound H atoms were placed in geometrically idealized positions (C-H = 0.95-1.00 Å) while the hydrogen atom attached to O3 was found from a difference map, and was subsequently refined isotropically [O3-H3 = 0.903 (17) Å] with $U_{iso}(H) = 1.5U_{eq}(O)$. All Cbound H atoms were included as riding contributions with isotropic displacement parameters 1.2 times those of the parent atoms (1.5 for methyl groups).

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. Author contributions are as follows: synthesis and organic chemistry parts preparation, EAA, YAE, ISM; conceptualization and study guide, EAB, SKM; financial support, EAA; crystal data production and validation, JTM; paper preparation and Hirshfeld study, MA.

References

- Al-Taifi, E. A., Maraei, I. S., Bakhite, E. A., Demirtas, G., Mague, J. T., Mohamed, S. K. & Ramli, Y. (2021). Acta Cryst. E77, 121-125.
- Ben Ali, K. & Retailleau, P. (2019). Acta Cryst. E75, 1399-1402.
- Bouasla, R., Berredjem, M., Aouf, N.-E. & Barbey, C. (2008). Acta Cryst. E64, 0432.
- Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Carroll, F. I., Robinson, T. P., Brieaddy, L. E., Atkinson, R. N., Mascarella, S. W., Damaj, M. I., Martin, B. R. & Navarro, H. A. (2007). J. Med. Chem. 50, 6383-6391.
- Castillo, J.-C., Jiménez, E., Portilla, J., Insuasty, B., Quiroga, J., Moreno-Fuquen, R., Kennedy, A. R. & Abonia, R. (2018). Tetrahedron, 74, 932-947.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Demers, S., Stevenson, H., Candler, J., Bashore, C. G., Arnold, E. P., O'Neill, B. T. & Coe, J. W. (2008). Tetrahedron Lett. 49, 3368-3371.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.
- Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
- Langenohl, F., Otte, F. & Strohmann, C. (2020). Acta Cryst. E76, 298-302.
- Lehmann, A., Lechner, L., Radacki, K., Braunschweig, H. & Holzgrabe, U. (2017). Acta Cryst. E73, 867-870.
- Lu, B., Cao, H., Cao, J., Huang, S., Hu, Q., Liu, D., Shen, R., Shen, X., Tao, W., Wan, H., Wang, D., Yan, Y., Yang, L., Zhang, J., Zhang, L., Zhang, L. & Zhang, M. (2016). Bioorg. Med. Chem. Lett. 26, 819-823.
- Mague, J. T., Mohamed, S. K., Akkurt, M., Bakhite, E. A. & Albayati, M. R. (2017). IUCrData, 2, x170390.
- Marae, I. S., Bakhite, E. A., Moustafa, O. S., Abbady, M. S., Mohamed, S. K. & Mague, J. T. (2021a). ACS Omega, 6, 8706-8716.
- Marae, I. S., Sharmoukh, W., Bakhite, E. A., Moustafa, O. S., Abbady, M. S. & Emam, H. (2021b). Cellulose, 28, 5937-5956.
- Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, I. G. (2021). Acta Cryst. E77, 195-199.
- Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. C67, o100-o103.
- Pingaew, R., Mandi, P., Nantasenamat, C., Prachayasittikul, S., Ruchirawat, S. & Prachayasittikul, V. (2014). Eur. J. Med. Chem. 81, 192-203.
- Rosales, A. & Bernado, V. (2007). Pyrazoloisoquinoline Derivatives. WIPO Patent WO2007/060198A12007.

research communications

- Scott, J. D. & Williams, R. (2002). Chem. Rev. 102, 1669-1730.
- Selvaraj, J. P., Mary, S., Dhruba, J. B., Huidrom, B. S., Panneerselvam, Y. & Piskala Subburaman, K. (2020). *Acta Cryst.* E76, 1548–1550.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Siegfried, L., Helmut, V., Guenther, W., Thomas, S., Eckart, S., Dieter, L., Gunter, L. & Ger East, D. D. (1989). *Chem. Abstr.* **110**, 75554g.

Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.

- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). *Crystal Explorer*. University of Western Australia.
- Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A, 153, 625–636.
- Xu, R., Dwoskin, L. P., Grinevich, V., Sumithran, S. P. & Crooks, P. A. (2002). Drug Dev. Res. 55, 173–186.

supporting information

Acta Cryst. (2022). E78, 220-224 [https://doi.org/10.1107/S2056989022000378]

Crystal structure and Hirshfeld surface analysis of 2-{[7-acetyl-4-cyano-6-hydroxy-8-(4-methoxyphenyl)-1,6-dimethyl-5,6,7,8-tetrahydroisoquinolin-3yl]sulfanyl}acetic acid ethyl ester

Elham A. Al-Taifi, Islam S. Marae, Yasser A. El-Ossaily, Shaaban K. Mohamed, Joel T. Mague, Mehmet Akkurt and Etify A. Bakhite

Computing details

Data collection: *APEX3* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: *SHELXT2014/5* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2012); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Ethyl 2-{[7-acetyl-4-cyano-6-hydroxy-8-(4-methoxyphenyl)-1,6-dimethyl-5,6,7,8-tetrahydroisoquinolin-3-yl]sulfanyl}acetate

Crystal data

 $C_{25}H_{28}N_2O_5S$ $M_r = 468.55$ Triclinic, $P\overline{1}$ a = 10.0643 (6) Å b = 10.3592 (7) Å c = 12.0685 (8) Å $a = 83.296 (1)^{\circ}$ $\beta = 80.770 (1)^{\circ}$ $\gamma = 75.638 (1)^{\circ}$ $V = 1199.23 (13) Å^3$

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3333 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Krause *et al.*, 2015) $T_{\min} = 0.82, T_{\max} = 0.96$ Z = 2 F(000) = 496 $D_x = 1.298 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9995 reflections $\theta = 2.5-29.5^{\circ}$ $\mu = 0.17 \text{ mm}^{-1}$ T = 150 K Block, colourless $0.35 \times 0.29 \times 0.27 \text{ mm}$

22695 measured reflections 6509 independent reflections 5177 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 29.6^{\circ}, \theta_{min} = 1.7^{\circ}$ $h = -13 \rightarrow 13$ $k = -14 \rightarrow 14$ $l = -16 \rightarrow 16$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from
$wR(F^2) = 0.133$	neighbouring sites
S = 1.11	H atoms treated by a mixture of independent
6509 reflections	and constrained refinement
305 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0848P)^2 + 0.0389P]$
0 restraints	where $P = (F_0^2 + 2F_c^2)/3$
Primary atom site location: dual	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 0.71 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω , collected at $\varphi = 0.00$, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ , collected at $\omega = -30.00$ and 210.00°. The scan time was 10 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å) while that attached to oxygen was placed in a location derived from a difference map and its coordinates adjusted to give O—H = 0.87 %A. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	0.40179 (4)	0.33194 (3)	0.67126 (2)	0.02919 (11)	
01	-0.01601 (8)	0.26808 (9)	-0.00282 (7)	0.0261 (2)	
O2	0.65454 (10)	0.31103 (10)	-0.03628 (7)	0.0325 (2)	
03	0.76674 (8)	0.24179 (8)	0.18545 (7)	0.02199 (18)	
H3	0.8202 (16)	0.2524 (10)	0.1190 (13)	0.033*	
04	0.08897 (11)	0.46076 (12)	0.66388 (9)	0.0455 (3)	
05	0.13749 (11)	0.65264 (10)	0.58156 (8)	0.0357 (2)	
N1	0.35085 (10)	0.41231 (10)	0.46279 (8)	0.0208 (2)	
N2	0.67128 (14)	0.03469 (14)	0.60676 (11)	0.0424 (3)	
C1	0.46954 (11)	0.29768 (11)	0.16884 (9)	0.0159 (2)	
H1	0.500590	0.379658	0.134272	0.019*	
C2	0.57706 (11)	0.17513 (11)	0.12120 (9)	0.0173 (2)	
H2	0.531350	0.098468	0.129582	0.021*	
C3	0.70498 (11)	0.13262 (11)	0.18391 (9)	0.0193 (2)	
C4	0.65493 (12)	0.09343 (12)	0.30675 (10)	0.0223 (2)	
H4A	0.620266	0.011333	0.310543	0.027*	
H4B	0.734138	0.072924	0.350225	0.027*	
C5	0.54209 (11)	0.20148 (11)	0.35998 (9)	0.0179 (2)	
C6	0.52467 (11)	0.20985 (12)	0.47729 (9)	0.0199 (2)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C7	0.42631 (12)	0.31658 (12)	0.52466 (9)	0.0205 (2)	
C8	0.36570 (11)	0.40524 (11)	0.35083 (9)	0.0177 (2)	
C9	0.45724 (11)	0.29873 (11)	0.29599 (9)	0.0166 (2)	
C10	0.33305 (11)	0.30117 (11)	0.12715 (9)	0.0176 (2)	
C11	0.24375 (12)	0.22431 (12)	0.18378 (9)	0.0206 (2)	
H11	0.263234	0.176107	0.253526	0.025*	
C12	0.12671 (12)	0.21705 (12)	0.13990 (10)	0.0227 (2)	
H12	0.065702	0.165748	0.180301	0.027*	
C13	0.09882 (11)	0.28515 (12)	0.03646 (9)	0.0200(2)	
C14	0.18526 (12)	0.36397 (12)	-0.02017 (9)	0.0225 (2)	
H14	0.165733	0.412138	-0.089914	0.027*	
C15	0.30109 (12)	0.37198 (12)	0.02605 (9)	0.0212 (2)	
H15	0.359409	0.427055	-0.012431	0.025*	
C16	-0.03346 (13)	0.32073 (14)	-0.11635 (10)	0.0267 (3)	
H16A	0.052176	0.288044	-0.166573	0.040*	
H16B	-0.054905	0.418620	-0.120457	0.040*	
H16C	-0.109566	0.291484	-0.139534	0.040*	
C17	0.61828 (12)	0.20825 (12)	-0.00420 (10)	0.0227 (2)	
C18	0.60948 (18)	0.11357 (16)	-0.08583 (12)	0.0404 (4)	
H18A	0.654485	0.138974	-0.160555	0.061*	
H18B	0.512060	0.117187	-0.089559	0.061*	
H18C	0.656149	0.022519	-0.060849	0.061*	
C19	0.81182 (13)	0.01430 (13)	0.13312 (11)	0.0280(3)	
H19A	0.849094	0.041750	0.056329	0.042*	
H19B	0.767456	-0.059489	0.131300	0.042*	
H19C	0.887278	-0.015108	0.179227	0.042*	
C20	0.60828 (13)	0.11221 (13)	0.54794 (10)	0.0258 (3)	
C21	0.27853 (12)	0.52205 (12)	0.29046 (10)	0.0236 (2)	
H21A	0.327912	0.540938	0.215809	0.035*	
H21B	0.259623	0.600477	0.333793	0.035*	
H21C	0.190956	0.501257	0.282226	0.035*	
C22	0.31143 (14)	0.50489 (13)	0.67068 (10)	0.0286 (3)	
H22A	0.305095	0.534976	0.746654	0.034*	
H22B	0.366449	0.558138	0.617296	0.034*	
C23	0.16744 (14)	0.53363 (14)	0.63858 (10)	0.0303 (3)	
C24	0.00183 (17)	0.68891 (18)	0.54348 (14)	0.0490 (4)	
H24A	-0.072036	0.696185	0.608938	0.059*	
H24B	-0.007797	0.619864	0.497063	0.059*	
C25	-0.0099(3)	0.8197 (2)	0.4757 (3)	0.0934 (9)	
H25A	0.062343	0.810824	0.410224	0.140*	
H25B	0.001445	0.886882	0.522048	0.140*	
H25C	-0.101112	0.847711	0.450117	0.140*	

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
S1	0.0375 (2)	0.03615 (19)	0.01391 (15)	-0.00874 (14)	-0.00410 (13)	-0.00088 (12)
01	0.0185 (4)	0.0418 (5)	0.0196 (4)	-0.0100 (4)	-0.0083 (3)	0.0052 (4)

supporting information

O2	0.0360 (5)	0.0411 (6)	0.0226 (5)	-0.0181 (4)	0.0007 (4)	0.0018 (4)
O3	0.0192 (4)	0.0271 (4)	0.0219 (4)	-0.0090 (3)	-0.0012 (3)	-0.0056 (3)
O4	0.0337 (6)	0.0612 (7)	0.0426 (6)	-0.0229 (5)	-0.0002(5)	0.0106 (5)
O5	0.0392 (5)	0.0333 (5)	0.0325 (5)	-0.0047 (4)	-0.0021 (4)	-0.0057 (4)
N1	0.0213 (5)	0.0254 (5)	0.0155 (4)	-0.0052 (4)	-0.0023 (4)	-0.0012 (4)
N2	0.0461 (7)	0.0444 (7)	0.0312 (6)	-0.0021 (6)	-0.0128 (6)	0.0117 (5)
C1	0.0158 (5)	0.0182 (5)	0.0142 (5)	-0.0049 (4)	-0.0033 (4)	0.0001 (4)
C2	0.0163 (5)	0.0195 (5)	0.0168 (5)	-0.0050 (4)	-0.0017 (4)	-0.0027 (4)
C3	0.0171 (5)	0.0204 (5)	0.0206 (5)	-0.0041 (4)	-0.0022 (4)	-0.0033 (4)
C4	0.0207 (5)	0.0217 (6)	0.0214 (6)	-0.0006 (4)	-0.0038(4)	0.0020 (4)
C5	0.0174 (5)	0.0193 (5)	0.0177 (5)	-0.0061 (4)	-0.0037 (4)	0.0013 (4)
C6	0.0188 (5)	0.0237 (6)	0.0171 (5)	-0.0059 (4)	-0.0049 (4)	0.0034 (4)
C7	0.0230 (5)	0.0254 (6)	0.0145 (5)	-0.0091 (5)	-0.0029 (4)	0.0008 (4)
C8	0.0158 (5)	0.0223 (5)	0.0154 (5)	-0.0053 (4)	-0.0023 (4)	-0.0012 (4)
C9	0.0154 (5)	0.0203 (5)	0.0153 (5)	-0.0064 (4)	-0.0030 (4)	-0.0002 (4)
C10	0.0168 (5)	0.0206 (5)	0.0151 (5)	-0.0031 (4)	-0.0032 (4)	-0.0018 (4)
C11	0.0194 (5)	0.0267 (6)	0.0156 (5)	-0.0060 (4)	-0.0050 (4)	0.0033 (4)
C12	0.0183 (5)	0.0314 (6)	0.0193 (5)	-0.0099 (5)	-0.0038(4)	0.0048 (5)
C13	0.0152 (5)	0.0271 (6)	0.0175 (5)	-0.0030 (4)	-0.0040 (4)	-0.0020 (4)
C14	0.0216 (5)	0.0291 (6)	0.0157 (5)	-0.0045 (5)	-0.0054 (4)	0.0031 (4)
C15	0.0218 (5)	0.0250 (6)	0.0175 (5)	-0.0086 (4)	-0.0036 (4)	0.0034 (4)
C16	0.0222 (6)	0.0387 (7)	0.0197 (6)	-0.0058 (5)	-0.0095 (5)	0.0020 (5)
C17	0.0189 (5)	0.0308 (6)	0.0182 (5)	-0.0050 (5)	-0.0016 (4)	-0.0040 (5)
C18	0.0571 (10)	0.0423 (8)	0.0242 (7)	-0.0115 (7)	-0.0059 (6)	-0.0121 (6)
C19	0.0229 (6)	0.0268 (6)	0.0309 (7)	0.0021 (5)	-0.0023 (5)	-0.0085 (5)
C20	0.0283 (6)	0.0292 (6)	0.0191 (6)	-0.0073 (5)	-0.0042 (5)	0.0043 (5)
C21	0.0238 (6)	0.0243 (6)	0.0194 (5)	0.0011 (5)	-0.0040 (5)	-0.0011 (4)
C22	0.0335 (7)	0.0344 (7)	0.0209 (6)	-0.0127 (5)	-0.0005 (5)	-0.0081 (5)
C23	0.0315 (7)	0.0387 (7)	0.0197 (6)	-0.0099 (6)	0.0045 (5)	-0.0059 (5)
C24	0.0383 (8)	0.0555 (10)	0.0449 (9)	0.0022 (7)	-0.0026 (7)	-0.0031 (8)
C25	0.0751 (16)	0.0498 (12)	0.139 (3)	0.0112 (11)	-0.0281 (16)	0.0228 (14)

Geometric parameters (Å, °)

S1—C7	1.7672 (11)	C10—C11	1.3927 (15)
S1—C22	1.7966 (14)	C11—C12	1.3882 (16)
O1—C13	1.3742 (14)	C11—H11	0.9500
O1—C16	1.4355 (14)	C12—C13	1.3940 (15)
O2—C17	1.2116 (15)	C12—H12	0.9500
O3—C3	1.4223 (14)	C13—C14	1.3863 (16)
O3—H3	0.903 (17)	C14—C15	1.3944 (16)
O4—C23	1.2046 (17)	C14—H14	0.9500
O5—C23	1.3298 (17)	C15—H15	0.9500
O5—C24	1.457 (2)	C16—H16A	0.9800
N1—C7	1.3240 (15)	C16—H16B	0.9800
N1	1.3439 (14)	C16—H16C	0.9800
N2-C20	1.1443 (17)	C17—C18	1.4956 (18)
C1—C9	1.5206 (14)	C18—H18A	0.9800

supporting information

C1-C10	1 5278 (15)	C18—H18B	0.9800
C1-C2	1.5270(15) 1.5501(15)	C18 - H18C	0.9800
C1 H1	1,0000		0.9800
$C_2 = C_1 T_1$	1.5258 (15)	C10 H10R	0.9800
$C_2 = C_1$	1.5258(15) 1.5421(15)		0.9800
C2 H2	1.0000		0.9800
C_2 C_4	1.0000	C_{21} H_{21} H	0.9800
C_{3}	1.5230(10) 1.5211(15)	C21—H21B	0.9800
$C_3 = C_{19}$	1.5511(15) 1.5028(16)	C_{21} C_{22} C_{22}	0.9800
C4 - C3	1.3028 (10)	C_{22} C_{23} C	1.3093 (19)
	0.9900	C22—H22A	0.9900
C4—H4B	0.9900	C22—H22B	0.9900
C3—C9	1.3941 (15)	C24—C25	1.488 (3)
C5—C6	1.4087 (15)	C24—H24A	0.9900
C6—C7	1.3972 (16)	C24—H24B	0.9900
C6—C20	1.4369 (16)	C25—H25A	0.9800
C8—C9	1.4053 (15)	C25—H25B	0.9800
C8—C21	1.4957 (15)	C25—H25C	0.9800
C10—C15	1.3893 (15)		
C7—S1—C22	98.39 (6)	C13—C14—C15	119.48 (10)
C13—O1—C16	116.26 (9)	C13—C14—H14	120.3
С3—О3—Н3	109.5	C15—C14—H14	120.3
C23—O5—C24	115.10 (12)	C10—C15—C14	121.43 (11)
C7—N1—C8	119.27 (10)	C10—C15—H15	119.3
C9—C1—C10	113.57 (9)	C14—C15—H15	119.3
C9—C1—C2	113.46 (9)	O1—C16—H16A	109.5
C10—C1—C2	106.92 (8)	O1—C16—H16B	109.5
C9—C1—H1	107.5	H16A—C16—H16B	109.5
C10—C1—H1	107.5	01—C16—H16C	109.5
C2-C1-H1	107.5	H16A—C16—H16C	109.5
$C_{17} - C_{2} - C_{3}$	111 24 (9)	H16B—C16—H16C	109.5
$C_{17} - C_{2} - C_{1}$	108 37 (9)	02-C17-C18	121.16(12)
C_{3} C_{2} C_{1}	11273(9)	02-C17-C2	121.10(12) 120.04(11)
$C_{17} - C_{2} - H_{2}$	108.1	$C_{18} - C_{17} - C_{2}$	120.01(11) 118.78(11)
C_{3} C_{2} H_{2}	108.1	C17 - C18 - H18A	109.5
C1 - C2 - H2	108.1	C17 - C18 - H18B	109.5
03-03-04	106.22 (9)	H18A - C18 - H18B	109.5
$O_3 C_3 C_{19}$	110.22(0)	C_{17} C_{18} H_{18} C_{17}	109.5
C_{4} C_{3} C_{19}	100.61(10)	$H_{18A} = C_{18} = H_{18C}$	109.5
$C_1 = C_2 = C_1^2$	107.01(10) 111.05(0)		109.5
$C_1 = C_2$	111.03(9) 107.54(0)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_{1} = C_{2} = C_{2}$	107.34(9) 111.84(0)	C_{3} C_{10} H_{10} H_{10}	109.5
$C_{19} = C_{5} = C_{2}$	111.04(9) 112.68(0)	L10A C10 H10D	109.5
C_{3}	112.00 (9)	$\begin{array}{cccc} \Pi & \gamma & \gamma & \Pi & \gamma & \sigma \\ \Pi & \gamma & \gamma & \sigma & \sigma & \sigma \\ \Pi & \gamma & \sigma & \sigma & \sigma \\ \Pi & \gamma & \sigma & \sigma & \sigma \\ \Pi & \sigma & \sigma & \sigma & \sigma \\ $	109.5
C_{3} C_{4} H_{4A}	107.1		109.5
$C_5 = C_4 = \Pi_4 \Lambda$	109.1	$H_{10} = C_{10} = H_{10} C_{10}$	109.5
$C_3 = C_4 = \Pi_4 D$	107.1	$\frac{1117D}{C19} = \frac{119C}{C6}$	109.3
$\Box = \Box 4 = \Pi 4 B$	107.1	1N2 - C20 - C0	1/7.83 (14)
п4л—04—п4в	107.8	U0-U21-H21A	109.5

C9—C5—C6	118.33 (10)	C8—C21—H21B	109.5
C9—C5—C4	121.92 (10)	H21A—C21—H21B	109.5
C6—C5—C4	119.67 (10)	C8—C21—H21C	109.5
C7—C6—C5	119.09 (10)	H21A—C21—H21C	109.5
C7—C6—C20	119.89 (10)	H21B—C21—H21C	109.5
C5—C6—C20	121.00 (11)	C23—C22—S1	114.39 (9)
N1—C7—C6	122.29 (10)	C23—C22—H22A	108.7
N1—C7—S1	116.98 (9)	S1—C22—H22A	108.7
C6—C7—S1	120.69 (9)	C23—C22—H22B	108.7
N1—C8—C9	122.66 (10)	S1—C22—H22B	108.7
N1-C8-C21	113.87 (10)	H22A—C22—H22B	107.6
C9—C8—C21	123.45 (10)	04-C23-O5	124.65 (13)
C5-C9-C8	118.17 (10)	$04-C^{2}-C^{2}$	124.79 (13)
C5-C9-C1	121.80 (10)	05-C23-C22	110.53(11)
C8-C9-C1	119 86 (9)	05-C24-C25	107 60 (17)
C_{15} C_{10} C_{11}	118 27 (10)	05-C24-H24A	110.2
$C_{15} - C_{10} - C_{1}$	120 46 (10)	C_{25} C_{24} H_{24A}	110.2
$C_{11} - C_{10} - C_{1}$	121.02 (9)	$05-C^{24}-H^{24}B$	110.2
C_{12} C_{11} C_{10} C_{10}	121.02(0) 121.02(10)	$C_{25} - C_{24} - H_{24B}$	110.2
C_{12} C_{11} H_{11}	119.5	$H_{24} = C_{24} = H_{24B}$	108.5
C10-C11-H11	119.5	C_{24} C_{25} H_{25A}	109.5
$C_{11} - C_{12} - C_{13}$	119.91 (10)	C_{24} C_{25} H_{25R}	109.5
$C_{11} - C_{12} - H_{12}$	120.0	$H_{25A} = C_{25} = H_{25B}$	109.5
C13 - C12 - H12	120.0	C_{24} C_{25} H_{25C}	109.5
01-C13-C14	120.0	$H_{25}^{-} = H_{25}^{-} = H_{$	109.5
01 - C13 - C12	116.04(10)	$H_{25R} = C_{25} = H_{25C}$	109.5
C_{14} C_{13} C_{12}	119 84 (10)	11250 025 11250	109.5
	119.04 (10)		
C9—C1—C2—C17	-159.86 (9)	C21—C8—C9—C5	174.35 (10)
C10—C1—C2—C17	74.15 (10)	N1—C8—C9—C1	-179.57 (10)
C9—C1—C2—C3	-36.30 (12)	C21—C8—C9—C1	-0.96 (16)
C10—C1—C2—C3	-162.29(9)	C10—C1—C9—C5	125.98 (11)
C17—C2—C3—O3	67.55 (12)	C2—C1—C9—C5	3.61 (14)
C1—C2—C3—O3	-54.40 (12)	C10—C1—C9—C8	-58.88 (13)
C17—C2—C3—C4	-176.63 (9)	C2—C1—C9—C8	178.74 (9)
C1—C2—C3—C4	61.42 (12)	C9—C1—C10—C15	143.67 (11)
C17—C2—C3—C19	-56.24 (13)	C2-C1-C10-C15	-90.40 (12)
C1—C2—C3—C19	-178.19 (9)	C9—C1—C10—C11	-42.15 (14)
O3—C3—C4—C5	64.88 (12)	C2-C1-C10-C11	83.77 (12)
C19—C3—C4—C5	-175.88 (10)	C15—C10—C11—C12	0.81 (17)
C2—C3—C4—C5	-54.09 (12)	C1-C10-C11-C12	-173.49 (10)
C3—C4—C5—C9	23.77 (15)	C10-C11-C12-C13	1.36 (18)
C3—C4—C5—C6	-153.08 (10)	C16—O1—C13—C14	9.11 (16)
C9—C5—C6—C7	-1.73 (16)	C16—O1—C13—C12	-170.76 (10)
C4—C5—C6—C7	175.24 (10)	C11—C12—C13—O1	177.43 (10)
C9—C5—C6—C20	179.59 (11)	C11—C12—C13—C14	-2.44 (18)
C4—C5—C6—C20	-3.44 (17)	O1—C13—C14—C15	-178.52 (11)
C8—N1—C7—C6	2.08 (18)	C12—C13—C14—C15	1.34 (18)

C8—N1—C7—S1	179.98 (8)	C11—C10—C15—C14	-1.94 (17)
C5-C6-C7-N1	-1.67 (18)	C1-C10-C15-C14	172.40 (10)
C20—C6—C7—N1	177.03 (11)	C13—C14—C15—C10	0.87 (18)
C5—C6—C7—S1	-179.50 (8)	C3—C2—C17—O2	-73.61 (14)
C20—C6—C7—S1	-0.80 (16)	C1—C2—C17—O2	50.84 (14)
C22—S1—C7—N1	-15.41 (11)	C3—C2—C17—C18	107.90 (13)
C22—S1—C7—C6	162.54 (10)	C1—C2—C17—C18	-127.65 (12)
C7—N1—C8—C9	0.94 (17)	C7—S1—C22—C23	69.08 (10)
C7—N1—C8—C21	-177.79 (10)	C24—O5—C23—O4	-3.71 (19)
C6—C5—C9—C8	4.47 (16)	C24—O5—C23—C22	178.31 (11)
C4—C5—C9—C8	-172.42 (10)	S1—C22—C23—O4	36.21 (17)
C6—C5—C9—C1	179.69 (10)	S1—C22—C23—O5	-145.80 (9)
C4—C5—C9—C1	2.79 (16)	C23—O5—C24—C25	-176.43 (17)
N1—C8—C9—C5	-4.26 (16)		

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C5–C9 pyridine ring.

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
03—H3…O1 ⁱ	0.90 (2)	2.05 (2)	2.9283 (12)	164 (2)
C16—H16C···O2 ⁱⁱ	0.98	2.47	3.1566 (15)	127
C21—H21A···O2 ⁱⁱⁱ	0.98	2.51	3.3956 (15)	150
C22—H22A···O3 ^{iv}	0.99	2.44	3.1815 (15)	131
C22—H22 B ···Cg1 ^{iv}	0.99	2.58	3.4559 (15)	147
C24—H24 B ····O4 ^v	0.99	2.52	3.442 (2)	154

Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) -x+1, -y+1, -z; (iv) -x+1, -y+1, -z+1; (v) -x, -y+1, -z+1.